Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,152)

Search Parameters:
Keywords = intelligent interactivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1488 KiB  
Article
Experimental Investigation of Impact Mechanisms of Seeding Quality for Ridge-Clearing No-Till Seeder Under Strip Tillage
by Yuanyuan Gao, Yongyue Hu, Shuo Yang, Xueguan Zhao, Shengwei Lu, Hanjie Dou, Qingzhen Zhu, Peiying Li and Yongyun Zhu
Agronomy 2025, 15(8), 1875; https://doi.org/10.3390/agronomy15081875 (registering DOI) - 1 Aug 2025
Abstract
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the [...] Read more.
Under conservation tillage in the Huang-Huai-Hai wheat–maize rotation area, the ridge-clearing no-till seeder for strip tillage mitigates the adverse impacts of surface residues on seeding quality by clearing stubble specifically within the seed rows, demonstrating significant potential for application and promotion. However, the inadequate understanding of the seeder’s operational performance and governing mechanisms under varying field conditions hinders its high-quality and efficient implementation. To address this issue, this study selected the stubble height, forward speed, and stubble knife rotational speed (PTO speed) as experimental factors. Employing a three-factor quasi-level orthogonal experimental design, coupled with response surface regression analysis, this research systematically elucidated the interaction mechanisms among these factors concerning the seeding depth consistency and seed spacing uniformity of the seeder. An optimized parameter-matching model was subsequently derived through equation system solving. Field trials demonstrated that a lower forward speed improved the seed spacing uniformity and seeding depth consistency, whereas high speeds increased the missing rates and spacing deviations. An appropriate stubble height enhanced the seed spacing accuracy, but an excessive height compromised depth precision. Higher PTO speeds reduced multiple indices but impaired depth accuracy. Response surface analysis based on the regression models demonstrated that the peak value of the seed spacing qualification index occurred within the forward speed range of 8–9 km/h and the stubble height range of 280–330 mm, with the stubble height being the dominant factor. Similarly, the peak value of the seeding depth qualification index occurred within the stubble height range of 300–350 mm and the forward speed range of 7.5–9 km/h, with the forward speed as the primary factor. Validation confirmed that combining stubble heights of 300−330 mm, forward speeds of 8−9 km/h, and PTO speeds of 540 r/min optimized both metrics. This research reveals nonlinear coupling relationships between operational parameters and seeding quality metrics, establishes a stubble–speed dynamic matching model, and provides a theoretical foundation for the intelligent control of seeders in conservation tillage systems. Full article
(This article belongs to the Collection AI, Sensors and Robotics for Smart Agriculture)
21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 (registering DOI) - 1 Aug 2025
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

34 pages, 1441 KiB  
Article
Empowering the Intelligent Transformation of the Manufacturing Sector Through New Quality Productive Forces: Value Implications, Theoretical Analysis, and Empirical Examination
by Yinyan Hu and Xinran Jia
Sustainability 2025, 17(15), 7006; https://doi.org/10.3390/su17157006 (registering DOI) - 1 Aug 2025
Abstract
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality [...] Read more.
Achieving sustainable development goals remains a core issue in global development. In response, China has proposed the development of new quality productive forces (NQPFs) through innovative thinking, emphasizing that fostering NQPFs is both an intrinsic requirement and a pivotal focus for advancing high-quality development. Concurrently, the intelligent transformation of the manufacturing sector serves as a critical direction for China’s economic restructuring and upgrading. This paper places “new quality productive forces” and “intelligent transformation of manufacturing” within the same analytical framework. Starting from the logical chain of “new quality productive forces—three major mechanisms—intelligent transformation of manufacturing,” it concretizes the value implications of new quality productive forces into a systematic conceptual framework driven by the synergistic interaction of three major mechanisms: the mechanism of revolutionary technological breakthroughs, the mechanism of innovative allocation of production factors, and the mechanism of deep industrial transformation and upgrading. This study constructs a “3322” evaluation index system for NQPFs, based on three formative processes, three driving forces, two supporting systems, and two-dimensional characteristics. Simultaneously, it builds an evaluation index system for the intelligent transformation of manufacturing, encompassing intelligent technology, intelligent applications, and intelligent benefits. Using national time-series data from 2012 to 2023, this study assesses the development levels of both NQPFs and the intelligent transformation of manufacturing during this period. The study further analyzes the impact of NQPFs on the intelligent transformation of the manufacturing sector. The research results indicate the following: (1) NQPFs drive the intelligent transformation of the manufacturing industry through the three mechanisms of innovative allocation of production factors, revolutionary breakthroughs in technology, and deep transformation and upgrading of industries. (2) The development of NQPFs exhibits a slow upward trend; however, the outbreak of the pandemic and Sino-US trade frictions have caused significant disruptions to the development of new-type productive forces. (3) The level of intelligent manufacturing continues to improve; however, from 2020 to 2023, due to the impact of the COVID-19 pandemic and Sino-US trade conflicts, the level of intelligent benefits has slightly declined. (4) NQPFs exert a powerful driving force on the intelligent transformation of manufacturing, exerting a significant positive impact on intelligent technology, intelligent applications, and intelligent efficiency levels. Full article
25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 (registering DOI) - 1 Aug 2025
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
15 pages, 317 KiB  
Review
The Contribution of Artificial Intelligence in Nursing Education: A Scoping Review of the Literature
by Federico Cucci, Dario Marasciulo, Mattia Romani, Giovanni Soldano, Donato Cascio, Giorgio De Nunzio, Cosimo Caldararo, Ivan Rubbi, Elsa Vitale, Roberto Lupo and Luana Conte
Nurs. Rep. 2025, 15(8), 283; https://doi.org/10.3390/nursrep15080283 (registering DOI) - 1 Aug 2025
Abstract
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies [...] Read more.
Background and Aim: Artificial intelligence (AI) is among the most promising innovations for transforming nursing education, making it more interactive, personalized, and competency-based. However, its integration also raises significant ethical and practical concerns. This scoping review aims to analyze and summarize key studies on the application of AI in university-level nursing education, focusing on its benefits, challenges, and future prospects. Methods: A scoping review was conducted using the Population, Concept, and Context (PCC) framework, targeting nursing students and educators in academic settings. A comprehensive search was carried out across the PubMed, Scopus, and Web of Science databases. Only peer-reviewed original studies published in English were included. Two researchers independently screened the studies, resolving any disagreements through team discussion. Data were synthesized narratively. Results: Of the 569 articles initially identified, 11 original studies met the inclusion criteria. The findings indicate that AI-based tools—such as virtual simulators and ChatGPT—can enhance students’ learning experiences, communication skills, and clinical preparedness. Nonetheless, several challenges were identified, including increased simulation-related anxiety, potential misuse, and ethical concerns related to data quality, privacy, and academic integrity. Conclusions: AI offers significant opportunities to enhance nursing education; however, its implementation must be approached with critical awareness and responsibility. It is essential that students develop both digital competencies and ethical sensitivity to fully leverage AI’s potential while ensuring high-quality education and responsible nursing practice. Full article
Show Figures

Figure 1

9 pages, 299 KiB  
Article
Assessing the Accuracy and Readability of Large Language Model Guidance for Patients on Breast Cancer Surgery Preparation and Recovery
by Elena Palmarin, Stefania Lando, Alberto Marchet, Tania Saibene, Silvia Michieletto, Matteo Cagol, Francesco Milardi, Dario Gregori and Giulia Lorenzoni
J. Clin. Med. 2025, 14(15), 5411; https://doi.org/10.3390/jcm14155411 (registering DOI) - 1 Aug 2025
Abstract
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly [...] Read more.
Background/Objectives: Accurate and accessible perioperative health information empowers patients and enhances recovery outcomes. Artificial intelligence tools, such as ChatGPT, have garnered attention for their potential in health communication. This study evaluates the accuracy and readability of responses generated by ChatGPT to questions commonly asked about breast cancer. Methods: Fifteen simulated patient queries about breast cancer surgery preparation and recovery were prepared. Responses generated by ChatGPT (4o version) were evaluated for accuracy by a pool of breast surgeons using a 4-point Likert scale. Readability was assessed with the Flesch–Kincaid Grade Level (FKGL). Descriptive statistics were used to summarize the findings. Results: Of the 15 responses evaluated, 11 were rated as “accurate and comprehensive”, while 4 out of 15 were deemed “correct but incomplete”. No responses were classified as “partially incorrect” or “completely incorrect”. The median FKGL score was 11.2, indicating a high school reading level. While most responses were technically accurate, the complexity of language exceeded the recommended readability levels for patient-directed materials. Conclusions: The model shows potential as a complementary resource for patient education in breast cancer surgery, but should not replace direct interaction with healthcare providers. Future research should focus on enhancing language models’ ability to generate accessible and patient-friendly content. Full article
(This article belongs to the Section Oncology)
Show Figures

Figure 1

26 pages, 1263 KiB  
Article
Identifying Key Digital Enablers for Urban Carbon Reduction: A Strategy-Focused Study of AI, Big Data, and Blockchain Technologies
by Rongyu Pei, Meiqi Chen and Ziyang Liu
Systems 2025, 13(8), 646; https://doi.org/10.3390/systems13080646 (registering DOI) - 1 Aug 2025
Abstract
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this [...] Read more.
The integration of artificial intelligence (AI), big data analytics, and blockchain technologies within the digital economy presents transformative opportunities for promoting low-carbon urban development. However, a systematic understanding of how these digital innovations influence urban carbon mitigation remains limited. This study addresses this gap by proposing two research questions (RQs): (1) What are the key success factors for artificial intelligence, big data, and blockchain in urban carbon emission reduction? (2) How do these technologies interact and support the transition to low-carbon cities? To answer these questions, the study employs a hybrid methodological framework combining the decision-making trial and evaluation laboratory (DEMATEL) and interpretive structural modeling (ISM) techniques. The data were collected through structured expert questionnaires, enabling the identification and hierarchical analysis of twelve critical success factors (CSFs). Grounded in sustainability transitions theory and institutional theory, the CSFs are categorized into three dimensions: (1) digital infrastructure and technological applications; (2) digital transformation of industry and economy; (3) sustainable urban governance. The results reveal that e-commerce and sustainable logistics, the adoption of the circular economy, and cross-sector collaboration are the most influential drivers of digital-enabled decarbonization, while foundational elements such as smart energy systems and digital infrastructure act as key enablers. The DEMATEL-ISM approach facilitates a system-level understanding of the causal relationships and strategic priorities among the CSFs, offering actionable insights for urban planners, policymakers, and stakeholders committed to sustainable digital transformation and carbon neutrality. Full article
Show Figures

Figure 1

42 pages, 28030 KiB  
Article
Can AI and Urban Design Optimization Mitigate Cardiovascular Risks Amid Rapid Urbanization? Unveiling the Impact of Environmental Stressors on Health Resilience
by Mehdi Makvandi, Zeinab Khodabakhshi, Yige Liu, Wenjing Li and Philip F. Yuan
Sustainability 2025, 17(15), 6973; https://doi.org/10.3390/su17156973 (registering DOI) - 31 Jul 2025
Abstract
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health [...] Read more.
In rapidly urbanizing environments, environmental stressors—such as air pollution, noise, heat, and green space depletion—substantially exacerbate public health burdens, contributing to the global rise of non-communicable diseases, particularly hypertension, cardiovascular disorders, and mental health conditions. Despite expanding research on green spaces and health (+76.9%, 2019–2025) and optimization and algorithmic approaches (+63.7%), the compounded and synergistic impacts of these stressors remain inadequately explored or addressed within current urban planning frameworks. This study presents a Mixed Methods Systematic Review (MMSR) to investigate the potential of AI-driven urban design optimizations in mitigating these multi-scalar environmental health risks. Specifically, it explores the complex interactions between urbanization, traffic-related pollutants, green infrastructure, and architectural intelligence, identifying critical gaps in the integration of computational optimization with nature-based solutions (NBS). To empirically substantiate these theoretical insights, this study draws on longitudinal 24 h dynamic blood pressure (BP) monitoring (3–9 months), revealing that chronic exposure to environmental noise (mean 79.84 dB) increases cardiovascular risk by approximately 1.8-fold. BP data (average 132/76 mmHg), along with observed hypertensive spikes (systolic > 172 mmHg, diastolic ≤ 101 mmHg), underscore the inadequacy of current urban design strategies in mitigating health risks. Based on these findings, this paper advocates for the integration of AI-driven approaches to optimize urban environments, offering actionable recommendations for developing adaptive, human-centric, and health-responsive urban planning frameworks that enhance resilience and public health in the face of accelerating urbanization. Full article
(This article belongs to the Section Sustainable Urban and Rural Development)
Show Figures

Figure 1

29 pages, 1289 KiB  
Article
An Analysis of Hybrid Management Strategies for Addressing Passenger Injuries and Equipment Failures in the Taipei Metro System: Enhancing Operational Quality and Resilience
by Sung-Neng Peng, Chien-Yi Huang, Hwa-Dong Liu and Ping-Jui Lin
Mathematics 2025, 13(15), 2470; https://doi.org/10.3390/math13152470 - 31 Jul 2025
Abstract
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates [...] Read more.
This study is the first to systematically integrate supervised machine learning (decision tree) and association rule mining techniques to analyze accident data from the Taipei Metro system, conducting a large-scale data-driven investigation into both passenger injury and train malfunction events. The research demonstrates strong novelty and practical contributions. In the passenger injury analysis, a dataset of 3331 cases was examined, from which two highly explanatory rules were extracted: (i) elderly passengers (aged > 61) involved in station incidents are more likely to suffer moderate to severe injuries; and (ii) younger passengers (aged ≤ 61) involved in escalator incidents during off-peak hours are also at higher risk of severe injury. This is the first study to quantitatively reveal the interactive effect of age and time of use on injury severity. In the train malfunction analysis, 1157 incidents with delays exceeding five minutes were analyzed. The study identified high-risk condition combinations—such as those involving rolling stock, power supply, communication, and signaling systems—associated with specific seasons and time periods (e.g., a lift value of 4.0 for power system failures during clear mornings from 06:00–12:00, and 3.27 for communication failures during summer evenings from 18:00–24:00). These findings were further cross-validated with maintenance records to uncover underlying causes, including brake system failures, cable aging, and automatic train operation (ATO) module malfunctions. Targeted preventive maintenance recommendations were proposed. Additionally, the study highlighted existing gaps in the completeness and consistency of maintenance records, recommending improvements in documentation standards and data auditing mechanisms. Overall, this research presents a new paradigm for intelligent metro system maintenance and safety prediction, offering substantial potential for broader adoption and practical application. Full article
Show Figures

Figure 1

30 pages, 8037 KiB  
Review
A Review of Multiscale Interaction Mechanisms of Wind–Leaf–Droplet Systems in Orchard Spraying
by Yunfei Wang, Zhenlei Zhang, Ruohan Shi, Shiqun Dai, Weidong Jia, Mingxiong Ou, Xiang Dong and Mingde Yan
Sensors 2025, 25(15), 4729; https://doi.org/10.3390/s25154729 (registering DOI) - 31 Jul 2025
Abstract
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent [...] Read more.
The multiscale interactive system composed of wind, leaves, and droplets serves as a critical dynamic unit in precision orchard spraying. Its coupling mechanisms fundamentally influence pesticide transport pathways, deposition patterns, and drift behavior within crop canopies, forming the foundational basis for achieving intelligent and site-specific spraying operations. This review systematically examines the synergistic dynamics across three hierarchical scales: Droplet–leaf surface wetting and adhesion at the microscale; leaf cluster motion responses at the mesoscale; and the modulation of airflow and spray plume diffusion by canopy architecture at the macroscale. Key variables affecting spray performance—such as wind speed and turbulence structure, leaf biomechanical properties, droplet size and electrostatic characteristics, and spatial canopy heterogeneity—are identified and analyzed. Furthermore, current advances in multiscale modeling approaches and their corresponding experimental validation techniques are critically evaluated, along with their practical boundaries of applicability. Results indicate that while substantial progress has been made at individual scales, significant bottlenecks remain in the integration of cross-scale models, real-time acquisition of critical parameters, and the establishment of high-fidelity experimental platforms. Future research should prioritize the development of unified coupling frameworks, the integration of physics-based and data-driven modeling strategies, and the deployment of multimodal sensing technologies for real-time intelligent spray decision-making. These efforts are expected to provide both theoretical foundations and technological support for advancing precision and intelligent orchard spraying systems. Full article
(This article belongs to the Special Issue Application of Sensors Technologies in Agricultural Engineering)
Show Figures

Figure 1

21 pages, 1750 KiB  
Article
Predictive Analytics Leveraging a Machine Learning Approach to Identify Students’ Reasons for Dropping out of University
by Asmaa El Mahmoudi, Nour El Houda Chaoui and Habiba Chaoui
Appl. Sci. 2025, 15(15), 8496; https://doi.org/10.3390/app15158496 (registering DOI) - 31 Jul 2025
Abstract
In today’s fast-changing world, the higher education system must evolve to enhance the quality of learning and teaching. Fulfilling the role of a university is a major challenge. Universities must implement strategies that place the student at the center of their concerns; so, [...] Read more.
In today’s fast-changing world, the higher education system must evolve to enhance the quality of learning and teaching. Fulfilling the role of a university is a major challenge. Universities must implement strategies that place the student at the center of their concerns; so, these strategies must be designed for and by the student. However, the high university dropout rate is one of the current problems faced by many universities. This suggests that there are some issues that hinder the learning process. Several studies have highlighted the advantage of artificial intelligence (AI) technologies in providing explorative and predictive analyses that explain why students are dropping out, with the aim of improving the quality of teaching and providing an integrated learning environment. This paper proposes a framework that predicts student dropout rates using machine learning techniques, based on data collected from various sources. Data collection was carried out between 2022 and 2024. We used a quantitative analysis method employed through a questionnaire distributed to 120 students (aged 18–26) from open access faculties of a Moroccan public university to identify the factors leading to an increase in university dropout rates. We discuss the impact of selected variables, and the findings show that several factors are related to university dropout rates, such as social background, psychological and health problems, insufficient motivation of professors, limited perspective on educational programs, changes in language and teaching methodologies, absenteeism, student attitude, and a lack of interaction between professors and students. Full article
(This article belongs to the Special Issue ICT in Education, 2nd Edition)
Show Figures

Figure 1

29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

16 pages, 2448 KiB  
Article
A Body-Powered Underactuated Prosthetic Finger Driven by MCP Joint Motion
by Worathris Chungsangsatiporn, Chaiwuth Sithiwichankit, Ratchatin Chancharoen, Ronnapee Chaichaowarat, Nopdanai Ajavakom and Gridsada Phanomchoeng
Robotics 2025, 14(8), 107; https://doi.org/10.3390/robotics14080107 - 31 Jul 2025
Abstract
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting [...] Read more.
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting intuitive user interaction. Results indicate that the prosthesis successfully mimics natural finger flexion and adapts effectively to a variety of grasping tasks with minimal effort. This study was conducted in accordance with ethical standards and approved by the Institutional Review Board (IRB), Project No. 670161, titled “Biologically-Inspired Synthetic Finger: Design, Fabrication, and Application.” The findings suggest that the device offers a viable and practical solution for individuals with partial hand loss, particularly in settings where electrically powered systems are unsuitable or inaccessible. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

16 pages, 2647 KiB  
Article
“Habari, Colleague!”: A Qualitative Exploration of the Perceptions of Primary School Mathematics Teachers in Tanzania Regarding the Use of Social Robots
by Edger P. Rutatola, Koen Stroeken and Tony Belpaeme
Appl. Sci. 2025, 15(15), 8483; https://doi.org/10.3390/app15158483 (registering DOI) - 30 Jul 2025
Abstract
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI [...] Read more.
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI can be leveraged to create interactive and effective intelligent tutoring systems, which have recently been built into embodied systems such as social robots. Motivated by the pivotal influence of teachers’ attitudes on the adoption of educational technologies, this study undertakes a qualitative investigation of Tanzanian primary school mathematics teachers’ perceptions of contextualised intelligent social robots. Thirteen teachers from six schools in both rural and urban settings observed pupils learning with a social robot. They reported their views during qualitative interviews. The results, analysed thematically, reveal a generally positive attitude towards using social robots in schools. While commended for their effective teaching and suitability for one-to-one tutoring, concerns were raised about incorrect and inconsistent feedback, language code-switching, response latency, and the lack of support infrastructure. We suggest actionable steps towards adopting tutoring systems and social robots in schools in Tanzania and similar low-resource countries, paving the way for their adoption to redress teachers’ workloads and improve educational outcomes. Full article
(This article belongs to the Special Issue Advances in Human–Machine Interaction)
Show Figures

Figure 1

14 pages, 283 KiB  
Article
Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot
by Gaëlle Vanhoffelen, Laura Vandenbosch and Lara Schreurs
Behav. Sci. 2025, 15(8), 1037; https://doi.org/10.3390/bs15081037 - 30 Jul 2025
Abstract
Due to technological advancements such as generative artificial intelligence (AI) and large language models, chatbots enable increasingly human-like, real-time conversations through text (e.g., OpenAI’s ChatGPT) and voice (e.g., Amazon’s Alexa). One AI chatbot that is specifically designed to meet the social-supportive needs of [...] Read more.
Due to technological advancements such as generative artificial intelligence (AI) and large language models, chatbots enable increasingly human-like, real-time conversations through text (e.g., OpenAI’s ChatGPT) and voice (e.g., Amazon’s Alexa). One AI chatbot that is specifically designed to meet the social-supportive needs of youth is Snapchat’s My AI. Given its increasing popularity among adolescents, the present study investigated whether adolescents’ likelihood of using My AI, as well as their positive or negative emotional experiences from interacting with the chatbot, is related to socio-demographic factors (i.e., gender, age, and socioeconomic status (SES)). A cross-sectional study was conducted among 303 adolescents (64.1% girls, 35.9% boys, 1.0% other, 0.7% preferred not to say their gender; Mage = 15.89, SDage = 1.69). The findings revealed that younger adolescents were more likely to use My AI and experienced more positive emotions from these interactions than older adolescents. No significant relationships were found for gender or SES. These results highlight the potential for age to play a critical role in shaping adolescents’ engagement with AI chatbots on social media and their emotional outcomes from such interactions, underscoring the need to consider developmental factors in AI design and policy. Full article
Back to TopTop