Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (63,861)

Search Parameters:
Keywords = integrative models

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 3956 KiB  
Article
SEP and Blockchain Adoption in Western Balkans and EU: The Mediating Role of ESG Activities and DEI Initiatives
by Vasiliki Basdekidou and Harry Papapanagos
FinTech 2025, 4(3), 37; https://doi.org/10.3390/fintech4030037 (registering DOI) - 1 Aug 2025
Abstract
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended [...] Read more.
This paper explores the intervening role in SEP performance of corporate environmental, cultural, and ethnic activities (ECEAs) and diversity, equity, inclusion, and social initiatives (DEISIs) on blockchain adoption (BCA) strategy, particularly useful in the Western Balkans (WB), which demands transparency due to extended fraud and ethnic complexities. In this domain, a question has been raised: In BCA strategies, is there any correlation between SEP performance and ECEAs and DEISIs in a mediating role? A serial mediation model was tested on a dataset of 630 WB and EU companies, and the research conceptual model was validated by CFA (Confirmation Factor Analysis), and the SEM (Structural Equation Model) fit was assessed. We found a statistically sound (significant, positive) correlation between BCA and ESG success performance, especially in the innovation and integrity ESG performance success indicators, when DEISIs mediate. The findings confirmed the influence of technology, and environmental, cultural, ethnic, and social factors on BCA strategy. The findings revealed some important issues of BCA that are of worth to WB companies’ managers to address BCA for better performance. This study adds to the literature on corporate blockchain transformation, especially for organizations seeking investment opportunities in new international markets to diversify their assets and skill pool. Furthermore, it contributes to a deeper understanding of how DEI initiatives impact the correlation between business transformation and socioeconomic performance, which is referred to as the “social impact”. Full article
(This article belongs to the Special Issue Fintech Innovations: Transforming the Financial Landscape)
Show Figures

Figure 1

26 pages, 1567 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 (registering DOI) - 1 Aug 2025
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
16 pages, 2028 KiB  
Article
A Hybrid Algorithm for PMLSM Force Ripple Suppression Based on Mechanism Model and Data Model
by Yunlong Yi, Sheng Ma, Bo Zhang and Wei Feng
Energies 2025, 18(15), 4101; https://doi.org/10.3390/en18154101 (registering DOI) - 1 Aug 2025
Abstract
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time [...] Read more.
The force ripple of a permanent magnet synchronous linear motor (PMSLM) caused by multi-source disturbances in practical applications seriously restricts its high-precision motion control performance. The traditional single-mechanism model has difficulty fully characterizing the nonlinear disturbance factors, while the data-driven method has real-time limitations. Therefore, this paper proposes a hybrid modeling framework that integrates the physical mechanism and measured data and realizes the dynamic compensation of the force ripple by constructing a collaborative suppression algorithm. At the mechanistic level, based on electromagnetic field theory and the virtual displacement principle, an analytical model of the core disturbance terms such as the cogging effect and the end effect is established. At the data level, the acceleration sensor is used to collect the dynamic response signal in real time, and the data-driven ripple residual model is constructed by combining frequency domain analysis and parameter fitting. In order to verify the effectiveness of the algorithm, a hardware and software experimental platform including a multi-core processor, high-precision current loop controller, real-time data acquisition module, and motion control unit is built to realize the online calculation and closed-loop injection of the hybrid compensation current. Experiments show that the hybrid framework effectively compensates the unmodeled disturbance through the data model while maintaining the physical interpretability of the mechanistic model, which provides a new idea for motor performance optimization under complex working conditions. Full article
20 pages, 5077 KiB  
Article
Ventilation Modeling of a Hen House with Outdoor Access
by Hojae Yi, Eileen Fabian-Wheeler, Michael Lee Hile, Angela Nguyen and John Michael Cimbala
Animals 2025, 15(15), 2263; https://doi.org/10.3390/ani15152263 (registering DOI) - 1 Aug 2025
Abstract
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor [...] Read more.
Outdoor access, often referred to as pop holes, is widely used to improve the production and welfare of hens. Such cage-free environments present an opportunity for precision flock management via best environmental control practices. However, outdoor access disrupts the integrity of the indoor environment, including properly planned ventilation. Moreover, complaints exist that hens do not use the holes to access the outdoor environment due to the strong incoming airflow through the outdoor access, as they behave as uncontrolled air inlets in a negative pressure ventilation system. As the egg industry transitions to cage-free systems, there is an urgent need for validated computational fluid dynamics (CFD) models to optimize ventilation strategies that balance animal welfare, environmental control, and production efficiency. We developed and validated CFD models of a cage-free hen house with outdoor access by specifying real-world conditions, including two exhaust fans, sidewall ventilation inlets, wire-meshed pens, outdoor access, and plenum inlets. The simulations of four ventilation scenarios predict the measured air flow velocity with an error of less than 50% for three of the scenarios, and the simulations predict temperature with an error of less than 6% for all scenarios. Plenum-based systems outperformed sidewall systems by up to 136.3 air changes per hour, while positive pressure ventilation effectively mitigated disruptions to outdoor access. We expect that knowledge of improved ventilation strategy will help the egg industry improve the welfare of hens cost-effectively. Full article
14 pages, 854 KiB  
Systematic Review
The Critical Impact and Socio-Ethical Implications of AI on Content Generation Practices in Media Organizations
by Sevasti Lamprou, Paraskevi (Evi) Dekoulou and George Kalliris
Societies 2025, 15(8), 214; https://doi.org/10.3390/soc15080214 (registering DOI) - 1 Aug 2025
Abstract
This systematic literature review explores the socio-ethical implications of Artificial Intelligence (AI) in contemporary media content generation. Drawing from 44 peer-reviewed sources, policy documents, and industry reports, the study synthesizes findings across three core domains: bias detection, storytelling transformation, and ethical governance frameworks. [...] Read more.
This systematic literature review explores the socio-ethical implications of Artificial Intelligence (AI) in contemporary media content generation. Drawing from 44 peer-reviewed sources, policy documents, and industry reports, the study synthesizes findings across three core domains: bias detection, storytelling transformation, and ethical governance frameworks. Through thematic coding and structured analysis, the review identifies recurring tensions between automation and authenticity, efficiency and editorial integrity, and innovation and institutional oversight. It introduces the Human–AI Co-Creation Continuum as a conceptual model for understanding hybrid narrative production and proposes practical recommendations for ethical AI adoption in journalism. The review concludes with a future research agenda emphasizing empirical studies, cross-cultural governance models, and audience perceptions of AI-generated content. This aligns with prior studies on algorithmic journalism. Full article
Show Figures

Figure 1

25 pages, 2860 KiB  
Review
Multimodal Sensing-Enabled Large Language Models for Automated Emotional Regulation: A Review of Current Technologies, Opportunities, and Challenges
by Liangyue Yu, Yao Ge, Shuja Ansari, Muhammad Imran and Wasim Ahmad
Sensors 2025, 25(15), 4763; https://doi.org/10.3390/s25154763 (registering DOI) - 1 Aug 2025
Abstract
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal [...] Read more.
Emotion regulation is essential for mental health. However, many people ignore their own emotional regulation or are deterred by the high cost of psychological counseling, which poses significant challenges to making effective support widely available. This review systematically examines the convergence of multimodal sensing technologies and large language models (LLMs) for the development of Automated Emotional Regulation (AER) systems. The review draws upon a comprehensive analysis of the existing literature, encompassing research papers, technical reports, and relevant theoretical frameworks. Key findings indicate that multimodal sensing offers the potential for rich, contextualized data pertaining to emotional states, while LLMs provide improved capabilities for interpreting these inputs and generating nuanced, empathetic, and actionable regulatory responses. The integration of these technologies, including physiological sensors, behavioral tracking, and advanced LLM architectures, presents the improvement of application, moving AER beyond simpler, rule-based systems towards more adaptive, context-aware, and human-like interventions. Opportunities for personalized interventions, real-time support, and novel applications in mental healthcare and other domains are considerable. However, these prospects are counterbalanced by significant challenges and limitations. In summary, this review synthesizes current technological advancements, identifies substantial opportunities for innovation and application, and critically analyzes the multifaceted technical, ethical, and practical challenges inherent in this domain. It also concludes that while the integration of multimodal sensing and LLMs holds significant potential for AER, the field is nascent and requires concerted research efforts to realize its full capacity to enhance human well-being. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

19 pages, 1160 KiB  
Article
Multi-User Satisfaction-Driven Bi-Level Optimization of Electric Vehicle Charging Strategies
by Boyin Chen, Jiangjiao Xu and Dongdong Li
Energies 2025, 18(15), 4097; https://doi.org/10.3390/en18154097 (registering DOI) - 1 Aug 2025
Abstract
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic [...] Read more.
The accelerating integration of electric vehicles (EVs) into contemporary transportation infrastructure has underscored significant limitations in traditional charging paradigms, particularly in accommodating heterogeneous user requirements within dynamic operational environments. This study presents a differentiated optimization framework for EV charging strategies through the systematic classification of user types. A multidimensional decision-making environment is established for three representative user categories—residential, commercial, and industrial—by synthesizing time-variant electricity pricing models with dynamic carbon emission pricing mechanisms. A bi-level optimization architecture is subsequently formulated, leveraging deep reinforcement learning (DRL) to capture user-specific demand characteristics through customized reward functions and adaptive constraint structures. Validation is conducted within a high-fidelity simulation environment featuring 90 autonomous EV charging agents operating in a metropolitan parking facility. Empirical results indicate that the proposed typology-driven approach yields a 32.6% average cost reduction across user groups relative to baseline charging protocols, with statistically significant improvements in expenditure optimization (p < 0.01). Further interpretability analysis employing gradient-weighted class activation mapping (Grad-CAM) demonstrates that the model’s attention mechanisms are well aligned with theoretically anticipated demand prioritization patterns across the distinct user types, thereby confirming the decision-theoretic soundness of the framework. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

21 pages, 1646 KiB  
Article
How Does New Quality Productive Forces Affect Green Total Factor Energy Efficiency in China? Consider the Threshold Effect of Artificial Intelligence
by Boyu Yuan, Runde Gu, Peng Wang and Yuwei Hu
Sustainability 2025, 17(15), 7012; https://doi.org/10.3390/su17157012 (registering DOI) - 1 Aug 2025
Abstract
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving [...] Read more.
China’s economy is shifting from an era of rapid expansion to one focused on high-quality development, making it imperative to tackle environmental degradation linked to energy use. Understanding how New Quality Productive Forces (NQPF) interact with energy efficiency, along with the mechanisms driving this relationship, is essential for economic transformation and long-term sustainability. This study establishes an evaluation framework for NQPF, integrating technological, green, and digital dimensions. We apply fixed-effects models, the spatial Durbin model (SDM), a moderation model, and a threshold model to analyze the influence of NQPF on Green Total Factor Energy Efficiency (GTFEE) and its spatial implications. This underscores the necessity of distinguishing it from traditional productivity frameworks and adopting a new analytical perspective. Furthermore, by considering dimensions such as input, application, innovation capability, and market efficiency, we reveal the moderating role and heterogeneous effects of artificial intelligence (AI). The findings are as follows: The development of NQPF significantly enhances GTFEE, and the conclusion remains robust after tail reduction and endogeneity tests. NQPF has a positive spatial spillover effect on GTFEE; that is, while improving the local GTFEE, it also improves neighboring regions GTFEE. The advancement of AI significantly strengthens the positive impact of NQPF on GTFEE. AI exhibits a significant U-shaped threshold effect: as AI levels increase, its moderating effect transitions from suppression to facilitation, with marginal benefits gradually increasing over time. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

19 pages, 5488 KiB  
Article
Treatment of Recycled Metallurgical By-Products for the Recovery of Fe and Zn Through a Plasma Reactor and RecoDust
by Wolfgang Reiter, Loredana Di Sante, Vincenzo Pepe, Marta Guzzon and Klaus Doschek-Held
Metals 2025, 15(8), 867; https://doi.org/10.3390/met15080867 (registering DOI) - 1 Aug 2025
Abstract
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is [...] Read more.
The 1.9 billion metric tons of steel globally manufactured in 2023 justify the steel industry’s pivotal role in modern society’s growth. Considering the rapid development of countries that have not fully taken part in the global market, such as Africa, steel production is expected to increase in the next decade. However, the environmental burden associated with steel manufacturing must be mitigated to achieve sustainable production, which would align with the European Green Deal pathway. Such a burden is associated both with the GHG emissions and with the solid residues arising from steel manufacturing, considering both the integrated and electrical routes. The valorisation of the main steel residues from the electrical steelmaking is the central theme of this work, referring to the steel electric manufacturing in the Dalmine case study. The investigation was carried out from two different points of view, comprising the action of a plasma electric reactor and a RecoDust unit to optimize the recovery of iron and zinc, respectively, being the two main technologies envisioned in the EU-funded research project ReMFra. This work focuses on those preliminary steps required to detect the optimal recipes to consider for such industrial units, such as thermodynamic modelling, testing the mechanical properties of the briquettes produced, and the smelting trials carried out at pilot scale. However, tests for the usability of the dusty feedstock for RecoDust are carried out, and, with the results, some recommendations for pretreatment can be made. The outcomes show the high potential of these streams for metal and mineral recovery. Full article
25 pages, 5388 KiB  
Article
Numerical and Experimental Evaluation of Axial Load Transfer in Deep Foundations Within Stratified Cohesive Soils
by Şahin Çaglar Tuna
Buildings 2025, 15(15), 2723; https://doi.org/10.3390/buildings15152723 (registering DOI) - 1 Aug 2025
Abstract
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent [...] Read more.
This study presents a numerical and experimental evaluation of axial load transfer mechanisms in deep foundations constructed in stratified cohesive soils in İzmir, Türkiye. A full-scale bi-directional static load test equipped with strain gauges was conducted on a barrette pile to investigate depth-dependent mobilization of shaft resistance. A finite element model was developed and calibrated using field-observed load–settlement and strain data to replicate the pile–soil interaction and deformation behavior. The analysis revealed a shaft-dominated load transfer behavior, with progressive mobilization concentrated in intermediate-depth cohesive layers. Sensitivity analysis identified the undrained stiffness (Eu) as the most influential parameter governing pile settlement. A strong polynomial correlation was established between calibrated Eu values and SPT N60, offering a practical tool for preliminary design. Additionally, strain energy distribution was evaluated as a supplementary metric, enhancing the interpretation of mobilization zones beyond conventional stress-based methods. The integrated approach provides valuable insights for performance-based foundation design in layered cohesive ground, supporting the development of site-calibrated numerical models informed by full-scale testing data. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

23 pages, 10868 KiB  
Article
Quantitative Analysis and Nonlinear Response of Vegetation Dynamic to Driving Factors in Arid and Semi-Arid Regions of China
by Shihao Liu, Dazhi Yang, Xuyang Zhang and Fangtian Liu
Land 2025, 14(8), 1575; https://doi.org/10.3390/land14081575 (registering DOI) - 1 Aug 2025
Abstract
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive [...] Read more.
Vegetation dynamics are complexly influenced by multiple factors such as climate, human activities, and topography. In recent years, the frequency, intensity, and diversity of human activities have increased, placing substantial pressure on the growth of vegetation. Arid and semi-arid regions are particularly sensitive to climate change, and climate change and large-scale ecological restoration have led to significant changes in the dynamic of dryland vegetation. However, few studies have explored the nonlinear relationships between these factors and vegetation dynamic. In this study, we integrated trend analysis (using the Mann–Kendall test and Theil–Sen estimation) and machine learning algorithms (XGBoost-SHAP model) based on long time-series remote sensing data from 2001 to 2020 to quantify the nonlinear response patterns and threshold effects of bioclimatic variables, topographic features, soil attributes, and anthropogenic factors on vegetation dynamic. The results revealed the following key findings: (1) The kNDVI in the study area showed an overall significant increasing trend (p < 0.01) during the observation period, of which 26.7% of the area showed a significant increase. (2) The water content index (Bio 23, 19.6%), the change in land use (15.2%), multi-year average precipitation (pre, 15.0%), population density (13.2%), and rainfall seasonality (Bio 15, 10.9%) were the key factors driving the dynamic change of vegetation, with the combined contribution of natural factors amounting to 64.3%. (3) Among the topographic factors, altitude had a more significant effect on vegetation dynamics, with higher altitude regions less likely to experience vegetation greening. Both natural and anthropogenic factors exhibited nonlinear responses and interactive effects, contributing to the observed dynamic trends. This study provides valuable insights into the driving mechanisms behind the condition of vegetation in arid and semi-arid regions of China and, by extension, in other arid regions globally. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

22 pages, 6482 KiB  
Article
Surface Damage Detection in Hydraulic Structures from UAV Images Using Lightweight Neural Networks
by Feng Han and Chongshi Gu
Remote Sens. 2025, 17(15), 2668; https://doi.org/10.3390/rs17152668 (registering DOI) - 1 Aug 2025
Abstract
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial [...] Read more.
Timely and accurate identification of surface damage in hydraulic structures is essential for maintaining structural integrity and ensuring operational safety. Traditional manual inspections are time-consuming, labor-intensive, and prone to subjectivity, especially for large-scale or inaccessible infrastructure. Leveraging advancements in aerial imaging, unmanned aerial vehicles (UAVs) enable efficient acquisition of high-resolution visual data across expansive hydraulic environments. However, existing deep learning (DL) models often lack architectural adaptations for the visual complexities of UAV imagery, including low-texture contrast, noise interference, and irregular crack patterns. To address these challenges, this study proposes a lightweight, robust, and high-precision segmentation framework, called LFPA-EAM-Fast-SCNN, specifically designed for pixel-level damage detection in UAV-captured images of hydraulic concrete surfaces. The developed DL-based model integrates an enhanced Fast-SCNN backbone for efficient feature extraction, a Lightweight Feature Pyramid Attention (LFPA) module for multi-scale context enhancement, and an Edge Attention Module (EAM) for refined boundary localization. The experimental results on a custom UAV-based dataset show that the proposed damage detection method achieves superior performance, with a precision of 0.949, a recall of 0.892, an F1 score of 0.906, and an IoU of 87.92%, outperforming U-Net, Attention U-Net, SegNet, DeepLab v3+, I-ST-UNet, and SegFormer. Additionally, it reaches a real-time inference speed of 56.31 FPS, significantly surpassing other models. The experimental results demonstrate the proposed framework’s strong generalization capability and robustness under varying noise levels and damage scenarios, underscoring its suitability for scalable, automated surface damage assessment in UAV-based remote sensing of civil infrastructure. Full article
Show Figures

Figure 1

21 pages, 4169 KiB  
Article
An Anisotropic Failure Characteristic- and Damage-Coupled Constitutive Model
by Ruiqing Chen, Jieyu Dai, Shuning Gu, Lang Yang, Laohu Long and Jundong Wang
Modelling 2025, 6(3), 75; https://doi.org/10.3390/modelling6030075 (registering DOI) - 1 Aug 2025
Abstract
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage [...] Read more.
This study proposes a coupled constitutive model that captures the anisotropic failure characteristics and damage evolution of nickel-based single-crystal (SX) superalloys under various temperature conditions. The model accounts for both creep rate and material damage evolution, enabling accurate prediction of the typical three-stage creep curves, macroscopic fracture morphologies, and microstructural features under uniaxial tensile creep for specimens with different crystallographic orientations. Creep behavior of SX superalloys was simulated under multiple orientations and various temperature-stress conditions using the proposed model. The resulting creep curves aligned well with experimental observations, thereby validating the model’s feasibility and accuracy. Furthermore, a finite element model of cylindrical specimens was established, and simulations of the macroscopic fracture morphology were performed using a user-defined material subroutine. By integrating the rafting theory governed by interfacial energy density, the model successfully predicts the rafting morphology of the microstructure at the fracture surface for different crystallographic orientations. The proposed model maintains low programming complexity and computational cost while effectively predicting the creep life and deformation behavior of anisotropic materials. The model accurately captures the three-stage creep deformation behavior of SX specimens and provides reliable predictions of stress fields and microstructural changes at critical cross-sections. The model demonstrates high accuracy in life prediction, with all predicted results falling within a ±1.5× error band and an average error of 14.6%. Full article
Show Figures

Graphical abstract

23 pages, 3467 KiB  
Article
Resampling Multi-Resolution Signals Using the Bag of Functions Framework: Addressing Variable Sampling Rates in Time Series Data
by David Orlando Salazar Torres, Diyar Altinses and Andreas Schwung
Sensors 2025, 25(15), 4759; https://doi.org/10.3390/s25154759 (registering DOI) - 1 Aug 2025
Abstract
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals [...] Read more.
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals with differing resolutions. Unlike traditional methods that require uniform sampling frequencies, the BoF framework employs a flexible encoding approach, allowing for the integration of multi-resolution time series. Through a series of experiments, we demonstrate that the BoF framework ensures the precise reconstruction of the original data while enhancing resampling capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling rates and heterogeneous acquisition systems, making it a valuable tool for applications in fields such as finance, healthcare, industrial monitoring, IoT networks, and sensor networks. Full article
(This article belongs to the Section Intelligent Sensors)
22 pages, 5209 KiB  
Article
Analytical Inertia Identification of Doubly Fed Wind Farm with Limited Control Information Based on Symbolic Regression
by Mengxuan Shi, Yang Li, Xingyu Shi, Dejun Shao, Mujie Zhang, Duange Guo and Yijia Cao
Appl. Sci. 2025, 15(15), 8578; https://doi.org/10.3390/app15158578 (registering DOI) - 1 Aug 2025
Abstract
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia [...] Read more.
The integration of large-scale wind power clusters significantly reduces the inertia level of the power system, increasing the risk of frequency instability. Accurately assessing the equivalent virtual inertia of wind farms is critical for grid stability. Addressing the dual bottlenecks in existing inertia assessment methods, where physics-based modeling requires full control transparency and data-driven approaches lack interpretability for inertia response analysis, thus failing to reconcile commercial confidentiality constraints with analytical needs, this paper proposes a symbolic regression framework for inertia evaluation in doubly fed wind farms with limited control information constraints. First, a dynamic model for the inertia response of DFIG wind farms is established, and a mathematical expression for the equivalent virtual inertia time constant under different control strategies is derived. Based on this, a nonlinear function library reflecting frequency-active power dynamic is constructed, and a symbolic regression model representing the system’s inertia response characteristics is established by correlating operational data. Then, sparse relaxation optimization is applied to identify unknown parameters, allowing for the quantification of the wind farm’s equivalent virtual inertia. Finally, the effectiveness of the proposed method is validated in an IEEE three-machine nine-bus system containing a doubly fed wind power cluster. Case studies show that the proposed method can fully utilize prior model knowledge and operational data to accurately assess the system’s inertia level with low computational complexity. Full article
Back to TopTop