Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot
Abstract
1. Introduction
1.1. Adolescents and Snapchat
1.2. User Characteristics and Perceived Outcomes
1.2.1. Gender Differences
1.2.2. Age Differences
1.2.3. SES Differences
1.3. The Current Study
- RQ1: Can socio-demographic characteristics (i.e., gender, age, and SES level) predict whether or not adolescents have already used My AI?
- RQ2.a: Are socio-demographic characteristics (i.e., gender, age, and SES level) related to adolescents’ perceived positive emotions after using My AI?
- RQ2.b: Are socio-demographic characteristics (i.e., gender, age, and SES level) related to adolescents’ perceived negative emotions after using My AI?
2. Materials and Methods
2.1. Data Collection and Sample
2.2. Measures
2.2.1. Socio-Demographic Variables
2.2.2. Use of Snapchat’s My AI
2.2.3. Emotional Reactions to Snapchat’s My AI
2.2.4. General Time Spent on Social Media
2.3. Analytical Strategy
3. Results
3.1. Descriptives
3.2. Hypotheses
4. Discussion
4.1. Main Findings and Implications
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
LLMs | Large Language Models |
SES | Socioeconomic Status |
OSF | Open Science Framework |
1 | Only one other study draws upon the same sample, yet has completely different research objectives (see its preregistration on OSF: https://osf.io/yvzn8) and has no overlapping main variables. |
2 | The dropped items for negative affect were guilty, scared, hostile, ashamed, and jittery; for positive affect: strong, proud, alert, determined, attentive, and active. |
References
- Apenstaartjaren. (2024). De digitale leefwereld van jongeren en kinderen 2024. Available online: https://www.apenstaartjaren.be (accessed on 31 July 2024).
- Baumgartner, S. (2023, February 8–9). Why we see media effects but do not find them: Media effects stabilize after repeated media exposure. Etmaal van de Communicatiewetenschap, Rotterdam, The Netherlands. [Google Scholar]
- Bayer, J. B., Ellison, N. B., Schoenebeck, S. Y., & Falk, E. B. (2016). Sharing the small moments: Ephemeral social interaction on Snapchat. Information Communication & Society, 19(7), 956–977. [Google Scholar] [CrossRef]
- Björling, E. A., Ling, H., Bhatia, S., & Matarrese, J. (2021). Sharing stressors with a social robot prototype: What embodiment do adolescents prefer? International Journal of Child-Computer Interaction, 28, 100252. [Google Scholar] [CrossRef]
- Björling, E. A., Rose, E., Davidson, A., Ren, R., & Wong, D. (2019). Can we keep him forever? Teens’ engagement and desire for emotional connection with a social robot. International Journal of Social Robotics, 12(1), 65–77. [Google Scholar] [CrossRef]
- Blakemore, S. (2008). The social brain in adolescence. Nature Reviews. Neuroscience, 9(4), 267–277. [Google Scholar] [CrossRef]
- Bond, B. J., Dill-Shackleford, K. E., Dibble, J. L., Gleason, T. R., Jennings, N., Rosaen, S., & Forster, R. T. (2025). Parasocial relationships in children and teens. In Handbook of children and screens digital media, development, and well-being from birth through adolescence (pp. 239–244). Springer Nature. [Google Scholar] [CrossRef]
- Borau, S., Otterbring, T., Laporte, S., & Wamba, S. F. (2021). The most human bot: Female gendering increases humanness perceptions of bots and acceptance of AI. Psychology and Marketing, 38(7), 1052–1068. [Google Scholar] [CrossRef]
- Brandtzaeg, P. B., Skjuve, M., & Følstad, A. (2025). Emerging AI individualism: How young people integrate social AI into their lives. Communication and Change, 1, 11. [Google Scholar] [CrossRef]
- Casas, F., & González-Carrasco, M. (2019). The evolution of positive and negative affect in a longitudinal sample of children and adolescents. Child Indicators Research, 13(5), 1503–1521. [Google Scholar] [CrossRef]
- Celik, I. (2023). Exploring the determinants of artificial intelligence (AI) literacy: Digital divide, computational thinking, cognitive absorption. Telematics and Informatics, 83, 102026. [Google Scholar] [CrossRef]
- Dumontheil, I. (2014). Development of abstract thinking during childhood and adolescence: The role of rostrolateral prefrontal cortex. Developmental Cognitive Neuroscience, 10, 57–76. [Google Scholar] [CrossRef]
- Feine, J., Gnewuch, U., Morana, S., & Maedche, A. (2020). Gender bias in Chatbot design. In A. Følstad, T. Araujo, S. Papadopoulos, E. L.-C. Law, E. Luger, M. Goodwin, & P. B. Brandtzaeg (Eds.), Chatbot research and design. Conversations 2019. Lecture notes in computer science (Vol. 11970, pp. 79–93). Springer. [Google Scholar] [CrossRef]
- Frison, E., & Eggermont, S. (2016). Exploring the relationships between different types of Facebook use, perceived online social support, and adolescents’ depressed mood. Social Science Computer Review, 34(2), 153–171. [Google Scholar] [CrossRef]
- George, M. J., Jensen, M. R., Russell, M. A., Gassman-Pines, A., Copeland, W. E., Hoyle, R. H., & Odgers, C. L. (2020). Young adolescents’ digital technology use, perceived impairments, and well-being in a representative sample. The Journal of Pediatrics, 219, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Goodman, E., Adler, N. E., Kawachi, I., Frazier, A. L., Huang, B., & Colditz, G. A. (2001). Adolescents’ perceptions of social status: Development and evaluation of a new indicator. Pediatrics, 108(2), e31. [Google Scholar] [CrossRef] [PubMed]
- Haslam, N. (2006). Dehumanization: An integrative review. Personality and Social Psychology Review, 10(3), 252–264. [Google Scholar] [CrossRef]
- Helsper, E. J. (2020). Digital inequalities amongst digital natives. In The Routledge companion to digital media and children (pp. 435–448). Routledge. [Google Scholar] [CrossRef]
- Herbener, A. B., & Damholdt, M. F. (2025). Are lonely youngsters turning to Chatbots for companionship? The relationship between Chatbot usage and social connectedness in Danish high-school students. International Journal Of Human-Computer Studies, 196, 103409. [Google Scholar] [CrossRef]
- Hoffman, A., Owen, D., & Calvert, S. L. (2021). Parent reports of children’s parasocial relationships with conversational agents: Trusted voices in children’s lives. Human Behavior and Emerging Technologies, 3(4), 606–617. [Google Scholar] [CrossRef]
- Hong, J.-W. (2022). I was born to love AI: The influence of social status on AI self-efficacy and intentions to use AI. International Journal of Communication, 16, 172–191. [Google Scholar]
- Hopelab. (2024). Teen and young adult perspectives on Generative AI: Patterns of use, excitements, and concerns. Available online: https://hopelab.org/teen-young-adult-perspectives-generative-ai/ (accessed on 13 August 2024).
- Horton, D., & Richard Wohl, R. (1956). Mass communication and para-social interaction: Observations on intimacy at a distance. Psychiatry, 19(3), 215–229. [Google Scholar] [CrossRef]
- Hu, M., Chua, X. C. W., Diong, S. F., Kasturiratna, K. T. A. S., Majeed, N. M., & Hartanto, A. (2025). AI as your ally: The effects of AI-assisted venting on negative affect and perceived social support. Applied Psychology Health and Well-Being, 17(1), e12621. [Google Scholar] [CrossRef]
- Huang, S., Lai, X., Ke, L., Li, Y., Wang, H., Zhao, X., Dai, X., & Wang, Y. (2024). AI technology panic—Is AI dependence bad for mental health? A cross-lagged panel model and the mediating roles of motivations for AI use among adolescents. Psychology Research and Behavior Management, 17, 1087–1102. [Google Scholar] [CrossRef]
- Jannai, D., Meron, A., Lenz, B., Levine, Y., & Shoham, Y. (2023). Human or not? A gamified approach to the turing test. arXiv, arXiv:2305.20010. [Google Scholar] [CrossRef]
- Jin, K., Reichert, F., Cagasan, L. P., De La Torre, J., & Law, N. (2020). Measuring digital literacy across three age cohorts: Exploring test dimensionality and performance differences. Computers & Education, 157, 103968. [Google Scholar] [CrossRef]
- Katz, E., Blumler, J. G., & Gurevitch, M. (1974). Utilization of mass communication by the individual. In J. G. Blumler, & E. Katz (Eds.), The uses of mass communications: Current perspectives on gratifications research (pp. 19–31). Sage. [Google Scholar]
- Kurian, N. (2024). ‘No, Alexa, no!’: Designing child-safe AI and protecting children from the risks of the ‘empathy gap’ in large language models. Learning, Media and Technology, 1–14. [Google Scholar] [CrossRef]
- Larson, R. W., Moneta, G., Richards, M. H., & Wilson, S. (2002). Continuity, stability, and change in daily emotional experience across adolescence. Child Development, 73(4), 1151–1165. [Google Scholar] [CrossRef] [PubMed]
- Livingstone, S., Mascheroni, G., & Stoilova, M. (2021). The outcomes of gaining digital skills for young people’s lives and wellbeing: A systematic evidence review. New Media & Society, 25(5), 1176–1202. [Google Scholar] [CrossRef]
- Maeda, T., & Quan-Haase, A. (2024, June 3–6). When human-AI interactions become parasocial: Agency and anthropomorphism in affective design. FAccT ‘24: Proceedings of the 2024 ACM Conference on Fairness, Accountability, and Transparency (pp. 1068–1077), Rio de Janeiro, Brazil. [Google Scholar] [CrossRef]
- Meshram, S., Naik, N., Vr, M., More, T., & Kharche, S. (2021, June 25–27). Conversational AI: Chatbots. 2021 International Conference on Intelligent Technologies (CONIT), Hubli, India. [Google Scholar] [CrossRef]
- Ng, D. T. K., Leung, J. K. L., Chu, K. W. S., & Qiao, M. S. (2021). AI literacy: Definition, teaching, evaluation and ethical issues. Proceedings of the Association for Information Science and Technology, 58(1), 504–509. [Google Scholar] [CrossRef]
- Ofcom. (2023). Online nation, 2023 report. Available online: https://www.ofcom.org.uk/media-use-and-attitudes/online-habits/online-nation/ (accessed on 13 August 2024).
- Pew Research Center. (2023). Teens, social media and technology 2023. Available online: https://www.pewresearch.org/internet/2023/12/11/teens-social-media-and-technology-2023/ (accessed on 31 July 2024).
- Rosič, J., Schreurs, L., Janicke-Bowles, S. H., & Vandenbosch, L. (2024). Trajectories of digital flourishing in adolescence: The predictive roles of developmental changes and digital divide factors. Child Development, 95(5), 1586–1602. [Google Scholar] [CrossRef]
- Schöbel, S., Schmitt, A., Benner, D., Saqr, M., Janson, A., & Leimeister, J. M. (2023). Charting the evolution and future of conversational agents: A research agenda along five waves and new frontiers. Information Systems Frontiers, 26, 729–754. [Google Scholar] [CrossRef]
- Schreurs, L., & Vandenbosch, L. (2021). Introducing the Social Media Literacy (SMILE) model with the case of the positivity bias on social media. Journal of Children and Media, 15(3), 320–337. [Google Scholar] [CrossRef]
- Shevlin, H. (2024). All too human? Identifying and mitigating ethical risks of Social AI. Law Ethics & Technology. [Google Scholar] [CrossRef]
- Snapchat Support. (2024). What is my AI on snapchat and how do I use it? Available online: https://help.snapchat.com/hc/en-us/articles/13266788358932-What-is-My-AI-on-Snapchat-and-how-do-I-use-it (accessed on 31 July 2024).
- Steele, J. R., & Brown, J. D. (1995). Adolescent room culture: Studying media in the context of everyday life. Journal of Youth and Adolescence, 24(5), 551–576. [Google Scholar] [CrossRef]
- Taylor, J. (2024, September 10). Australia plans to ban children from social media. Is checking and enforcing an age block possible? The Guardian. Available online: https://www.theguardian.com/australia-news/article/2024/sep/10/australia-children-social-media-ban-age-limit-under-16-details (accessed on 15 September 2024).
- Unesco. (2019). I’d blush if I could: Closing gender divides in digital skills though education. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000367416 (accessed on 16 August 2024).
- Unesco. (2024). Systematic prejudices: An investigation into bias against women and girls in large language models. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000388971 (accessed on 16 August 2024).
- Utz, S., Muscanell, N., & Khalid, C. (2015). Snapchat elicits more jealousy than Facebook: A comparison of Snapchat and Facebook use. Cyberpsychology, Behavior, and Social Networking, 18(3), 141–146. [Google Scholar] [CrossRef]
- Vissenberg, J., d’Haenens, L., & Livingstone, S. (2022). Digital literacy and online resilience as facilitators of young people’s well-being? A systematic review. European Psychologist, 27(2), 76–85. [Google Scholar] [CrossRef]
- Watson, D., Clark, L. A., & Tellegen, A. (1988). Development and validation of brief measures of positive and negative affect: The PANAS scales. Journal of Personality and Social Psychology, 54(6), 1063. [Google Scholar] [CrossRef]
- Wiederhold, B. K. (2018). “Alexa, Are you my Mom?” The role of artificial intelligence in child development. Cyberpsychology, Behavior and Social Networking, 21(8), 471–472. [Google Scholar] [CrossRef] [PubMed]
- Wölfle, A., & Schmuck, D. (2025, June 12–16). Are bots more biased than humans? Assessing gender stereotypes of warmth and competence in AI-generated ratings, stories, and images. 75th International Communication Association Conference, Denver, CO, USA. [Google Scholar]
- Xie, C., Wang, Y., & Cheng, Y. (2024). Does Artificial Intelligence satisfy you? A meta-analysis of user gratification and user satisfaction with AI-powered Chatbots. International Journal of Human-Computer Interaction, 40(3), 613–623. [Google Scholar] [CrossRef]
- Xie, T., & Pentina, I. (2022, January 4–7). Attachment theory as a framework to understand relationships with social chatbots: A case study of replika. Proceedings of the Annual Hawaii International Conference on System Sciences, Maui, HI, USA. [Google Scholar] [CrossRef]
- Yao, X., & Xi, Y. (2025). From assistants to digital beings: Exploring anthropomorphism, humanness perception, and AI anxiety in large-language-model chatbots. Social Science Computer Review, 08944393251354976. [Google Scholar] [CrossRef]
Descriptive Statistics | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Max. | M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
1. Gender | - | - | - | - | 1 | ||||||
2. SES | 1 | 10 | 7.35 | 1.31 | 0.03 | 1 | |||||
3. Age | 13 | 20 | 15.89 | 1.69 | −0.24 *** | −0.27 *** | 1 | ||||
4. Positive emotional reactions | 1 | 5 | 2.04 | 0.8 | −0.04 | 0.06 | −0.22 ** | 1 | |||
5. Negative emotional reactions | 1 | 5 | 1.58 | 0.63 | −0.09 | 0.05 | −0.01 | 0.15 * | 1 | ||
6. My AI use | - | - | - | - | −0.02 | 0.03 | 0.16 ** | - | - | 1 | |
7. General time spent on social media | 1 | 49 | 8.4 | 5.06 | −0.07 | −0.12 * | 0.11 | 0.04 | 0.07 | −0.18 ** | 1 |
b | SE | Wald χ2 | Exp(b) | χ2 | Cox and Snell R2 | Nagelkerke’s R2 | |
---|---|---|---|---|---|---|---|
Model 1 | 6.79 | 0.04 | 0.06 | ||||
General time spent on social media | −0.12 | 0.04 | 9.81 | 0.89 | |||
Model 2 | 9.50 | 0.09 | 0.13 | ||||
Gender | −0.08 | 0.30 | 0.07 | 0.07 | |||
SES | 0.06 | 0.11 | 0.36 | 0.36 | |||
Age | 0.33 *** | 0.09 | 13.40 | 1.39 | |||
Constant | −5.30 | 1.79 | 8.75 | 8.75 |
b | SE | β | t | Adj. R2 | ΔR2 | F | F Change | |
---|---|---|---|---|---|---|---|---|
Model 1 | −0.00 | 0.00 | 0.27 | 0.27 | ||||
General time spent on social media | 0.01 | 0.01 | 0.04 | 0.52 | ||||
Model 2 | 0.04 | 0.06 | 3.02 * | 3.93 | ||||
General time spent on social media | 0.01 | 0.01 | 0.06 | 0.08 | ||||
Gender | −0.17 | 0.13 | −0.09 | −1.24 | ||||
SES | 0.00 | 0.05 | 0.01 | 0.08 | ||||
Age | −0.13 | 0.04 | −0.24 ** | −3.26 |
b | SE | β | t | Adj. R2 | ΔR2 | F | F Change | |
---|---|---|---|---|---|---|---|---|
Model 1 | 0.00 | 0.01 | 1.03 | 1.03 | ||||
General time spent on social media | 0.01 | 0.09 | 0.07 | 1.01 | ||||
Model 2 | −0.01 | 0.01 | 0.75 | 0.66 | ||||
General time spent on social media | 0.01 | 0.01 | 0.07 | 1.03 | ||||
Gender | −0.11 | 0.10 | −0.09 | −1.17 | ||||
SES | 0.03 | 0.04 | 0.05 | 0.70 | ||||
Age | −0.01 | 0.03 | −0.02 | −0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vanhoffelen, G.; Vandenbosch, L.; Schreurs, L. Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot. Behav. Sci. 2025, 15, 1037. https://doi.org/10.3390/bs15081037
Vanhoffelen G, Vandenbosch L, Schreurs L. Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot. Behavioral Sciences. 2025; 15(8):1037. https://doi.org/10.3390/bs15081037
Chicago/Turabian StyleVanhoffelen, Gaëlle, Laura Vandenbosch, and Lara Schreurs. 2025. "Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot" Behavioral Sciences 15, no. 8: 1037. https://doi.org/10.3390/bs15081037
APA StyleVanhoffelen, G., Vandenbosch, L., & Schreurs, L. (2025). Teens, Tech, and Talk: Adolescents’ Use of and Emotional Reactions to Snapchat’s My AI Chatbot. Behavioral Sciences, 15(8), 1037. https://doi.org/10.3390/bs15081037