Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Smart Pads: Basic System Element
2.1.2. Sensor Configuration and Amplification Considerations
2.1.3. External Signal Acquisition Device (ESAD) and Commercial Analog Module (AM)
2.2. Testing Plan and Methods
2.2.1. Data Processing and Comparison
2.2.2. Proposed Calibration Model
2.3. Testing Method
3. Results and Discussion
3.1. Data Processing and Comparison
3.1.1. Frequency-Dependent Load Response Test: Signal-Load Acquisition
3.1.2. Frequency-Dependent Load Response: Various Frequencies Analysis
3.1.3. Frequency-Dependent Load Response: Frequencies Analysis (Improved)
3.1.4. Train Load Simulation Test (100 Km/h Velocity Train)
3.2. Dispersion Analysis of Data Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macedo, R.; Benmansour, R.; Artiba, A.; Mladenović, N.; Urošević, D. Scheduling preventive railway maintenance activities with resource constraints. Electron. Notes Discret. Math. 2017, 58, 215–222. [Google Scholar] [CrossRef]
- Reis, J.D.; Costa, C.O.; da Costa, J.S. Strain gauges debonding fault detection for structural health monitoring. Struct. Control Health Monit. 2018, 25, e2264. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; D’Angelo, G. Review of the design and maintenance technologies used to decelerate the deterioration of ballasted railway tracks. Constr. Build. Mater. 2017, 157, 402–415. [Google Scholar] [CrossRef]
- Song, S.; Hou, Y.; Guo, M.; Wang, L.; Tong, X.; Wu, J. An investigation on the aggregate-shape embedded piezoelectric sensor for civil infrastructure health monitoring. Constr. Build. Mater. 2017, 131, 57–65. [Google Scholar] [CrossRef]
- Lei, Y.-J.; Li, R.-J.; Chen, R.-X.; Zhang, L.-S.; Hu, P.-H.; Huang, Q.-X.; Fan, K.-C. A high-precision two-dimensional micro-accelerometer for low-frequency and micro-vibrations. Precis. Eng. 2021, 67, 419–427. [Google Scholar] [CrossRef]
- Hu, P.; Wang, H.; Tian, G.; Liu, Y.; Li, X.; Spencer, B.F. Multifunctional flexible sensor array-based damage monitoring for switch rail using passive and active sensing. Smart Mater. Struct. 2020, 29, 095013. [Google Scholar] [CrossRef]
- Jing, G.; Siahkouhi, M.; Edwards, J.R.; Dersch, M.S.; Hoult, N.A. Smart railway sleepers—A review of recent developments, challenges, and future prospects. Constr. Build. Mater. 2021, 271, 121533. [Google Scholar] [CrossRef]
- Lee, S.J.; Ahn, D.; You, I.; Yoo, D.Y.; Kang, Y.S. Wireless cement-based sensor for self-monitoring of railway concrete infrastructures. Autom. Constr. 2020, 119, 103323. [Google Scholar] [CrossRef]
- Du, C.; Dutta, S.; Kurup, P.; Yu, T.; Wang, X. A review of railway infrastructure monitoring using fiber optic sensors. Sens. Actuators A Phys. 2020, 303, 111728. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Castillo-Mingorance, J.M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. Smart rail pads for the continuous monitoring of sensored railway tracks: Sensors analysis. Autom. Constr. 2021, 132, 103950. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Castillo-Mingorance, J.M.; Moreno-Navarro, F.; Mattinzioli, T.; Rubio-Gámez, M.C. Piezoelectric-sensored sustainable pads for smart railway traffic and track state monitoring: Full-scale laboratory tests. Constr. Build. Mater. 2021, 301, 124324. [Google Scholar] [CrossRef]
- Zhang, S.L.; Koh, C.G.; Kuang, K.S.C. Proposed rail pad sensor for wheel-rail contact force monitoring. Smart Mater. Struct. 2018, 27, 115041. [Google Scholar] [CrossRef]
- Guillén, A.; Guerrero-Bustamante, O.; Iglesias, G.R.; Moreno-Navarro, F.; Sol-Sánchez, M. Design of Sensorized Rail Pads for Real-Time Monitoring and Predictive Maintenance of Railway Infrastructure. Infrastructures 2025, 10, 45. [Google Scholar] [CrossRef]
- van Schalkwyk, M.H.; Gräbe, P.J. Condition monitoring of train wheels using a cost-effective smart rail pad. Eng. Res. Express 2022, 4, 035045. [Google Scholar] [CrossRef]
- Carnì, D.L.; Grimaldi, D. Comparative analysis of different acquisition techniques applied to static and dynamic characterization of high resolution DAC. In Proceedings of the XIX IMEKO World Congress “Fundamental and Applied Metrology”, Lisbon, Portugal, 6–11 September 2009. [Google Scholar]
- de Souto, J.I.V.; da Rocha, Á.B.; Duarte, R.N.C.; de Moura Fernandes, E. Design and Implementation of an Embedded Data Acquisition System for Vehicle Vertical Dynamics Analysis. Sensors 2023, 23, 9491. [Google Scholar] [CrossRef] [PubMed]
- Nabacino, M.; Amendola, C.; Contini, D.; Re, R.; Spinelli, L.; Torricelli, A. Fast Multi-Distance Time-Domain NIRS and DCS System for Clinical Applications. Sensors 2024, 24, 7375. [Google Scholar] [CrossRef]
- Al-Adili, A.; Hambsch, F.J.; Oberstedt, S.; Pomp, S.; Zeynalov, S. Comparison of digital and analogue data acquisition systems for nuclear spectroscopy. Nucl. Instrum. Methods Phys. Res. A 2010, 624, 684–690. [Google Scholar] [CrossRef]
- Grinias, J.P.; Whitfield, J.T.; Guetschow, E.D.; Kennedy, R.T. An inexpensive, open-source USB Arduino data acquisition device for chemical instrumentation. J. Chem. Educ. 2016, 93, 1316–1319. [Google Scholar] [CrossRef]
- Lázaro, J.C.; Morilla, F.; Hernández, R. Low Cost Device for the Automatic Measure of the Frequency Response. IFAC Proc. Vol. 2007, 40, 222–227. [Google Scholar] [CrossRef]
- Itterheimová, P.; Foret, F.; Kubáň, P. High-resolution Arduino-based data acquisition devices for microscale separation systems. Anal. Chim. Acta 2021, 1153, 338294. [Google Scholar] [CrossRef]
- Barioul, R.; Ghribi, S.F.; Kanoun, O. A Low Cost Signal Acquisition Board Design for Myopathy’s EMG Database Construction. In Proceedings of the 2016 13th International Multi-Conference on Systems, Signals & Devices (SSD), Leipzig, Germany, 21–24 March 2016. [Google Scholar]
- Laganà, F.; Pratticò, D.; Angiulli, G.; Oliva, G.; Pullano, S.A.; Versaci, M.; La Foresta, F. Development of an Integrated System of sEMG Signal Acquisition, Processing, and Analysis with AI Techniques. Signals 2024, 5, 476–493. [Google Scholar] [CrossRef]
- Woschitz, H.; Woschitz, H. Development of A Rail-Strain-Pad Using FBG Sensors. In Proceedings of the 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5) 2011, Cancún, Mexico, 11–15 December 2011. [Google Scholar]
- Lan, C.; Niu, X.; Zhu, W.; Yi, H.; Li, Z.; Yang, R. Experimental study on test of wheel-rail impact based on iron plate strain of fastener system. Constr. Build. Mater. 2024, 445, 137804. [Google Scholar] [CrossRef]
- Castillo-Mingorance, J.M.; Sol-Sánchez, M.; Mattinzioli, T.; Moreno-Navarro, F.; Rubio-ámez, M.C. Development of rail pads from recycled polymers for ballasted railway tracks. Constr. Build. Mater. 2022, 337, 127479. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. The use of elastic elements in railway tracks: A state of the art review. Constr. Build. Mater. 2015, 75, 293–305. [Google Scholar] [CrossRef]
- Sun, Q.; Zhu, J.; Chen, C. A Novel Detection Scheme for Motor Bearing Structure Defects in a High-Speed Train Using Stator Current. Sensors 2024, 24, 7675. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Pu, W.; Qiu, L. A Miniaturized and Ultra-Low-Power Wireless Multi-Parameter Monitoring System with Self-Powered Ability for Aircraft Smart Skin. Sensors 2024, 24, 7993. [Google Scholar] [CrossRef] [PubMed]
- Bayón, R.M.; Suárez, V.M.G.; Martín, F.M.; Ronda, J.M.L.; Antón, J.C.Á. A wireless portable high temperature data monitor for tunnel ovens. Sensors 2014, 14, 14712–14731. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Hui, L.; Shang, Z.; Wang, C.; Jin, M.; Wang, X.; Li, N. Portable Arduino-Based Multi-Sensor Device (SBEDAD): Measuring the Built Environment in Street Cycling Spaces. Sensors 2024, 24, 3096. [Google Scholar] [CrossRef]
- Fanti, G.; Borghi, F.; Wolfe, C.; Campagnolo, D.; Patts, J.; Cattaneo, A.; Spinazzè, A.; Cauda, E.; Cavallo, D.M. First in-Lab Testing of a Cost-Effective Prototype for PM2.5 Monitoring: The P.ALP Assessment. Sensors 2024, 24, 5915. [Google Scholar] [CrossRef]
- Barbero, F.J.; López, G.; Ballestrín, J.; Bosch, J.; Alonso-Montesinos, J.; Carra, M.; Marzo, A.; Polo, J.; Fernández-Reche, J.; Batlles, F.; et al. Comparison and analysis of two measurement systems of horizontal atmospheric extinction of solar radiation. Atmos. Environ. 2021, 261, 118608. [Google Scholar] [CrossRef]
- Farsoni, S.; Bonfè, M.; Astolfi, L. A low-cost high-fidelity ultrasound simulator with the inertial tracking of the probe pose. Control Eng. Pract. 2017, 59, 183–193. [Google Scholar] [CrossRef]
- Zhang, M.; Cao, Y.; Sun, Y.; Su, S. Vibration signal-based defect detection method for railway signal relay using parameter-optimized VMD and ensemble feature selection. Control Eng. Pract. 2023, 139, 105630. [Google Scholar] [CrossRef]
- SERVOSIS—Testing Machines—PCD2K—Software de Control y Análisis para Realización de Ensayos. Available online: https://www.servosis.com/producto/pcd2k/ (accessed on 7 March 2025).
- Metrhom—Measuring Module Analog—MANUAL. Available online: www.metrohm.com (accessed on 7 March 2025).
- SIRIUS® TECHNICAL REFERENCE MANUAL SIRIUS® V25-1. Available online: https://dewesoft.com/ (accessed on 11 March 2025).
- SERVOSIS—Testing Machines—Catálogo General 2023. Available online: www.servosis.com (accessed on 7 March 2025).
- UNE-EN 13146-9; Railway Applications. Track. Test Methods for Fastening Systems. Part 9: Determination of Stiffness. Asociación Española de Normalización: Madrid, Spain, 2020.
- Milne, D.; Masoudi, A.; Ferro, E.; Watson, G.; Le Pen, L. An analysis of railway track behaviour based on distributed optical fibre acoustic sensing. Mech. Syst. Signal Process. 2020, 142, 106769. [Google Scholar] [CrossRef]
- Sol-Sánchez, M.; Mattinzioli, T.; Castillo-Mingorance, J.M.; Moreno-Navarro, F.; Rubio-Gámez, M.C. GRIDMAT—A Sustainable Material Combining Mat and Geogrid Concept for Ballasted Railways. Sustainability 2022, 14, 11186. [Google Scholar] [CrossRef]
- Guillen, A.; Sol-Sánchez, M.; Guerrero, O.; Iglesias, G.; Moreno, F.; Rubio, M.C. Design of Innovative Rail Pad Including Removable Sensor for Traffic-Track Monitoring. In Proceedings of the Sixth International Conference on Railway Technology: Research, Development and Maintenance, Prague, Czech Republic, 1–5 September 2024; pp. 1–13. [Google Scholar] [CrossRef]
- Azizi, T. Comparative Analysis of Statistical, Time–Frequency, and SVM Techniques for Change Detection in Nonlinear Biomedical Signals. Signals 2024, 5, 736–755. [Google Scholar] [CrossRef]
Materials | Advantages | Disadvantages |
---|---|---|
Quartz (SiO2) | Highly Stable Linear Response Low Temperature drift | Lower charge sensitivity compared to PZT |
Lead Zirconate Titanate (PZT) | High charge output Strong piezoelectric effect Good signal resolution | High temperature sensitivity Aging effects Potential lead toxicity |
Barium Titanate (BT) | Lead-free alternative Moderate charge sensitivity | Less stable overtime Temperature-dependent properties |
Cadmium Sulfide (CdS) | Good piezoelectric response Used in photonic applications | Toxicity concerns Limited mechanical durability |
ESAD | AM | |
---|---|---|
Advantages |
|
|
Disadvantages |
|
|
Load Applied (kN) | ESAD (V) | AM (V) |
---|---|---|
3 | 0.039 | 0.004 |
7 | 0.052 | 0.008 |
12 | 0.065 | 0.020 |
15 | 0.091 | 0.034 |
19 | 0.104 | 0.048 |
24 | 0.130 | 0.063 |
29 | 0.156 | 0.088 |
40 | 0.208 | 0.129 |
50 | 0.260 | 0.164 |
60 | 0.312 | 0.194 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guillén, A.; Moreno-Navarro, F.; Sol-Sánchez, M.; Iglesias, G.R. Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study. Sensors 2025, 25, 1933. https://doi.org/10.3390/s25061933
Guillén A, Moreno-Navarro F, Sol-Sánchez M, Iglesias GR. Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study. Sensors. 2025; 25(6):1933. https://doi.org/10.3390/s25061933
Chicago/Turabian StyleGuillén, Amparo, Fernando Moreno-Navarro, Miguel Sol-Sánchez, and Guillermo R. Iglesias. 2025. "Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study" Sensors 25, no. 6: 1933. https://doi.org/10.3390/s25061933
APA StyleGuillén, A., Moreno-Navarro, F., Sol-Sánchez, M., & Iglesias, G. R. (2025). Development and Validation of a Low-Cost External Signal Acquisition Device for Smart Rail Pads: A Comparative Performance Study. Sensors, 25(6), 1933. https://doi.org/10.3390/s25061933