Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage
Abstract
:1. Introduction
2. Experiments
2.1. Force–Distance Spectroscopy of Bacterial Cells on Soft Surfaces
2.2. Optical Microscopy
2.3. Evalution of the Force–Distance Spectroscopy Data
2.4. Low-Melting-Point Agarose Gel Preparation
2.5. The Adhesion of Polystyrene Beads onto the LMP Agarose Gel
2.6. Preparation of the Bacterial Assays
2.7. Quantification of C. okenii’s Adhesion Properties over Its Growth Stages
2.8. Statistical Tests
3. Results
3.1. The Topography of the LMP Agarose Gel Surfaces
3.2. Mechanical Properties of the LMP Agarose Gels
3.3. The Cell–Surface Adhesion Force on the LMP Agarose Gels
3.4. Adhesion of the Polystyrene Microparticles to the LMP Agarose Gels
3.5. Evolution of C. okenii’s Adhesion over Its Growth Stages
4. Discussions and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guimaraes, C.F.; Gasperini, L.; Marques, A.P.; Reis, R.L. The stiffness of living tissues and its implications for tissue engineering. Nat. Rev. Mater. 2020, 5, 351. [Google Scholar] [CrossRef]
- Serrano-Aroca, A.; Cano-Vicent, A.; Serra, R.S.; El-Tanani, M.; Aljabali, A.; Tambuwala, M.M.; Mishra, Y.K. Scaffolds in the microbial resistant era: Fabrication, materials, properties and tissue engineering applications. Mater. Today Bio 2022, 16, 100412. [Google Scholar] [CrossRef]
- Dufrêne, Y.F.; Persat, A. Mechanomicrobiology: How bacteria sense and respond to forces. Nat. Rev. Microbiol. 2020, 18, 227. [Google Scholar] [CrossRef]
- Maier, B. How physical interactions shape bacterial biofilms. Annu. Rev. Biophys. 2021, 50, 401. [Google Scholar] [CrossRef]
- Wang, L.; Wong, Y.-C.; Correira, J.M.; Wancura, M.; Geiger, C.J.; Webster, S.S.; Butler, B.J.; O’Toole, G.A.; Langford, R.M.; Brown, K.A.; et al. The accumulation and growth of Pseudomonas aeruginosa on surfaces is modulated by surface mechanics via cyclic-di-GMP signaling. NPJ Biofilms Microbiomes 2023, 9, 78. [Google Scholar] [CrossRef] [PubMed]
- Wittmann, R.; Nguyen, G.H.; Löwen, H.; Schwarzendahl, F.J.; Sengupta, A. Mechano-self-regulation of bacterial size in growing colonies. Commun. Phys. 2023, 6. [Google Scholar] [CrossRef]
- Otto, K.; Silhavy, T.J. Surface sensing and adhesion of Escherichia coli controlled by the Cpx-signaling pathway. Proc. Natl Acad. Sci. USA 2002, 99, 2287–2292. [Google Scholar] [CrossRef]
- Ellison, C.K.; Kan, J.; Dillard, R.S.; Kysela, D.T.; Ducret, A.; Berne, C.; Hampton, C.M.; Ke, Z.; Wright, E.R.; Biais, N.; et al. Obstruction of pilus retraction stimulates bacterial surface sensing. Science 2017, 358, 535–538. [Google Scholar] [CrossRef]
- Hug, I.; Deshpande, S.; Sprecher, K.S.; Pfohl, T.; Jenal, U. Second messenger–mediated tactile response by a bacterial rotary motor. Science 2017, 358, 531–534. [Google Scholar] [CrossRef]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 2018, 16, 616. [Google Scholar] [CrossRef]
- Vadillo-Rodriguez, V.; Busscher, H.J.; Mei, H.C.V.; de Vries, J.; Norde, W. Role of lactobacillus cell surface hydrophobicity as probed by AFM in adhesion to surfaces at low and high ionic strength. Colloids Surf. Biointerf. 2005, 41, 33–41. [Google Scholar] [CrossRef] [PubMed]
- Bayoudh, S.; Othmane, A.; Bettaieb, F.; Bakhrouf, A.; Ouada, H.B.; Ponsonnet, L. Quantification of the adhesion free energy between bacteria and hydrophobic and hydrophilic substrata. Mater. Sci. Eng. C 2006, 26, 300–305. [Google Scholar] [CrossRef]
- Yuan, Y.; Hays, M.P.; Hardwidge, P.R.; Kim, J. Surface characteristics influencing bacterial adhesion to polymeric substrates. RSC Adv. 2017, 7, 14254–14261. [Google Scholar] [CrossRef]
- Kandemir, N.; Vollmer, W.; Jakubovics, N.S.; Chen, J. Mechanical interactions between bacteria and hydrogels. Sci. Rep. 2018, 8, 10893. [Google Scholar] [CrossRef]
- Yang, K.; Shi, J.; Wang, L.; Chen, Y.; Liang, C.; Yang, L.; Wang, L.N. Bacterial anti-adhesion surface design: Surface patterning, roughness and wettability: A review. J. Mater. Sci. Technol. 2022, 99, 82–100. [Google Scholar] [CrossRef]
- Carniello, V.; Peterson, B.W.; Mei, H.C.V.; Busscher, H.J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interf. Sci. 2019, 261, 1. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, X.; Xi, H.; Sun, J.; Liang, X.; Wei, J.; Xiao, X.; Liu, Z.; Li, S.; Liang, Z.; et al. Interpretation of adhesion behaviors between bacteria and modified basalt fiber by surface thermodynamics and extended DLVO theory. Colloids Surf. B Biointerf. 2019, 177, 454–461. [Google Scholar] [CrossRef]
- Asp, M.E.; Ho Thanh, M.-T.; Germann, D.A.; Carroll, R.J.; Franceski, A.; Welch, R.D.; Gopinath, A.; Patteson, A.E. Spreading rates of bacterial colonies depend on substrate stiffness and permeability. PNAS Nexus 2022, 1, pgac025. [Google Scholar] [CrossRef]
- Pal, A.; Gope, A.; Sengupta, A. Drying of bio-colloidal sessile droplets: Advances, applications, and perspectives. Adv. Colloid Interface Sci. 2023, 314, 102870. [Google Scholar] [CrossRef]
- Pal, A.; Sengupta, A.; Yanagisawa, M. Role of motility and nutrient availability in drying patterns of algal droplets. Sci. Rep. 2024, 14, 23481. [Google Scholar] [CrossRef]
- Guégan, C.; Garderes, J.; Le Pennec, G.; Gaillard, F.; Fay, F.; Linossier, I.; Herry, J.-M.; Fontaine, M.-N.B.; Réhel, K.V. Alteration of bacterial adhesion induced by the substrate stiffness. Colloids Surfaces Biointerfaces 2014, 114, 193. [Google Scholar] [CrossRef]
- Song, F.; Ren, D. Stiffness of cross-linked poly(dimethylsiloxane) affects bacterial adhesion and antibiotic susceptibility of attached cells. Langmuir 2014, 30, 10354. [Google Scholar] [CrossRef] [PubMed]
- Straub, H.; Bigger, C.M.; Valentin, J.; Abt, D.; Qin, X.-H.; Eberl, L.; Maniura-Weber, K.; Ren, Q. Bacterial Adhesion on Soft Materials: Passive Physicochemical Interactions or Active Bacterial Mechanosensing? Adv. Healthc. Mater. 2019, 8, 1801323. [Google Scholar] [CrossRef] [PubMed]
- Bawazir, M.; Dhall, A.; Lee, J.; Kim, B.; Hwang, G. Effect of surface stiffness in initial adhesion of oral microorganisms under various environmental conditions. Colloids Surf. Biointerfaces 2023, 221, 112952. [Google Scholar] [CrossRef]
- Lichter, J.A.; Thompson, M.T.; Delgadillo, M.; Nishikawa, T.; Rubner, M.F.; Van Vliet, K.J. Substrata mechanical stiffness can regulate adhesion of viable bacteria. Biomacromolecules 2008, 9, 1571. [Google Scholar] [CrossRef]
- Wilms, D.; Schröer, F.; Paul, T.; Schmidt, S. Switchable adhesion of E. coli to thermosensitive carbohydrate presenting microgel layers: A single cell force spectroscopy study. Langmuir 2020, 36, 12555. [Google Scholar] [CrossRef] [PubMed]
- Kolewe, K.W.; Peyton, S.R.; Schiffman, J.D. Fewer Bacteria Adhere to Softer Hydrogels. ACS Appl. Mater. Interfaces 2015, 7, 19562. [Google Scholar] [CrossRef]
- Kolewe, K.W.; Zhu, J.; Mako, N.R.; Nonnenmann, S.S.; Schiffman, J.D. Bacterial adhesion is affected by the thickness and stiffness of poly(ethylene glycol) hydrogels. ACS Appl. Mater. Interfaces 2018, 10, 2275. [Google Scholar] [CrossRef]
- Lahaye, M.; Rochas, C. Chemical structure and physico-chemical properties of agar. Hydrobiologia 1991, 221, 137. [Google Scholar] [CrossRef]
- Bertasa, M.; Dodero, A.; Alloisio, M.; Vicini, S.; Riedo, C.; Sansonetti, A.; Scalarone, D.; Castellano, M. Agar gel strength: A correlation study between chemical composition and rheological properties. Eur. Polym. J. 2020, 123, 109442. [Google Scholar] [CrossRef]
- You, Z.; Pearce, D.J.G.; Sengupta, A.; Giomi, L. Geometry and mechanics of microdomains in growing bacterial colonies. Phys. Rev. X 2018, 8, 031065. [Google Scholar] [CrossRef]
- You, Z.; Pearce, D.J.; Sengupta, A.; Giomi, L. Mono-to multilayer transition in growing bacterial colonies. Phys. Rev. Lett. 2019, 123, 178001. [Google Scholar] [CrossRef] [PubMed]
- Nandhakumar, S.; Parasuraman, S.; Shanmugam, M.M.; Rao, K.R.; Chand, P.; Bhat, B.V. Evaluation of DNA damage using single-cell gel electrophoresis (Comet Assay). J. Pharmacol. Pharmacother. 2011, 2, 107. [Google Scholar]
- Guarrotxena, N.; Braun, G. Ag-nanoparticle fractionation by low melting point agarose gel electrophoresis. J. Nanoparticle Res. 2012, 14, 1199. [Google Scholar] [CrossRef]
- Corral, J.R.; Mitrani, H.; Dade-Robertson, M.; Zhang, M.; Maiello, P. Agarose gel as a soil analogue for development of advanced bio-mediated soil improvement methods. Can. Geotech. J. 2020, 57, 2010. [Google Scholar] [CrossRef]
- Sambrook, J.; Fritsch, E.F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 2nd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1989. [Google Scholar]
- Kim, J.S.; Chowdhury, N.; Yamasaki, R.; Wood, T.K. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 2018, 20, 2038. [Google Scholar] [CrossRef]
- Lewis, D.D.; Gong, T.; Xu, Y.; Tan, C. Frequency dependent growth of bacteria in living materials. Front. Bioeng. Biotechnol. 2022, 10, 948483. [Google Scholar] [CrossRef]
- Raghunath, J.; Rollo, J.; Sales, K.M.; Butler, P.E.; Seifalian, A.M. Biomaterials and scaffold design: Key to tissue-engineering cartilage. Biotechnol. Appl. Biochem. 2007, 46, 73. [Google Scholar] [CrossRef]
- Dong, Y.; Li, S.; Li, X.; Wang, X. Smart MXene/agarose hydrogel with photothermal property for controlled drug release. Int. J. Biol. Macromol. 2021, 190, 693. [Google Scholar] [CrossRef]
- Yazdi, M.K.; Taghizadeh, A.; Taghizadeh, M.; Stadler, F.J.; Farokhi, M.; Mottaghitalab, F.; Zarrintaj, P.; Ramsey, J.D.; Seidi, F.; Saeb, M.R.; et al. Agarose-based biomaterials for advanced drug delivery. J. Control. Release 2020, 326, 523. [Google Scholar] [CrossRef]
- Torabi, S.; Li, L.; Grabau, J.; Sands, M.; Berron, B.J.; Xu, R.; Trinkle, C.A. Cassie–Baxter Surfaces for Reversible, Barrier-Free Integration of Microfluidics and 3D Cell Culture. Langmuir 2019, 35, 10299. [Google Scholar] [CrossRef]
- Sengupta, A. Microbial Active Matter: A Topological Framework. Front. Phys. 2020, 8, 184. [Google Scholar] [CrossRef]
- Jin, C.; Sengupta, A. Microbes in porous environments: From active interactions to emergent feedback. Biophys. Rev. 2024, 16, 173–188. [Google Scholar] [CrossRef] [PubMed]
- Rani, G.; Sengupta, A. Growing bacterial colonies harness emergent genealogical demixing to regulate organizational entropy. Biophys. Rep. 2024, 4, 100175. [Google Scholar] [CrossRef]
- Roberts, J.J.; Earnshaw, A.; Ferguson, V.L.; Bryant, S.J. Comparative study of the viscoelastic mechanical behavior of agarose and poly(ethylene glycol) hydrogels. J. Biomed. Mater. Res. Part Appl. Biomater. 2011, 99B, 158. [Google Scholar] [CrossRef] [PubMed]
- Normand, V.; Lootens, D.L.; Amici, E.; Plucknett, K.P.; Aymard, P. New Insight into Agarose Gel Mechanical Properties. Biomacromolecules 2000, 1, 730. [Google Scholar] [CrossRef]
- Watase, M.; Nishinari, K. Rheological properties of agarose gels with different molecular weights. Rheol. Acta 1983, 22, 580. [Google Scholar] [CrossRef]
- Kreve, S.; Reis, A.C.D. Bacterial adhesion to biomaterials: What regulates this attachment? A review. Jpn. Dent. Sci. Rev. 2021, 57, 85. [Google Scholar] [CrossRef]
- Araújo, N.A.; Janssen, L.M.; Barois, T.; Boffetta, G.; Cohen, I.; Corbetta, A.; Dauchot, O.; Dijkstra, M.; Durham, W.M.; Dussutour, A.; et al. Steering self-organisation through confinement. Soft Matter 2023, 9, 1695. [Google Scholar] [CrossRef]
- Genova, L.A.; Roberts, M.F.; Wong, Y.C.; Harper, C.E.; Santiago, A.G.; Fu, B.; Srivastava, A.; Jung, W.; Wang, L.M.; Krzemiński, Ł.; et al. Mechanical stress compromises multicomponent efflux complexes in bacteria. Proc. Natl. Acad. Sci. USA 2019, 116, 25462. [Google Scholar] [CrossRef]
- Dhar, J.; Thai, A.; Ghoshal, A.; Giomi, L.; Sengupta, A. Self-regulation of phenotypic noise synchronizes emergent organization and active transport in confluent microbial environments. Nat. Phys. 2022, 18, 945. [Google Scholar] [CrossRef]
- Gammoudi, I.; Mathelie-Guinlet, M.; Morote, F.; Beven, L.; Moynet, D.; Grauby-Heywang, C.; Cohen-Bouhacina, T. Morphological and nanostructural surface changes in Escherichia coli over time, monitored by atomic force microscopy. Colloids Surfaces Biointerfaces 2016, 141, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Maikranz, E.; Spengler, C.; Thewes, N.; Thewes, A.; Nolle, F.; Jung, P.; Bischoff, M.; Santen, L.; Jacobs, K. Different binding mechanisms of Staphylococcus aureus to hydrophobic and hydrophilic surfaces. Nanoscale 2020, 12, 19267. [Google Scholar] [CrossRef]
- Hertz, H. Ueber die Berührung fester elastischer Körper. J. Reine Und Angew. Math. 1882, 1882, 156. [Google Scholar] [CrossRef]
- Derjaguin, B.V.; Muller, V.M.; Toporov, Y.P. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 1975, 53, 314. [Google Scholar] [CrossRef]
- Johnson, K.L.; Kendall, K.; Roberts, A. Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. Math. Phys. Sci. 1971, 324, 301. [Google Scholar]
- Lin, D.C.; Dimitriadis, E.K.; Horkay, F. Robust Strategies for Automated AFM Force Curve Analysis—II: Adhesion-Influenced Indentation of Soft, Elastic Materials. J. Biomech. Eng. 2007, 129, 904. [Google Scholar] [CrossRef]
- Sommer, T.; Danza, F.; Berg, J.; Sengupta, A.; Constantinescu, G.; Tokyay, T.; Bürgmann, H.; Dressler, Y.; Sepulveda Steiner, O.; Schubert, C.J.; et al. Bacteria-induced mixing in natural waters. Geophys. Res. Lett. 2017, 44, 9424. [Google Scholar] [CrossRef]
- Berg, J.S.; Pjevac, P.; Sommer, T.; Buckner, C.R.; Philippi, M.; Hach, P.F.; Liebeke, M.; Holtappels, M.; Danza, F.; Tonolla, M.; et al. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ. Microbiol. 2019, 21, 1611. [Google Scholar] [CrossRef]
- Di Nezio, F.; Roman, S.; Buetti-Dinh, A.; Sepúlveda Steiner, O.; Bouffard, D.; Sengupta, A.; Storelli, N. Motile bacteria leverage bioconvection for eco-physiological benefits in a natural aquatic environment. Front. Microbiol. 2023, 14, 1253009. [Google Scholar] [CrossRef]
- Di Nezio, F.; Ong, I.L.H.; Riedel, R.; Goshal, A.; Dhar, J.; Roman, S.; Storelli, N.; Sengupta, A. Synergistic phenotypic adaptations of motile purple sulphur bacteria Chromatium okenii during lake-to-laboratory domestication. PLoS ONE 2023, 19, e0310265. [Google Scholar] [CrossRef] [PubMed]
- Cox, T.R.; Erler, J.T. Remodeling and homeostasis of the extracellular matrix: Implications for fibrotic diseases and cancer. Dis. Model. Mech. 2011, 4, 165. [Google Scholar] [CrossRef] [PubMed]
- Sachot, N.; Engel, E.; Castaño, O. Hybrid organic-inorganic scaffolding biomaterials for regenerative therapies. Curr. Org. Chem. 2023, 18, 2299. [Google Scholar] [CrossRef]
- Arnott, S.; Fulmer, A.S.W.E.; Scott, W.E.; Dea, I.C.M.; Moorhouse, R.; Rees, D.A. The agarose double helix and its function in agarose gel structure. J. Mol. Biol. 1974, 90, 269. [Google Scholar] [CrossRef]
- Jiang, F.; Xu, X.-W.; Chen, F.-Q.; Weng, H.-F.; Chen, J.; Ru, Y.; Xiao, Q.; Xiao, A.-F. Extraction, Modification and Biomedical Application of Agarose Hydrogels: A Review. Mar. Drugs 2023, 21, 299. [Google Scholar] [CrossRef] [PubMed]
- Serwer, P. Agarose gels: Properties and use for electrophoresis. Electrophoresis 1983, 4, 375. [Google Scholar] [CrossRef]
- Nijenhuis, K.T. Thermoreversible networks: Viscoelastic properties and structure of gels. Adv. Polym. Sci. 1997, 130, 169. [Google Scholar]
- Guenet, J.-M.; Rochas, C. Agarose sols and gels revisited. In Macromolecular Symposia; Wiley Online Library: Hoboken, NJ, USA, 2006; Volume 242, pp. 65–70. [Google Scholar]
- Fernández, E.; López, D.; Mijangos, C.; Duskova-Smrckova, M.; Ilavsky, M.; Dusek, K. Rheological and thermal properties of agarose aqueous solutions and hydrogels. J. Polym. Sci. Part Polym. Phys. 2008, 46, 322. [Google Scholar] [CrossRef]
- Mao, B. Dynamics of agar-based gels in contact with solid surfaces: Gelation. In Adhesion, Drying and Formulation; Université de Bordeaux: Bordeaux, France, 2017. [Google Scholar]
- Kontomaris, S.V.; Stylianou, A.; Georgakopoulos, A.; Malamou, A. 3D AFM Nanomechanical Characterization of Biological Materials. Nanomaterials 2023, 13, 395. [Google Scholar] [CrossRef]
- Topuz, F.; Nadernezhad, A.; Caliskan, O.S.; Menceloglu, Y.Z.; Koc, B. Nanosilicate embedded agarose hydrogels with improved bioactivity. Carbohydr. Polym. 2018, 201, 105. [Google Scholar] [CrossRef]
- Zamora-Mora, V.; Velasco, D.; Hernández, R.; Mijangos, C.; Kumacheva, E. Chitosan/agarose hydrogels: Cooperative properties and microfluidic preparation. Carbohydr. Polym. 2014, 111, 348. [Google Scholar] [CrossRef] [PubMed]
- Kumachev, A.; Greener, J.; Tumarkin, E.; Eiser, E.; Zandstra, P.W.; Kumacheva, E. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation. Biomaterials 2011, 32, 1477. [Google Scholar] [CrossRef] [PubMed]
- van Oss, C.J. Interfacial Forces in Aqueous Media; CRC Press: Boca Raton, FL, USA, 1994. [Google Scholar]
- Sengupta, A. Planktonic Active Matter. arXiv 2023, arXiv:2301.09550. [Google Scholar]
- Ji, D.; Kim, J. Recent strategies for strengthening and stiffening tough hydrogels. Adv. Nanobiomed. Res. 2021, 1, 2100026. [Google Scholar] [CrossRef]
- Thio, B.J.R.; Meredith, J.C. Quantification of E. coli adhesion to polyamides and polystyrene with atomic force microscopy. Colloids Surfaces Biointerfaces 2008, 65, 308. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, A.; Isayeva, I.; Vorvolakos, K.; Das, S.; Li, Z.; Phillips, K.S. Interactions of Staphylococcus aureus with ultrasoft hydrogel biomaterials. Biomaterials 2016, 95, 74. [Google Scholar] [CrossRef]
- Francius, G.; Cervulle, M.; Clément, E.; Bellanger, X.; Ekrami, S.; Gantzer, C.; Duval, J.F.L. Impacts of Mechanical Stiffness of Bacteriophage-Loaded Hydrogels on Their Antibacterial Activity. ACS Appl. Bio Mater. 2021, 4, 2614. [Google Scholar] [CrossRef]
- Gomez, S.; Bureau, L.; John, K.; Chêne, E.-N.; Débarre, D.; Lecuyer, S. Substrate stiffness impacts early biofilm formation by modulating Pseudomonas aeruginosa twitching motility. eLife 2023, 12, e81112. [Google Scholar] [CrossRef]
- Khan, M.T.; Cammann, J.; Sengupta, A.; Renzi, E.; Mazza, M.G. Toward a realistic model of multilayered bacterial colonies. Condens. Matter Phys. 2024, 27, 13802. [Google Scholar] [CrossRef]
- Gordon, V.D.; Wang, L. Bacterial mechanosensing: The force will be with you, always. J. Cell Sci. 2019, 132, jcs227694. [Google Scholar] [CrossRef]
- Kimkes, T.E.; Heinemann, M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 2020, 44, 106. [Google Scholar] [CrossRef] [PubMed]
- Kuthan, M.; Devaux, F.; Janderová, B.; Slaninová, I.; Jacq, C.; Palková, Z. Domestication of wild Saccharomyces cerevisiae is accompanied by changes in gene expression and colony morphology. Mol. Microbiol. 2003, 47, 745. [Google Scholar] [CrossRef] [PubMed]
- Barua, S.; Li, L.; Lipke, P.; Dranginis, A. Molecular Basis for Strain Variation in the Saccharomyces cerevisiae Adhesin Flo11p. mSphere 2016, 1, e00129-16. [Google Scholar] [CrossRef] [PubMed]
[g/mL] | [%] |
---|---|
0.0150 | 1.5 |
0.0183 | 1.8 |
0.0221 | 2.2 |
0.0262 | 2.6 |
0.0306 | 3.1 |
Concentration | Young’s Modulus | Adhesion Force | Number of Measurements (n) | |||
---|---|---|---|---|---|---|
[%] | Average [kPa] | Median [kPa] | Average [nN] | Median [nN] | ||
LB Medium | 1.5 | 25.1 (±2.1) | 24.8 | 0.15 (±0.06) | 0.14 | 881 |
1.8 | 31.1 (±4.0) | 31.1 | 0.16 (±0.08) | 0.13 | 1083 | |
2.2 | 51.9 (±5.7) | 51.4 | 0.10 (±0.02) | 0.10 | 1069 | |
2.6 | 75.1 (±7.5) | 75.2 | 0.08 (±0.02) | 0.08 | 589 | |
3.1 | 95.5 (±6.7) | 95.6 | 0.08 (±0.01) | 0.07 | 529 | |
Water | 1.5 | 20.9 (±2.6) | 21.2 | 0.12 (±0.03) | 0.11 | 557 |
1.8 | 31.0 (±3.1) | 31.0 | 0.13 (±0.04) | 0.12 | 589 | |
2.2 | 54.7 (±5.1) | 55.2 | 0.08 (±0.02) | 0.07 | 931 | |
2.6 | 72.4 (±5.3) | 72.0 | 0.05 (±0.01) | 0.05 | 522 | |
3.1 | 92.4 (±5.1) | 92.3 | 0.05 (±0.01) | 0.05 | 503 |
Strain | Concentration [%] | Average [nN] | Median [nN] | Measurements |
---|---|---|---|---|
E. coli | 1.5 | 0.29 (±0.17) | 0.27 | 482 |
E. coli | 2.2 | 0.35 (±0.23) | 0.29 | 722 |
E. coli | 3.1 | 0.39 (±0.20) | 0.36 | 917 |
C. okenii | 1.5 | 0.21 (±0.10) | 0.20 | 862 |
C. okenii | 2.2 | 0.73 (±0.60) | 0.54 | 1476 |
C. okenii | 3.1 | 2.42 (±1.16) | 3.04 | 443 |
Agarose Gel Medium | Particle | Agarose | Adhesion Force | Number of Measurements (n) | |
---|---|---|---|---|---|
Diameter [μm] | Concentration [%] | Average [nN] | Median [nN] | ||
LB medium | 5 | 1.5 | 0.54 (±0.27) | 0.52 | 902 |
LB medium | 5 | 2.2 | 0.73 (±0.37) | 0.72 | 475 |
LB medium | 5 | 3.1 | 0.83 (±0.41) | 0.80 | 466 |
LB medium | 20 | 1.5 | 0.45 (±0.25) | 0.53 | 474 |
LB medium | 20 | 2.2 | 0.68 (±0.36) | 0.63 | 429 |
LB medium | 20 | 3.1 | 0.74 (±0.34) | 0.72 | 256 |
DI water | 5 | 1.5 | 0.59 (±0.19) | 0.56 | 389 |
DI water | 5 | 2.2 | 0.72 (±0.52) | 0.56 | 390 |
DI water | 5 | 3.1 | 0.59 (±0.23) | 0.59 | 300 |
DI water | 20 | 1.5 | 0.47 (±0.23) | 0.45 | 432 |
DI water | 20 | 2.2 | 0.58 (±0.39) | 0.50 | 319 |
DI water | 20 | 3.1 | 0.63 (±0.12) | 0.64 | 387 |
Time Since Inoculation [Weeks] | Extraction Point | Adhesion Force | Number of Measurements (n) | |
---|---|---|---|---|
Average [nN] | Median [nN] | |||
2 | Bottom | 0.12 (±0.07) | 0.09 | 1479 |
2 | Top | 0.36 (±0.18) | 0.32 | 1310 |
10 | Bottom | 0.33 (±0.23) | 0.29 | 1940 |
10 | Top | 0.23 (±0.24) | 0.22 | 2042 |
14 | Bottom | 0.45 (±0.37) | 0.35 | 2338 |
14 | Top | 0.23 (±0.16) | 0.19 | 1922 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riedel, R.; Rani, G.; Sengupta, A. Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage. Microorganisms 2025, 13, 637. https://doi.org/10.3390/microorganisms13030637
Riedel R, Rani G, Sengupta A. Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage. Microorganisms. 2025; 13(3):637. https://doi.org/10.3390/microorganisms13030637
Chicago/Turabian StyleRiedel, René, Garima Rani, and Anupam Sengupta. 2025. "Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage" Microorganisms 13, no. 3: 637. https://doi.org/10.3390/microorganisms13030637
APA StyleRiedel, R., Rani, G., & Sengupta, A. (2025). Bacterial Adhesion on Soft Surfaces: The Dual Role of Substrate Stiffness and Bacterial Growth Stage. Microorganisms, 13(3), 637. https://doi.org/10.3390/microorganisms13030637