Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Cell Culture
2.3. MTT Analysis
2.4. IC50 Dose
2.5. Reagents
2.6. Blood Samples Analysis
2.7. Predictive Model for Life Expectancy of Glioblastoma Patients
2.8. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, C.; Song, K.; Wu, S.; Farrukh Hameed, N.U.; Kudulaiti, N.; Xue, H.; Qint, Z.-Y.; Wu, J.-S. The prognosis of glioblastoma: A large, multifactorial study. Br. J. Neurosurg. 2021, 35, 555–561. [Google Scholar] [CrossRef] [PubMed]
- Grochans, S.; Cybulska, A.M.; Siminska, D.; Korbecki, J.; Kojder, K.; Chlubek, D.; Baranowska-Bosiacka, I. Epidemiology of glioblastoma multiforme—Literature review. Cancers 2022, 14, 2412. [Google Scholar] [CrossRef] [PubMed]
- Rončević, A.; Koruga, N.; Koruga, A.S.; Rončević, R.; Rotim, T.; Šimundić, T.; Kretić, D.; Perić, M.; Turk, T.; Štimac, D. Personalized Treatment of Glioblastoma: Current State and Future Perspective. Biomedicines 2023, 11, 1579. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Lachance, D.H.; Molinaro, A.M.; Eckel-Passow, J.E.; Walsh, K.M.; Barnholtz-Sloan, J.; Ostrom, Q.T.; Francis, S.S.; Wiemels, J.; Jenkins, R.B.; et al. Understanding inherited genetic risk of adult glioma—A review. Neurooncol. Pract. 2016, 3, 10. [Google Scholar] [CrossRef]
- Ivanov, S.D. The influence of non-ionizing radiation on tumor formation in humans and animals. Donosology Healthy Lifestyle 2019, 1, 44–49. [Google Scholar]
- Alexander, B.M.; Cloughesy, T.F. Adult Glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409. [Google Scholar] [CrossRef]
- Seliger, C.; Meyer, A.-L.; Leidgens, V.; Rauer, L.; Moeckel, S.; Jachnik, B.; Proske, J.; Dettmer, K.; Rothhammer-Hampl, T.; Kaulen, L.D.; et al. Metabolic Heterogeneity of Brain Tumor Cells of Proneural and Mesenchymal Origin. Int. J. Mol. Sci. 2022, 23, 11629. [Google Scholar] [CrossRef]
- Tam, S.Y.; Wu, V.W.C.; Law, H.K.W. Hypoxia-Induced Epithelial-Mesenchymal Transition in Cancers: HIF-1α and Beyond. Front. Oncol. 2020, 10, 486. [Google Scholar] [CrossRef]
- Dymova, M.A.; Kuligina, E.V.; Richter, V.A. Molecular Mechanisms of Drug Resistance in Glioblastoma. Int. J. Mol. Sci. 2021, 22, 6385. [Google Scholar] [CrossRef]
- Su, J.; Cai, M.; Li, W.; Hou, B.; He, H.; Ling, C.; Huang, T.; Liu, H.; Guo, Y. Molecularly Targeted Drugs Plus Radiotherapy and Temozolomide Treatment for Newly Diagnosed Glioblastoma: A Meta-Analysis and Systematic Review. Oncol. Res. 2016, 24, 117–128. [Google Scholar] [CrossRef]
- Ivanov, S.D.; Korytova, L.I. Predictive Markers of the Effectiveness of Radiation and Chemoradiotherapy in Oncology; Foliant Publishing House: Saint Petersburg, Russia, 2013; p. 112. [Google Scholar]
- Jeon, J.; Lee, S.; Kim, H.; Kang, H.; Youn, H.; Jo, S.; Youn, B.H.; Kim, H.Y. Revisiting platinum-based anticancer drugs to overcome gliomas. Int. J. Mol. Sci. 2021, 22, 5111. [Google Scholar] [CrossRef]
- Leonard, A.; Wolff, J.E. Etoposide improves survival in high-grade glioma: A meta-analysis. Anticancer Res. 2013, 33, 3307–3315. [Google Scholar] [PubMed]
- Norouzi, M.; Yathindranath, V.; Thliveris, J.A.; Kopec, B.M.; Siahaan, T.J.; Miller, D.W. Doxorubicin-loaded iron oxide nanoparticles for glioblastoma therapy: A combinational approach for enhanced delivery of nanoparticles. Sci. Rep. 2020, 10, 11292. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, D.; Bianco, M.R.; Aprea, F.; Virtuoso, A.; Bonanomi, M.; Alberghina, L.; Papa, M.; Colangelo, A.M. Differentiation by nerve growth factor (NGF) involves mechanisms of crosstalk between energy homeostasis and mitochondrial remodeling. Cell Death Dis. 2018, 9, 391. [Google Scholar] [CrossRef]
- Vaishnavi, A.; Le, A.T.; Doebele, R.C. TRKing down an old oncogene in a new era of targeted therapy. Cancer Discov. 2015, 5, 25–34. [Google Scholar] [CrossRef]
- Zha, K.; Yang, Y.; Tian, G.; Sun, Z.; Yang, Z.; Li, X.; Sui, X.; Liu, S.; Zhao, J.; Guo, Q. Nerve growth factor (NGF) and NGF receptors in mesenchymal stem/stromal cells: Impact on potential therapies. Stem Cells Transl. Med. 2021, 10, 1008–1020. [Google Scholar] [CrossRef]
- Tacconelli, A.; Farina, A.R.; Cappabianca, L.; Desantis, G.; Tessitore, A.; Vetuschi, A.; Sferra, R.; Rucci, N.; Argenti, B.; Screpanti, I.; et al. TrkA alternative splicing: A regulated tumor-promoting switch in human neuroblastoma. Cancer Cell 2004, 6, 347–360. [Google Scholar] [CrossRef]
- Maher, S.; Wynne, K.; Zhernovkov, V.; Halasz, M. A temporal (phospho-)proteomic dataset of neurotrophic receptor tyrosine kinase signalling in neuroblastoma. Sci. Data 2024, 11, 1111. [Google Scholar] [CrossRef]
- Bassili, M.; Birman, E.; Schor, N.F.; Saragovi, H.U. Differential roles of Trk and p75 neurotrophin receptors in tumorigenesis and chemoresistance ex vivo and in vivo. Cancer Chemother. Pharmacol. 2010, 65, 1047–1056. [Google Scholar] [CrossRef]
- Minnone, G.; De Benedetti, F.; Bracci-Laudiero, L. NGF and Its Receptors in the Regulation of Inflammatory Response. Int. J. Mol. Sci. 2017, 18, 1028. [Google Scholar] [CrossRef]
- Freshney, R.I.; Griffiths, B.; Hay, R.J.; Reid, Y.A.; Carmiol, S.; Kunz-Schugart, L. Animal Cell Culture: A Practical Approach, 3rd ed.; Masters, J.R.W., Ed.; Oxford University Press: London, UK, 2000. [Google Scholar]
- Amini, S.; White, M.K. (Eds.) Neuronal Cell Culture. Methods and Protocols; Humana: Totowa, NJ, USA, 2013. [Google Scholar] [CrossRef]
- Riss, T.L.; Moravec, R.A.; Niles, A.L.; Duellman, S.; Benink, H.A.; Worzella, T.J.; Minor, L. Assay Guidance Manual. Cell Viability Assays; Eli Lilly & Company and the National Center for Advancing Translational Sciences: Bethesda, MD, USA, 2013. [Google Scholar]
- Pauli, D.; Seyfarth, M.; Dibbelt, L. The Abbott Architect c8000: Analytical performance and productivity characteristics of a new analyzer applied to general chemistry testing. Clin. Lab. 2005, 51, 31–41. [Google Scholar] [PubMed]
- Diagnostica Stago, S.A.S. Reagent STA®—Cephascreen®; Diagnostica Stago S.A.S: Asnières-sur-Seine, France, 2017; p. 1. [Google Scholar]
- Principal Component Analysis Calculator. Available online: https://www.statskingdom.com/pca-calculator.html (accessed on 7 February 2025).
- Hu, N.; Cheng, H.; Zhang, K.; Jensen, R. Evaluating the Prognostic Accuracy of Biomarkers for Glioblastoma Multiforme Using the Cancer Genome Atlas Data. Cancer Inform. 2017, 16, 1176935117734844. [Google Scholar] [CrossRef]
- van Belle, G.; Fisher, L.D.; Heagerty, P.J.; Lumley, T. Biostatistics: A Methodology for the Health Sciences; Fisher, L.D., van Belle, G., Eds.; Jonh Wiley and Sons Inc.: Hoboken, NJ, USA, 2004. [Google Scholar]
- Sobel Test Calculator. Available online: https://www.danielsoper.com/statcalc/calculator.aspx?id=31 (accessed on 15 April 2025).
- Chernov, A.N.; Skliar, S.S.; Kim, A.V.; Tsapieva, A.; Pyurveev, S.S.; Filatenkova, T.A.; Matsko, M.V.; Ivanov, S.D.; Shamova, O.V.; Suvorov, A.N. Glioblastoma multiforme: Sensitivity to antimicrobial peptides LL-37 and PG-1, and their combination with chemotherapy for predicting the overall survival of patients. Pharmaceutics 2024, 16, 1234. [Google Scholar] [CrossRef] [PubMed]
- Rikan, B.S.; Azar, A.S.; Naemi, A.; Mohasefi, J.B.; Pirnejad, H.; Wiil, U.K. Survival prediction of glioblastoma patients using modern deep learning and machine learning techniques. Sci. Rep. 2024, 14, 2371. [Google Scholar] [CrossRef]
- Yoon, H.G.; Cheon, W.; Jeong, S.W.; Kim, H.S.; Kim, K.; Nam, H.; Han, Y.; Lim, D.H. Multi-Parametric Deep Learning Model for Prediction of Overall Survival after Postoperative Concurrent Chemoradiotherapy in Glioblastoma Patients. Cancers 2020, 12, 2284. [Google Scholar] [CrossRef]
- Peres, N.; Lepski, G.A.; Fogolin, C.S.; Evangelista, G.C.M.; Flatow, E.A.; de Oliveira, J.V.; Pinho, M.P.; Bergami-Santos, P.C.; Barbuto, J.A.M. Profiling of Tumor-Infiltrating Immune Cells and Their Impact on Survival in Glioblastoma Patients Undergoing Immunotherapy with Dendritic Cells. Int. J. Mol. Sci. 2024, 25, 5275. [Google Scholar] [CrossRef] [PubMed]
- Madhugiri, V.S.; Venkatesan, S.; Dutt, A.; Moiyadi, A.V.; Shetty, P.; Gupta, T.; Epari, S.; Jalali, R.; Sasidharan, G.M.; Kumar, V.R.R.; et al. An Analysis of Eosinophil- and Basophil-Based Indices in Patients with Glioblastoma and their Correlation with Survival. World Neurosurg. 2023, 170, e292–e300. [Google Scholar] [CrossRef]
- Duan, X.; Yang, B.; Zhao, C.; Tie, B.; Cao, L.; Gao, Y. Prognostic value of preoperative hematological markers in patients with glioblastoma multiforme and construction of random survival forest model. BMC Cancer 2023, 23, 432. [Google Scholar] [CrossRef]
- Gan, Y.; Zhou, X.; Niu, X.; Li, J.; Wang, T.; Zhang, H.; Yang, Y.; Liu, Y.; Mao, Q. Neutrophil/Lymphocyte Ratio Is an Independent Prognostic Factor in Elderly Patients with High-Grade Gliomas. World Neurosurg. 2019, 127, e261–e267. [Google Scholar] [CrossRef]
- Zheng, L.; Yu, M.; Zhang, S. Prognostic value of pretreatment circulating basophils in patients with glioblastoma. Neurosurg. Rev. 2021, 44, 3471–3478. [Google Scholar] [CrossRef]
- Yang, C.; Xu, J.; Wang, J.; Li, Z.; Yao, Q. Prognostic value of platelet-to-basophil ratio (PBR) in patients with primary glioblastoma. Medicine 2023, 102, e34506. [Google Scholar] [CrossRef] [PubMed]
- Saito, T.; Sugiyama, K.; Hama, S.; Yamasaki, F.; Takayasu, T.; Nosaka, R.; Muragaki, Y.; Kawamata, T.; Kurisu, K. Prognostic importance of temozolomide-induced neutropenia in glioblastoma, IDH-wildtype patients. Neurosurg. Rev. 2018, 41, 621–628. [Google Scholar] [CrossRef]
- Sklyar, S.S.; Trashkov, A.P.; Matsko, M.V.; Safarov, B.I.; Vasiliev, A.G. Immune response to primary glioblastoma. Pediatrician 2022, 13, 49–60. [Google Scholar] [CrossRef]
- Vaitkiene, P.; Urbanaviciute, R.; Grigas, P.; Steponaitis, G.; Tamasauskas, A.; Skiriutė, D. Identification of Astrocytoma Blood Serum Protein Profile. Cells 2019, 9, 16. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, L.; Liu, X.; Han, C.; Li, Q. The levels of immunosuppressive checkpoint protein PD-L1 and tumor-infiltrating lymphocytes were integrated to reveal the glioma tumor microenvironment. Environ. Toxicol. 2024, 39, 815–829. [Google Scholar] [CrossRef]
- Mrugala, M.M.; Crew, L.K.; Fink, J.R.; Spence, A.M. Carboplatin and bevacizumab for recurrent malignant glioma. Oncol. Lett. 2012, 4, 1082–1086. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Barth, R.F.; Cavaliere, R.; Puduvalli, V.K.; Giglio, P.; Lonser, R.R.; Elder, J.B. Phase I trial of intracerebral convection-enhanced delivery of carboplatin for treatment of recurrent high-grade gliomas. PLoS ONE 2020, 15, e0244383. [Google Scholar] [CrossRef]
- Lee, S.Y. Temozolomide resistance in glioblastoma multiforme. Genes Dis. 2016, 3, 198–210. [Google Scholar] [CrossRef]
- Singh, N.; Miner, A.; Hennis, L.; Mittal, S. Mechanisms of temozolomide resistance in glioblastoma—A comprehensive review. Cancer Drug Resist. 2021, 4, 17–43. [Google Scholar] [CrossRef]
- Zhou, Q.; Guo, P.; Wang, X.; Nuthalapati, S.; Gallo, J.M. Preclinical Pharmacokinetic and Pharmacodynamic Evaluation of Metronomic and Conventional Temozolomide Dosing Regimens. J. Pharmacol. Exp. Ther. 2007, 321, 265–275. [Google Scholar] [CrossRef]
- Jezierzański, M.; Nafalska, N.; Stopyra, M.; Furgoł, T.; Miciak, M.; Kabut, J.; Gisterek-Grocholska, I. Temozolomide (TMZ) in the Treatment of Glioblastoma Multiforme—A Literature Review and Clinical Outcomes. Curr. Oncol. 2024, 31, 3994–4002. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhong, L.; Li, G.; Huang, R.; Wang, Q.; Wang, Z.; Zhang, C.; Chen, B.; Jiang, T.; Zhang, W. Pre-treatment neutrophils count as a prognostic marker to predict chemotherapeutic response and survival outcomes in glioma: A single-center analysis of 288 cases. Am. J. Transl. Res. 2020, 12, 90–104. [Google Scholar]
- Rosales, C. Neutrophil: A Cell with Many Roles in Inflammation or Several Cell Types? Front. Physiol. 2018, 9, 113. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.C.; Hong, J.H.; Hsueh, C.; Chiang, C.-S. Tumor-secreted SDF-1 promotes glioma invasiveness and TAM tropism toward hypoxia in a murine astrocytoma model. Lab. Investig. 2012, 92, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Bajetto, A.; Barbieri, F.; Dorcaratto, A.; Barbero, S.; Daga, A.; Porcile, C.; Ravetti, J.L.; Zona, G.; Spaziante, R.; Corte, G.; et al. Expression of CXC chemokine receptors 1–5 and their ligands in human glioma tissues: Role of CXCR4 and SDF1 in glioma cell proliferation and migration. Neurochem. Intern. 2006, 49, 423–432. [Google Scholar] [CrossRef]
- Klein, T.; Bischoff, R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids 2011, 41, 271–290. [Google Scholar] [CrossRef]
- Tan, G.-J.; Peng, Z.-K.; Lu, J.-P.; Tang, F.-Q. Cathepsins mediate tumor metastasis. World J. Biol. Chem. 2013, 4, 91–101. [Google Scholar] [CrossRef]
- Walker, H.K.; Hall, W.D.; Hurst, J.W. (Eds.) Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Butterworths: Boston, MA, USA, 1990. [Google Scholar] [PubMed]
- Han, S.; Huang, Y.; Li, Z.; Hou, H.; Wu, A. The prognostic role of preoperative serum albumin levels in glioblastoma patients. BMC Cancer 2015, 15, 108. [Google Scholar] [CrossRef]
- Han, S.; Li, Z.; Master, L.M.; Master, Z.W.; Wu, A. Exogenous IGFBP-2 promotes proliferation, invasion, and chemoresistance to temozolomide in glioma cells via the integrin beta1-ERK pathway. Br. J. Cancer 2014, 111, 1400–1409. [Google Scholar] [CrossRef]
- Han, S.; Meng, L.; Han, S.; Wang, Y.; Wu, A. Plasma IGFBP-2 levels after postoperative combined radiotherapy and chemotherapy predict prognosis in elderly glioblastoma patients. PLoS ONE 2014, 9, e93791. [Google Scholar] [CrossRef]
- Schwartzbaum, J.A.; Lal, P.; Evanoff, W.; Mamrak, S.; Yates, A.; Barnett, G.H.; Goodman, J.; Fisher, J.L. Presurgical serum albumin levels predict survival time from glioblastoma multiforme. J. Neurooncol. 1999, 43, 35–41. [Google Scholar] [CrossRef]
- Borg, N.; Guilfoyle, M.R.; Greenberg, D.C.; Watts, C.; Thomson, S. Serum albumin and survival in glioblastoma multiforme. J. Neurooncol. 2011, 105, 77–81. [Google Scholar] [CrossRef]
- Lo, H.C.; Tsao, L.Y.; Hsu, W.Y.; Chen, H.N.; Yu, W.K.; Chi, C.Y. Relation of cord serum levels of growth hormone, insulin-like growth factors, insulin-like growth factor binding proteins, leptin, and interleukin-6 with birth weight, birth length, and head circumference in term and preterm neonates. Nutrition 2002, 18, 604–608. [Google Scholar] [CrossRef]
- Yeung, Y.T.; McDonald, K.L.; Grewal, T.; Munoz, L. Interleukins in glioblastoma pathophysiology: Implications for therapy. Br. J. Pharmacol. 2013, 168, 591–606. [Google Scholar] [CrossRef]
- Sjöström, S.; Hjalmars, U.; Juto, P.; Wadell, G.; Hallmans, G.; Tjönneland, A.; Halkjaer, J.; Manjer, J.; Almquist, M.; Melin, B.S. Human immunoglobulin G levels of viruses and associated glioma risk. Cancer Causes Control 2011, 22, 1259–1266. [Google Scholar] [CrossRef]
- Fernandes, C.; Costa, A.; Osório, L.; Lago, R.C.; Linhares, P.; Carvalho, B.; Caeiro, C. Chap.11: Current Standards of Care in Glioblastoma Therapy. In Glioblastoma; De Vleeschouwer, S., Ed.; Codon Publications: Brisbane, AU, Australia, 2017. [Google Scholar]
- Kotecha, R.; Odia, Y.; Khosla, A.A.; Ahluwalia, M.S. Key Clinical Principles in the Management of Glioblastoma. JCO Oncol. Pract. 2023, 19, 180–190. [Google Scholar] [CrossRef]
Drugs | Dose, μM |
---|---|
Doxorubicin | 920, 460, 230, 115, 73.6, 36.8, 18.4 |
Carboplatin | 26,900, 2690, 1350, 673, 269, 134 |
Cisplatin | 1660, 830, 332, 166, 83, 33.2, 16.1 |
Temozolomide | 15,500, 5150, 1550, 773, 386, 155 |
Etoposide | 27, 13.5, 6.7, 3.3, 1.6, 0.8 |
NGF | 0.2, 0.1, 0.05, 0.025, 0.0125, 0.006 |
ID Patient | Gender, m, f | Age, y | Molecular Subtype | Ki-67, % | Lifespan, Months | IC50, μM | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
DOX | CARB | TMZ | CIS | ETO | NGF | ||||||
11081 | m | 74 | wt | 23–30 | 2 | 290.4 | 29,431 | 16,179.5 | 2448.4 | 27.0 | >0.006 |
11961 | m | 59 | wt | 10–12 | 10 | 3350.3 | 4000.0 | 43,539.3 | 11,919.7 | 86.5 | 0.029 |
6770 | m | 74 | wt | 18–25 | 8 | 850.0 | 2000.0 | 14,000.0 | 1090.0 | 26.3 | 0.007 |
7934 | m | 63 | wt | 18–20 | 6 | 50.9 | 888.8 | 7491.0 | 200.0 | 7.5 | >0.006 |
49142 | m | 63 | wt | 8–10 | 20 | 548.3 | 3093.6 | 11,056.0 | 776.0 | 11.4 | 0.007 |
25873 | f | 61 | NOS | 1 | 560.0 | 2708.4 | 8619.2 | 300.0 | 8.9 | >0.006 | |
57595 | f | 67 | wt | 15–20 | 6 | 16.9 | 888.8 | 194.5 | 1682.3 | 7.5 | >0.006 |
55068 | m | 66 | NES | 25–30 | 14 | 546.5 | 39,792.9 | 4789.5 | 1104.8 | 11.8 | >0.006 |
15159 | m | 61 | NOS | 4 | 179.2 | 27,574.5 | 436.8 | 698.1 | 11.4 | 0.016 | |
62642 | f | 36 | wt | 35–40 | 12 | 20.3 | 116.4 | 24,015.7 | 1158.5 | 32.3 | 0.008 |
60886 | m | 73 | NOS, NES | 11 | 278.8 | 42,495.1 | 2174.3 | >1660.0 | 6.3 | 0.007 | |
18871 | f | 52 | wt | 20 | 2682.8 | 20,852.7 | 11,976.9 | 1776.4 | 30.9 | 0.009 | |
114495 | f | 72 | wt | 4 | 3040.0 | 20,471.8 | 40,009.3 | 965.8 | 40.0 | 0.016 | |
10677 | m | 44 | wt | 40 | 5 | 1180.1 | 4498.0 | 1309.1 | 2448.4 | 3.4 | >0.006 |
1401 | m | 63 | NOS | 31 | 920.0 | 20,471.8 | 611.8 | 261.2 | 10.3 | 0.008 | |
18871 | f | 52 | wt | 20 | 15 | 2682.8 | 30.9 | 11,976.9 | 1776.3 | 30.9 | 0.008 |
8989 | m | 31 | wt | 50–70 | 2 | 817.1 | 5136.5 | 14,486.0 | 1218.8 | 26.3 | 0.006 |
20939 | m | 53 | wt | 30–35 | 15 | 900.0 | 24,031.9 | 15,500.0 | 476.5 | 38.0 | >0.006 |
39114 | m | 75 | wt | 20–25 | 10 | 3458.6 | 20,195.2 | 12,282.1 | 1824.2 | 32.8 | >0.006 |
40906 | f | 66 | wt | 25–30 | 13 | 1083.2 | 17,861.9 | 14,961.7 | 1596.1 | 58.9 | >0.006 |
48993 | m | 63 | wt | 8–10 | 2 | - | 1126.8 | 15,407.5 | 120.4 | 38.7 | >0.006 |
48307 | m | 44 | wt | 8–12 | 1260.3 | 38,147.6 | 1510.7 | 1280,8 | 9.5 | 0.038 | |
9439 | f | 55 | wt | 40–50 | 13 | 1513.2 | 1126.8 | 22,206.3 | 1784.9 | 41.3 | 0.011 |
10448 | f | 73 | wt | 20–25 | 14 | 478.7 | 20,852.7 | 14,659.1 | 1299.0 | 3.4 | 0.66 |
27980 | m | 51 | wt | 25 | 13 | 733.4 | 26,116.5 | 5345.6 | 835.3 | 9.3 | >0.006 |
12645 | m | 66 | wt | 35–40 | 12 | 483.6 | 24,237.2 | 5258.3 | 729.8 | 7.0 | >0.006 |
7593 | m | 59 | wt | 15–20 | 5 | 1123.9 | 2223.4 | 14,905.5 | 298.9 | 26.8 | 0.027 |
13275 | f | 39 | wt | 35–40 | 12 | 870.0 | 4605.4 | 17,700.0 | 770.5 | 18.0 | >0.006 |
121509 | f | 71 | wt | 10–15 | 15 | 56.7 | 2110.4 | 1900.0 | 1880.0 | 8.5 | >0.006 |
13447 | m | 52 | wt | 3–5 | 9 | 440.0 | 15,000.0 | 640.0 | 10.4 | >0.006 | |
65829 | m | 57 | wt | 15 | 13 | 0.0001 | 2421.4 | 13,605.3 | 936.4 | 8.5 | >0.006 |
Parameter | Mean Diff | 95.00% CI of Diff | Significant | Adjusted p Value |
---|---|---|---|---|
IC50 Doxorubicin | −903.8 | −1885 to 77.35 | No | 0.081322 |
IC50 Carboplatin | −16,532.0 | −30,023 to −3041 | Yes, * | 0.011710 |
IC50 Temozolomide | −7988.0 | −14,583 to −1393 | Yes, * | 0.012839 |
IC50 Cisplatin | −1170.0 | −1899 to −440.5 | Yes, ** | 0.001065 |
IC50 Etoposide | −7.889 | −23.84 to 8.062 | No | 0.727249 |
IC50 NGF | 10.33 | 3.314 to 17.34 | Yes, ** | 0.003418 |
WBC | −2.833 | −13.11 to 7.442 | No | 0.994316 |
RBC | 6.117 | −1.429 to 13.66 | No | 0.160468 |
PLT | −254.2 | −328.0 to −180.4 | Yes, **** | <0.0001 |
LYM, % | −5.140 | −13.33 to 3.053 | No | 0.428481 |
LYM | −7.067 | −15.57 to 1.432 | No | 0.141795 |
NEUT, % | −64.01 | −79.85 to −48.18 | Yes, **** | <0.0001 |
NEUT-B | 7.619 | 0.6224 to 14.62 | Yes, * | 0.028720 |
NEUN-S | −60.87 | −76.12 to −45.61 | Yes, **** | <0.0001 |
MON | 3.333 | −4.390 to 11.06 | No | 0.858937 |
IMG | 9.147 | 1.437 to 16.86 | Yes, * | 0.015081 |
MC | 9.417 | 2.268 to 16.57 | Yes, ** | 0.008010 |
MMC | 9.970 | 2.580 to 17.36 | Yes,** | 0.007362 |
BAS, % | 10.12 | 2.338 to 17.90 | Yes, ** | 0.007255 |
BAS | 10.13 | 2.273 to 17.99 | Yes, ** | 0.007789 |
EOS, % | 9.647 | 1.884 to 17.41 | Yes, * | 0.010474 |
EOS | 9.687 | 1.975 to 17.40 | Yes, ** | 0.009620 |
Hb | −112.5 | −124.9 to −100.0 | Yes, **** | <0.0001 |
AST | −12.47 | −33.17 to 8.234 | No | 0.454599 |
ALT | −46.87 | −96.68 to 2.935 | No | 0.071985 |
BUN | 0.004167 | −9.107 to 9.115 | No | >0.9999 |
ALB | −29.83 | −38.53 to −21.14 | Yes, **** | <0.0001 |
TP | −53.89 | −62.03 to −45.74 | Yes, **** | <0.0001 |
CRB | −6.203 | −23.24 to 10.83 | No | 0.954377 |
D-dimer | −771.7 | −1279 to −264.1 | Yes, ** | 0.004318 |
HCT | −24.24 | −31.37 to −17.11 | Yes, **** | <0.0001 |
PCT | 10.09 | 2.324 to 17.85 | Yes, ** | 0.007293 |
UREA | 2.928 | −7.432 to 13.29 | No | 0.988580 |
GLU | 3.580 | −4.736 to 11.90 | No | 0.835504 |
CREAT | −61.90 | −79.32 to −44.49 | Yes, **** | <0.0001 |
FBN | 7.028 | −1.515 to 15.57 | No | 0.143016 |
GFR | −113.9 | −162.0 to −65.70 | Yes, **** | <0.0001 |
APTT | −14.79 | −22.79 to −6.802 | Yes, *** | 0.000634 |
Parameter | Threshold Value | AUC | Sensitivity, % | Specificity, % | Likelihood Ratio | p Value |
---|---|---|---|---|---|---|
Doxorubicin | <418.5 | 0.7600 | 80.00%(95% CI 37.55–98.97%) | 80.00% (95% CI 37.55–98.97%) | 4.0 | 0.1745 |
Carboplatin | <4115 | 0.8000 | 80.00% (95% CI 37.55–98.97%) | 80.00% (95% CI 37.55–98.97%) | 4.0 | 0.1172 |
Temozolomide | <9838 | 0.6400 | 80.00% (95% CI 37.55–98.97%) | 60.00% (95% CI 23.07–92.89%) | 2.0 | 0.4647 |
Cisplatin | <737.1 | 0.5200 | 60.00% (95% CI 23.07–92.89%) | 80.00% (95% CI 37.55–98.97%) | 3.0 | 0.9168 |
Etoposide | <10.57 | 0.8200 | 60.00% (95% CI 23.07–92.89%) | 80.00% (95% CI 37.55–98.97%) | 3.0 | 0.0947 |
NGF | <0.002900 | 0.6750 | 60.00% (95% CI 23.07–92.89%) | 75.00% (95% CI 30.06–98.72%) | 2.4 | 0.3913 |
WBC | >8.6 | 0.6458 | 83.33% (95% CI 43.65–99.15%) | 46.67% (95% CI 24.81–69.88%) | 1.563 | 0.1296 |
RBC | >3.935 | 0.5000 | 87.50% (95% CI 52.91–99.36%) | 57.14% (95% CI 25.05–84.18%) | 2.042 | >0.9999 |
Platelets | <288.0 | 0.5179 | 71.43% (95% CI 35.89–94.92%) | 37.50% (95% CI 13.68–69.43%) | 1.143 | 0.9079 |
Lymphocytes, % | <13.80 | 0.7500 | 66.67% (95% CI 30.00–94.08%) | 75.00% (95% CI 40.93–95.56%) | 2.667 | 0.1213 |
Lymphocytes | <18.50 | 0.7653 | 71.43% (95% CI 35.89–94.92%) | 71.43% (95% CI 35.89–94.92%) | 2.5 | 0.0967 |
Neutrophils, % | >72.20 | 0.6786 | 62.50% (95% CI 30.57–86.32%) | 57.14% (95% CI 25.05–84.18%) | 1.458 | 0.2472 |
Band neutrophils | >2.500 | 0.9063 | 87.50% (95% CI 52.91–99.36%) | 83.33% (95% CI 43.65–99.15%) | 5.25 | 0.0118 * |
Segmented neutrophils | >71.00 | 0.6518 | 57.14% (95% CI 25.05–84.18%) | 62.50% (95% CI 30.57–86.32%) | 1.524 | 0.3253 |
Monocytes, % | <7.500 | 0.6327 | 71.43% (95% CI 35.89–94.92%) | 71.43% (95% CI 35.89–94.92%) | 2.50 | 0.4062 |
Eosinophils, % | <0.4500 | 0.6071 | 100.0% (95% CI 64.57–100.0%) | 37.50% (95% CI 13.68–69.43%) | 1.6 | 0.4875 |
Basophils, % | <0.1500 | 0.6071 | 71.43%(95% CI 35.89–94.92%) | 50.00%(95% CI 21.52–78.48%) | 1.429 | 0.4875 |
Myelocytes | >0.5000 | 0.5952 | 57.14% (95% CI 25.05–84.18%) | 66.67% (95% CI 30.00–94.08%) | 1.714 | 0.5677 |
Hemoglobin | <124.5 | 0.6339 | 57.14% (95% CI 25.05–84.18%) | 50.00% (95% CI 21.52–78.48%) | 1.143 | 0.3854 |
ALT | >40.43 | 0.7619 | 71.43% (95% CI 35.89–94.92%) | 66.67% (95% CI 30.00–94.08%) | 2.143 | 0.1161 |
AST | >16.89 | 0.8286 | 71.43% (95% CI 35.89–94.92%) | 80.00% (95% CI 37.55–98.97%) | 3.571 | 0.0618 |
Total bilirubin | <8.435 | 0.6857 | 57.14% (95% CI 25.05–84.18%) | 80.00% (95% CI 37.55–98.97%) | 2.857 | 0.2912 |
Albumin | <39.18 | 0.8000 | 71.43% (95% CI 35.89–94.92%) | 80.00% (95% CI 37.55–98.97%) | 3.571 | 0.0882 |
Total protein | <64.65 | 0.7857 | 71.43% (95% CI 35.89–94.92%) | 83.33%(95% CI 43.65–99.15%) | 4.286 | 0.0865 |
CRB | >5.150 | 0.5536 | 75.00%(95% CI 30.06–98.72%) | 14.29% (95% CI 7.32–51.31%) | 0.875 | 0.7285 |
D-dimer | <489.6 | 0.6000 | 40.00% (95% CI 7.10–76.93%) | 75.00% (95% CI 40.93–95.56% | 1.60 | 0.6242 |
Fibrinogen | <2.805 | 0.6429 | 50.00% (95% CI 18.76–81.24%) | 85.71% (95% CI 48.69–99.27%) | 3.50 | 0.3914 |
Hematocrit | <34.45 | 0.6122 | 57.14% (95% CI 25.05–84.18%) | 57.14% (95% CI 25.05–84.18%) | 1.333 | 0.4822 |
Plateletcrit | <0.2350 | 0.6667 | 66.67% (95% CI 30.00–94.08%) | 75.00% (95% CI 40.93–95.56%) | 2.667 | 0.3017 |
Creatinine | >72.98 | 0.6327 | 57.14% (95% CI 25.05–84.18%) | 71.43% (95% CI 35.89–94.92%) | 2.00 | 0.4062 |
GFR | >101.6 | 0.5429 | 60.00% (95% CI 23.07–92.89%) | 42.86% (95% CI 15.82–74.95%) | 1.05 | 0.8075 |
APTT | <25.60 | 0.7500 | 100.0% (95% CI 51.01–100.0%) | 57.14% (95% CI 25.05–84.18%) | 2.333 | 0.1859 |
Parameter | R2 | Adjusted p Value |
---|---|---|
Doxorubicin | −0.2810 | 0.0161 |
Carboplatin | 0.5918 | 0.0066 |
Temozolomide | −0.2459 | 0.9145 |
Cisplatin | −0.6784 | 0.0024 |
Etoposide | −0.1939 | 0.2406 |
NGF | −0.7353 | 0.0074 |
WBC | −1.617 | 0.8918 |
RBC | 0.2629 | 0.3670 |
Platelets | 0.0724 | 0.8899 |
Lymphocytes | −3.004 | 0.4452 |
Lymphocytes, % | −2.470 | 0.4462 |
Neutrophils, % | −0.2826 | 0.6512 |
Band neutrophils | −4.566 | 0.3806 |
Segmented neutrophils | −0.6154 | 0.4286 |
Monocytes, % | −6.727 | 0.1631 |
Eosinophils, % | −0.6002 | 0.0004 |
Basophils, % | −1.041 | 0.0010 |
Myelocytes, % | −0.2986 | 0.0001 |
Hemoglobin | 0.2803 | 0.5614 |
ALT | 0.000 | 0.0096 |
AST | 0.007348 | <0.0001 |
Total bilirubin | 0.07651 | 0.1118 |
Albumin | 0.1561 | 0.1550 |
Total protein | 0.2067 | 0.0506 |
C-reactive protein | 0.002105 | 0.0023 |
D-dimer | 0.05458 | 0.2427 |
Fibrinogen | 0.0003714 | 0.2324 |
Hematocrit | 0.2083 | 0.4492 |
Plateletcrit | 0.2739 | 0.1970 |
Creatinine | 0.04685 | 0.8949 |
Glomerular filtration rate | 0.02162 | 0.2649 |
APTT | 0.2988 | 0.5983 |
Factors/Mediators | Carboptatin | Band Neutrophils | Total Protein |
---|---|---|---|
Carboplatin | - | −0.128, p = 0.448, p = 0.897 | 0.974, p = 0.164, p = 0.329 |
Band Neutrophils | −0.128, p = 0.448, p = 0.897 | - | 0.129, p = 0.448, p = 0.896 |
Total protein | 0.974, p = 0.164, p = 0.329 | 0.129. p = 0.448, p = 0.896 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chernov, A.N.; Skliar, S.S.; Yatskou, M.N.; Skakun, V.V.; Pyurveev, S.S.; Batotsyrenova, E.G.; Zheregelya, S.N.; Liu, G.; Kashuro, V.A.; Ivanov, D.O.; et al. Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients. Biomedicines 2025, 13, 1040. https://doi.org/10.3390/biomedicines13051040
Chernov AN, Skliar SS, Yatskou MN, Skakun VV, Pyurveev SS, Batotsyrenova EG, Zheregelya SN, Liu G, Kashuro VA, Ivanov DO, et al. Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients. Biomedicines. 2025; 13(5):1040. https://doi.org/10.3390/biomedicines13051040
Chicago/Turabian StyleChernov, Alexander N., Sofia S. Skliar, Mikalai N. Yatskou, Victor V. Skakun, Sarng S. Pyurveev, Ekaterina G. Batotsyrenova, Sergey N. Zheregelya, Guodong Liu, Vadim A. Kashuro, Dmitry O. Ivanov, and et al. 2025. "Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients" Biomedicines 13, no. 5: 1040. https://doi.org/10.3390/biomedicines13051040
APA StyleChernov, A. N., Skliar, S. S., Yatskou, M. N., Skakun, V. V., Pyurveev, S. S., Batotsyrenova, E. G., Zheregelya, S. N., Liu, G., Kashuro, V. A., Ivanov, D. O., & Ivanov, S. D. (2025). Glioblastoma and Blood Microenvironment Predictive Model for Life Expectancy of Patients. Biomedicines, 13(5), 1040. https://doi.org/10.3390/biomedicines13051040