Ventilation Modeling of a Hen House with Outdoor Access
Simple Summary
Abstract
1. Introduction
2. Method and Materials
2.1. Penn State Poultry Education and Research Center
2.2. Ventilation Scenarios and Boundary Conditions
2.3. Computational Fluid Dynamics Modeling of the Ventilation
2.4. Modeling of Pen
3. Results and Discussion
3.1. PERC Research Room Model Geometry and Mesh
3.2. Simulation Results and Validation
3.3. The Effect of Adding Outdoor Access Without Adding Additional Airflow (Plenum Inlets)
3.4. Comparisons with Other Computational Fluid Dynamics Studies of Poultry House
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cook, M.J.; Robinson, D.; Lomas, K.J.; Bowman, N.T.; Eppel, H. Passive Downdraught Evaporative Cooling: II. Airflow Modelling. Indoor Built Environ. 2000, 9, 325–334. [Google Scholar] [CrossRef]
- Li, Y.; Nielsen, P.V. CFD and Ventilation Research. Indoor Air 2011, 21, 442–453. [Google Scholar] [CrossRef]
- Valenti, F.; Porto, S.M.C.; Tomasello, N.; Arcidiacono, C. Enhancing Heat Treatment Efficacy for Insect Pest Control: A Case Study of a CFD Application to Improve the Design and Structure of a Flour Mill. Buildings 2018, 8, 48. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Guijarro, E.; Balasch, S.; Torres, A.G. Application of Computational Fluid Dynamics to the Prediction of Airflow in a Mechanically Ventilated Commercial Poultry Building. Biosyst. Eng. 2008, 100, 105–116. [Google Scholar] [CrossRef]
- Seo, I.-H.; Lee, I.-B.; Moon, O.-K.; Kim, H.-T.; Hwang, H.-S.; Hong, S.-W.; Bitog, J.P.; Yoo, J.-I.; Kwon, K.-S.; Kim, Y.-H.; et al. Improvement of the Ventilation System of a Naturally Ventilated Broiler House in the Cold Season Using Computational Simulations. Biosyst. Eng. 2009, 104, 106–117. [Google Scholar] [CrossRef]
- Küçüktopcu, E.; Cemek, B.; Simsek, H.; Ni, J.-Q. Computational Fluid Dynamics Modeling of a Broiler House Microclimate in Summer and Winter. Animals 2022, 12, 867. [Google Scholar] [CrossRef]
- Küçüktopçu, E.; Cemek, B.; Simsek, H. Modeling Environmental Conditions in Poultry Production: Computational Fluid Dynamics Approach. Animals 2024, 14, 501. [Google Scholar] [CrossRef]
- Hu, C.; Li, L.; Jia, Y.; Xie, Z.; Yu, Y.; Huo, L. CFD Investigation on Combined Ventilation System for Multilayer-Caged-Laying Hen Houses. Animals 2024, 14, 2623. [Google Scholar] [CrossRef]
- Choi, L.; Daniel, K.F.; Lee, S.; Lee, C.; Park, J.; Park, J.; Hong, S. CFD Simulation of Dynamic Temperature Variations Induced by Tunnel Ventilation in a Broiler House. Animals 2024, 14, 3019. [Google Scholar] [CrossRef]
- de Sousa, A.C.; Filho, J.A.D.B.; Gurgel, J.F.; Cardoso, F.I.F.; dos Santos, J.C.S.; de Sousa, A.M.; Araujo, M.G.M.; Corrêa, W.C.; Marques, J.I.; Leite, P.G.; et al. Analysis of convective heat transfer in dairy cattle via computational fluid dynamics. J. Anim. Behav. Biometeorol. 2024, 12, 2024030. [Google Scholar] [CrossRef]
- Chen, L.; Fabian-Wheeler, E.E.; Cimbala, J.M.; Hofstetter, D.; Patterson, P. Computational Fluid Dynamics Modeling of Ventilation and Hen Environment in Cage-Free Egg Facility. Animals 2020, 10, 1067. [Google Scholar] [CrossRef]
- Chen, L.; Fabian-Wheeler, E.E.; Cimbala, J.M.; Hofstetter, D.; Patterson, P. Computational Fluid Dynamics Analysis of Alternative Ventilation Schemes in Cage-Free Poultry Housing. Animals 2021, 11, 2352. [Google Scholar] [CrossRef]
- Chen, L.; Fabian-Wheeler, E.E.; Cimbala, J.M.; Hofstetter, D.; Patterson, P. Numerical Simulation of Airborne Disease Spread in Cage-Free Hen Housing with Multiple Ventilation Options. Animals 2022, 12, 1516. [Google Scholar] [CrossRef]
- Pawar, S.R.; Cimbala, J.M.; Wheeler, E.E.; Lindberg, D.V. Analysis of Poultry House Ventilation Using Computational Fluid Dynamics. Trans. ASABE 2007, 50, 1373–1382. [Google Scholar] [CrossRef]
- Wall, H.; Tauson, R.; Elwinger, K. Pop Hole Passages and Welfare in Furnished Cages for Laying Hens. Br. Poult. Sci. 2004, 45, 20–27. [Google Scholar] [CrossRef]
- Blanes-Vidal, V.; Guijarro Estelles, E.D.; Nadimi, E.S.; Torres Salvador, A. Development and Field Test of an On-Line Computerized Instrumentation System for Air Velocity, Temperature and Differential Pressure Measurements in Poultry Houses. Span. J. Agric. Res. 2010, 8, 570–579. [Google Scholar] [CrossRef]
- Cheng, Q.; Wu, W.; Li, H.; Zhang, G.; Li, B. CFD Study of the Influence of Laying Hen Geometry, Distribution and Weight on Airflow Resistance. Comput. Electron. Agric. 2018, 144, 181–189. [Google Scholar] [CrossRef]
- Wilcox, D.C. Turbulence Modeling for CFD, 3rd ed.; DCW Industries: La Canada, CA, USA, 2006. [Google Scholar]
- Rumsey, C.L. Exploring a Method for Improving Turbulent Separated-Flow Predictions with k-ω Models; National Aeronautics and Space Administration, Langley Research Center: Hampton, VA, USA, 2009. [Google Scholar]
- Zhai, Z.J.; Zhang, Z.; Zhang, W.; Chen, Q.Y. Evaluation of Various Turbulence Models in Predicting Airflow and Turbulence in Enclosed Environments by CFD: Part 1—Summary of Prevalent Turbulence Models. HVACR Res. 2007, 13, 853–870. [Google Scholar] [CrossRef]
- ANSYS Fluent, version 17.2; ANSYS, Inc.: Cannonsburg, PA, USA, 2016.
- Okolo, P.N.; Zhao, K.; Kennedy, J.; Bennett, G.J. Numerical Assessment of Flow Control Capabilities of Three Dimensional Woven Wire Mesh Screens. Eur. J. Mech. B/Fluids 2019, 76, 259–271. [Google Scholar] [CrossRef]
- Padda, R.S. Air Flow Through Two Layered Mesh at Varying Porosity and Spacing. Bachelor’s Thesis, University of Southern Queensland, Toowoomba, QLD, Australia, 2008. [Google Scholar]
- Teitel, M. Using Computational Fluid Dynamics Simulations to Determine Pressure Drops on Woven Screens. Biosyst. Eng. 2010, 105, 172–179. [Google Scholar] [CrossRef]
- Jean-François, R.; Christophe, G. Gmsh’S Approach to Robust Mesh Generation of Surfaces with Irregular Parametrizations. In Proceedings of the International Meshing Roundtable, Buffalo, NY, USA, 14–17 October 2019. [Google Scholar] [CrossRef]
- Rong, L.; Nielsen, P.V.; Bjerg, B.; Zhang, G. Summary of Best Guidelines and Validation of CFD Modeling in Livestock Buildings to Ensure Prediction Quality. Comput. Electron. Agric. 2016, 121, 180–190. [Google Scholar] [CrossRef]
- Ma, H.; Tu, Y.; Yang, X.; Yang, Z.; Liang, C. Influence of Tunnel Ventilation on the Indoor Thermal Environment of a Poultry Building in Winter. Build. Environ. 2022, 223, 109448. [Google Scholar] [CrossRef]
- Du, L.; Yang, C.; Dominy, R.; Yang, L.; Hu, C.; Du, H.; Li, Q.; Yu, C.; Xie, L.; Jiang, X. Computational Fluid Dynamics Aided Investigation and Optimization of a Tunnel-Ventilated Poultry House in China. Comput. Electron. Agric. 2019, 159, 1–15. [Google Scholar] [CrossRef]
- Bustamante, E.; García-Diego, F.-J.; Calvet, S.; Torres, A.G.; Hospitaler, A. Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House. Sustainability 2015, 7, 2066–2085. [Google Scholar] [CrossRef]
- Hospitaler, A.; Torres, A.G.; Estellés, F.; Beltrán, P.; Calvet, S.; García-Diego, F.-J.; Bustamante, E. Exploring Ventilation Efficiency in Poultry Buildings: The Validation of Computational Fluid Dynamics (CFD) in a Cross-Mechanically Ventilated Broiler Farm. Energies 2013, 6, 2605–2623. [Google Scholar] [CrossRef]
- Albright, L.D. Environment Control for Animals and Plants; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 1990. [Google Scholar]
- Enos, H.L. Brooding and Space Requirements for Poultry—2.502. 1979. Available online: https://extension.colostate.edu/topic-areas/agriculture/brooding-and-space-requirements-for-poultry-2-502/ (accessed on 22 July 2025).
Scenario 1 | Scenario 2 | Scenario 3 | Scenario 4 | |
---|---|---|---|---|
Sidewall ventilation inlet | Closed | Open | Open | Open |
Plenum ventilation fan and inlet | Open | Open | Closed | Closed |
Outdoor access | Open | Open | Open | Closed |
Exhaust Fan | Off | On | On | On |
Acronym based on open ventilation inlets | PONE Plenum inlet Outdoor Access No Exhaust Fan | SPO Side inlet Plenum inlet Outdoor Access | SO Side inlet Outdoor Access | SNO Side inlet No Outdoor Access |
Location | Measured Velocity (m/s) | Predicted Velocity (m/s) | Prediction Error (Based on Measurement) | Measured Temperature (°C) | Predicted Temperature (°C) | Prediction Error (Based on Measurement) | |
---|---|---|---|---|---|---|---|
Scenario 1 (PONE) | Top | 0.00 | 0.02 | N/A | 22.1 | 20.4 | 7.7% |
Middle | 0.49 | 0.32 | 34.8% | 21.6 | 20.4 | 5.6% | |
bottom | 0.07 | 0.09 | −28.4% | 21.9 | 20.4 | 7.0% | |
Scenario 2 (SPO) | Top | 0.07 | 0.02 | 71.4% | 20.3 | 22.0 | 7.5% |
Middle | 0.25 | 0.28 | −12.0% | 20.3 | 21.4 | 5.2% | |
bottom | 0.27 | 0.20 | 26.7% | 20.4 | 21.6 | 6.1% | |
Scenario 3 (SO) | Top | 0.14 | 0.28 | −100.2% | 21.7 | 22.2 | 0.8% |
Middle | 0.19 | 0.30 | −59.5% | 21.1 | 21.9 | 4.5% | |
bottom | 0.17 | 0.04 | 76.5% | 21.5 | 22.4 | 3.5% | |
Scenario 4 (SNO) | Top | 0.14 | 0.19 | −35.7% | 21.7 | 22.4 | 3.3% |
Middle | 0.21 | 0.22 | −3.3% | 21.5 | 22.2 | 3.3% | |
bottom | 0.10 | 0.05 | 50.0% | 21.7 | 22.9 | 5.5% |
Scenario | Measured Pressure (Pa, Gauge Pressure) | Predicted Pressure (Pa, Gauge Pressure) | Prediction Error (Based on Measurement) |
---|---|---|---|
Scenario 1 (PONE) | 0.1 | 0.14 | 40% |
Scenario 2 (SPO) | 0.4 | 2.00 | 400% |
Scenario 3 (SO) | 0.0 | −0.06 | N/A |
Scenario 4 (SNO) | −1.0 | −1.13 | 13% |
Location | Volume Flow Rate (m3/s) | Volume Flow Rate (103 cfm) | Air-Change per Hour | |
---|---|---|---|---|
Scenario 1 (PONE) | Without pen | 30.79 | 65.2 | 132.3 |
With Pen | 7.56 | 16.0 | 32.5 | |
Scenario 2 (SPO) | Without pen | 31.73 | 67.2 | 136.3 |
With Pen | 13.01 | 27.6 | 26.8 | |
Scenario 3 (SO) | Without pen | 10.72 | 22.7 | 46.0 |
With Pen | 6.24 | 13.2 | 26.8 | |
Scenario 4 (SNO) | Without pen | 9.26 | 19.6 | 39.8 |
With Pen | 7.17 | 15.2 | 30.8 |
Study | Main Innovation | Key Findings |
---|---|---|
Present Study | Validated CFD model for hen house with outdoor access; porous-jump modeling of wire-mesh pens | Wire-mesh pens significantly impede airflow; outdoor access disrupts negative pressure systems. |
Choi et al. [9] | Dynamic temperature-variation modeling | Variable inlets trade airflow for gradient control |
Hu et al. [8] | Combined positive- and negative-pressure (PNCV) validation | Increase in mean cage-zone speed and more uniform temperature |
Küçüktopcu et al. [6] | Comparison between summer and winter conditions | Stagnant zones removed with circulation fans, resulting in a temperature drop |
Chen et al. [12] | Modeled individual-bird | Maintained bird comfort while improving air-flow distribution |
Chen et al. [11] | Disease-vector containment analysis in cage-free systems | Ventilation critical for pathogen control |
Bustamante et al. [29] | First field–CFD validation of tunnel-ventilated broiler house using multi-sensor isotemporal data | Tunnel flow delivered high bird-level speeds to relieve summer heat stress; CFD revealed dead-zone near inlets and over-speed near fans |
Hospitaler et al. [30] (2013) | Systematic CFD validation for cross-mechanically ventilated broiler house with GLM statistics | Model matched air-flow measurements; uniform air flow in core but stagnation near inlets and fans posing high heat-stress risk |
Seo et al. [5] | Optimal natural-ventilation design with diffuser and curtains | Increase in thermal uniformity with upgraded design |
Blanes-Vidal et al. [4] | Comprehensive commercial poultry house validation | Bird-level air velocities often below recommended minimums in cross-ventilated houses |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, H.; Fabian-Wheeler, E.; Hile, M.L.; Nguyen, A.; Cimbala, J.M. Ventilation Modeling of a Hen House with Outdoor Access. Animals 2025, 15, 2263. https://doi.org/10.3390/ani15152263
Yi H, Fabian-Wheeler E, Hile ML, Nguyen A, Cimbala JM. Ventilation Modeling of a Hen House with Outdoor Access. Animals. 2025; 15(15):2263. https://doi.org/10.3390/ani15152263
Chicago/Turabian StyleYi, Hojae, Eileen Fabian-Wheeler, Michael Lee Hile, Angela Nguyen, and John Michael Cimbala. 2025. "Ventilation Modeling of a Hen House with Outdoor Access" Animals 15, no. 15: 2263. https://doi.org/10.3390/ani15152263
APA StyleYi, H., Fabian-Wheeler, E., Hile, M. L., Nguyen, A., & Cimbala, J. M. (2025). Ventilation Modeling of a Hen House with Outdoor Access. Animals, 15(15), 2263. https://doi.org/10.3390/ani15152263