Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (388)

Search Parameters:
Keywords = integrated plant nutrient system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2004 KB  
Article
Evaluating the Productivity of Jambu (Acmella oleracea) with Effluent from Tambaqui Culture: An Integrated Aquaculture—Agriculture Approach for the Amazon
by Glauber David Almeida Palheta, Andreza Mayra Baena Souza de Jesus, Larissa Matos Lima, Sávio Lucas de Matos Guerreiro, Nuno Filipe Alves Correia de Melo, Ronald Kennedy Luz, Fábio Carneiro Sterzelecki and Jessivaldo Rodrigues Galvão
Agriculture 2025, 15(22), 2332; https://doi.org/10.3390/agriculture15222332 - 9 Nov 2025
Viewed by 263
Abstract
The global demand for sustainable food systems requires innovative strategies that reconcile productivity with environmental stewardship, particularly in biodiversity-rich regions such as the Amazon. This study evaluated the cultivation of Acmella oleracea (jambu) using effluent from Colossoma macropomum (tambaqui) aquaculture as a partial [...] Read more.
The global demand for sustainable food systems requires innovative strategies that reconcile productivity with environmental stewardship, particularly in biodiversity-rich regions such as the Amazon. This study evaluated the cultivation of Acmella oleracea (jambu) using effluent from Colossoma macropomum (tambaqui) aquaculture as a partial substitute for chemical fertilizer. Five treatments were tested under greenhouse conditions: 100% fertilizer, 75% fertilizer, 50% fertilizer, 25% chemical, and 0% fertilizer. Significant treatment effects were observed for leaf number, plant height, stem diameter, and shoot biomass, while root biomass showed no differences. Treatments with 100%, 75%, and 50% fertilizer exhibited statistically similar performance across several growth parameters, indicating that up to 50% of the chemical fertilizer can be replaced by aquaculture effluent without significant yield reduction. Treatments with 50% fertilizer and 0% fertilizer showed reduced growth and higher tissue accumulation of nitrate and ammonium, reflecting nutritional imbalances. In parallel, tambaqui showed 100% survival and satisfactory growth, confirming the stability of the integrated system. These results highlight that, although exclusive use of effluent is insufficient to match chemical fertilizer, partial substitution represents a viable strategy to reduce input costs and recycle nutrients, reinforcing the bioeconomic potential of aqua-culture–agriculture integration in the Amazon. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Graphical abstract

17 pages, 1273 KB  
Article
Investigation of Nutrient Removal Capacity and Growth Rate of Duckweed (Lemna minor) Under Different Harvesting Protocols in Aquaponics
by Péter István Molnár, Benedek Csaba Bényi, Péter Bársony, János Posta and Milán Fehér
Water 2025, 17(22), 3203; https://doi.org/10.3390/w17223203 - 9 Nov 2025
Viewed by 317
Abstract
In aquaculture systems, a high proportion of nutrients end up in the water as a by-product of metabolic processes. These must be neutralized through filtration, but to increase efficiency, the integration of some aquatic plants is advisable. Through the nutrient uptake capacity of [...] Read more.
In aquaculture systems, a high proportion of nutrients end up in the water as a by-product of metabolic processes. These must be neutralized through filtration, but to increase efficiency, the integration of some aquatic plants is advisable. Through the nutrient uptake capacity of these plants, the environmental impact of aquaculture systems can be decreased, so they become more sustainable. In this experiment, common duckweed (Lemna minor) was used under different harvesting protocols (control, and 25% and 50% of surface area harvested) to examine the nutrient uptake capacity of the plant and the effects on fish (common carp—Cyprinus carpio) production parameters. It can be concluded that the treatments used did not have a significant effect on fish production parameters. However regular duckweed harvesting had a positive effect on the plant’s biomass production and daily growth rate. By the end of the experimental period, the harvested groups had accumulated more biomass than the control group, though there was no difference between the 25% and 50% harvest rates. In our experiment, the control group achieved a yield of 17.9 t/ha/year, while the regularly harvested (25% and 50%) treatments achieved yields of 23.4–24 t/ha/year (based on extrapolated data). Regular harvesting of duckweed resulted in lower ammonia levels, as the free water surface available to the plants after harvesting allowed for more intensive growth, enabling them to absorb more organic matter. The dynamics of nitrite, nitrate and orthophosphate concentrations are primarily determined by the internal biochemical processes of the system and temporal development, while treatments such as duckweed harvesting had no direct effect on these parameters. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

18 pages, 2690 KB  
Article
Precision Fertilization Strategies Modulate Growth, Physiological Performance, and Soil–Plant Nutrient Dynamics in Sabal palmetto
by Amir Ali Khoddamzadeh, Bárbara Nogueira Souza Costa and Milagros Ninoska Munoz-Salas
Soil Syst. 2025, 9(4), 121; https://doi.org/10.3390/soilsystems9040121 - 6 Nov 2025
Viewed by 284
Abstract
Optimizing fertilizer management is essential for reducing salinity-related risks and improving nutrient efficiency in ornamental plant production. Fertilization enhances plant performance; however, excessive nutrient inputs can disrupt substrate chemistry, elevate salinity, and promote nitrogen leaching—particularly in containerized systems with limited rooting volume. This [...] Read more.
Optimizing fertilizer management is essential for reducing salinity-related risks and improving nutrient efficiency in ornamental plant production. Fertilization enhances plant performance; however, excessive nutrient inputs can disrupt substrate chemistry, elevate salinity, and promote nitrogen leaching—particularly in containerized systems with limited rooting volume. This study evaluated the growth, physiological performance, and soil–plant nutrient dynamics of Sabal palmetto (cabbage palm) cultivated under six fertilization regimes over 180 days in a subtropical shade-house environment. Treatments ranged from a single baseline application of 15 g per plant (T0) to a cumulative 75 g (T5) using granular slow-release fertilizer. Morphological traits (plant height: 26–70 cm; leaf number: 4–18) and physiological indices (atLEAF+: 34.3–66.4; NDVI: 0.26–0.77) were monitored every 30 days. Substrate nitrogen and carbon concentrations increased from 0.57% and 41.78% at baseline to 1.24% and 42.94% at 180 days, while foliar nitrogen ranged from 1.46% to 2.57%. Fertilization significantly influenced all parameters (p < 0.05). Higher fertilization levels elevated electrical conductivity, salinity, and nitrogen leaching, with principal component analysis revealing strong positive associations among total nitrogen, electrical conductivity, and salinity. Moderate fertilization (T2 = 45 g) maintained favorable substrate chemistry, high foliar nitrogen, and balanced canopy growth with minimal nutrient losses. Sensor-based chlorophyll indices (atLEAF+ and NDVI) correlated strongly (r = 0.71, p < 0.001), confirming their reliability as non-destructive diagnostics for nitrogen management. These findings demonstrate that integrating optical monitoring with adaptive fertilization mitigates substrate salinization, sustains ornamental quality, and promotes the sustainable cultivation of Sabal palmetto in urban horticultural systems. Full article
Show Figures

Graphical abstract

18 pages, 1625 KB  
Review
Photosynthetic Responses of Forests to Elevated CO2: A Cross-Scale Constraint Framework and a Roadmap for a Multi-Stressor World
by Nan Xu, Tiane Wang, Yuan Wang, Juexian Dong and Wenhui Bao
Biology 2025, 14(11), 1534; https://doi.org/10.3390/biology14111534 - 1 Nov 2025
Viewed by 302
Abstract
Rising atmospheric CO2 is expected to fertilize forest photosynthesis; yet, ecosystem-scale observations often reveal muted responses, creating a critical knowledge gap in global climate projections. In this review, we explore this paradox by moving beyond the traditional ‘CO2 fertilization’ paradigm. We [...] Read more.
Rising atmospheric CO2 is expected to fertilize forest photosynthesis; yet, ecosystem-scale observations often reveal muted responses, creating a critical knowledge gap in global climate projections. In this review, we explore this paradox by moving beyond the traditional ‘CO2 fertilization’ paradigm. We propose an integrated framework that positions elevated CO2 as a complex modulator whose net effect is determined by a hierarchy of cross-scale constraints. At the plant level, photosynthetic acclimation acts as a universal first brake on the initial biochemical potential. At the ecosystem level, nutrient availability—primarily nitrogen in temperate/boreal systems and phosphorus in the tropics—emerges as the dominant bottleneck limiting long-term productivity gains. Furthermore, interactions with the water cycle, such as increased water-use efficiency, create state-dependent dynamic responses. By synthesizing evidence from pivotal Free-Air CO2 Enrichment (FACE) experiments, we systematically evaluate these constraining factors. We conclude that accurately predicting the future of the forest carbon sink necessitates a paradigm shift: from single-factor analysis to multi-stressor approaches, and from ecosystem-scale observations to an integrated understanding that links these phenomena to their underlying molecular and genetic mechanisms. This review provides a roadmap for future research and informs more realistic strategies for forest management and climate mitigation in a high-CO2 world. Full article
(This article belongs to the Special Issue Adaptation Mechanisms of Forest Trees to Abiotic Stress)
Show Figures

Figure 1

24 pages, 1629 KB  
Review
The Role of Omics Technology in Evaluating Plastic Pollution’s Effects on Plants: A Comprehensive Review
by Irene Dini, Roberto Mancusi and Margherita-Gabriella De Biasi
Int. J. Mol. Sci. 2025, 26(21), 10646; https://doi.org/10.3390/ijms262110646 - 31 Oct 2025
Viewed by 260
Abstract
Micro and nano-plastics pose a significant threat to the global environment, affecting agricultural systems, food security, and human health. Some studies indicate that microplastics can induce physiological damage in plants, including oxidative stress, reduced germination, stunted biomass growth, and impaired photosynthesis. The extent [...] Read more.
Micro and nano-plastics pose a significant threat to the global environment, affecting agricultural systems, food security, and human health. Some studies indicate that microplastics can induce physiological damage in plants, including oxidative stress, reduced germination, stunted biomass growth, and impaired photosynthesis. The extent of the damage varies depending on the type of microplastics, their size, and concentration. Moreover, micro- and nano-plastics can disturb the delicate balance of the soil microbiome. Microbial communities play a significant role in the health and functioning of ecosystems by facilitating nutrient turnover, breaking down organic matter, preserving soil integrity, and controlling diseases caused by soil-dwelling pathogens. This review highlights the role of omics technologies in elucidating the molecular mechanisms underlying plant responses to micro- and nanoplastics. The findings can enhance our comprehension of how micro- and nanoplastics affect agricultural systems when they contaminate soil. Full article
(This article belongs to the Special Issue Plant Omics: Sensing, Signaling, Regulation and Homeostasis)
Show Figures

Figure 1

38 pages, 3011 KB  
Review
Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture
by Younes Rezaee Danesh
Sensors 2025, 25(21), 6631; https://doi.org/10.3390/s25216631 - 29 Oct 2025
Viewed by 1037
Abstract
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve [...] Read more.
The integration of beneficial microorganisms with sensor technologies represents a transformative advancement toward sustainable smart agriculture. This review synthesizes recent progress in combining microbial bioinoculants with sensor-based monitoring systems to enhance crop productivity, resource-use efficiency, and environmental resilience. Beneficial bacteria and fungi improve nutrient cycling, stress tolerance, and soil fertility thereby reducing the reliance on chemical fertilizers and pesticides. In parallel, sensor networks—including soil moisture, nutrient, environmental, and remote-sensing platforms—enable real-time, data-driven management of agroecosystems. Integrated microbe–sensor approaches have demonstrated 10–25% yield increases and up to 30% reductions in agrochemical inputs under optimized field conditions. We propose an integrative Microbe–Sensor Closed Loop (MSCL) framework in which microbial activity and sensor feedback interact dynamically to optimize inputs, monitor plant–soil interactions, and sustain productivity. Key applications include precision fertilization, stress diagnostics, and early detection of nutrient or pathogen imbalances. The review also highlights barriers to large-scale adoption, such as variable field performance of inoculants, high sensor costs, and limited interoperability of data systems. Addressing these challenges through standardization, cross-disciplinary collaboration, and farmer training will accelerate the transition toward climate-smart, self-regulating agricultural systems. Collectively, the integration of biological and technological innovations provides a clear pathway toward resilient, resource-efficient, and ecologically sound food production. Full article
Show Figures

Figure 1

16 pages, 2814 KB  
Article
Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent
by Amarilys Macari de Giz, Marcos Rodrigues de Oliveira Junior, Tamara Maria Gomes, Ângela Silviane Moura Cunha, Juliana de Fátima Vizú and Fabrício Rossi
Agriculture 2025, 15(21), 2245; https://doi.org/10.3390/agriculture15212245 - 28 Oct 2025
Viewed by 252
Abstract
The slaughterhouse-treated effluent, enriched with nitrogen, phosphorus, and organic matter, presents a promising alternative for water and nutrient reuse in irrigated crop systems. This study assessed the chemical composition of the effluent, nutrient dynamics in the soil, and agronomic performance of soybean ( [...] Read more.
The slaughterhouse-treated effluent, enriched with nitrogen, phosphorus, and organic matter, presents a promising alternative for water and nutrient reuse in irrigated crop systems. This study assessed the chemical composition of the effluent, nutrient dynamics in the soil, and agronomic performance of soybean (Glycine max (L.) Merr) and sorghum (Sorghum bicolor (L.) Moench) under fertigation. A randomized block design was used, with five treatments (tap water—control—and four effluent levels: 25%, 50%, 75%, and 100%) applied to two crop species, with four replications. The effluent exhibited elevated concentrations of ammoniacal nitrogen (43.9 ± 18.7 mg L−1), and potassium (13.1 ± 3.8 mg L−1), confirming its potential as a nutrient source. No significant differences were observed in soybean plant height across treatments, whereas early-stage sorghum growth showed only slight variation. Irrigation with treated effluent successfully replaced 100% of tap water in both soybean and sorghum, with no significant differences in productivity across concentrations. These results demonstrate the agronomic feasibility of using treated effluent as a substitute for tap water and synthetic fertilizers. Moreover, they highlight its potential as a sustainable input for fertigation, contributing to resource efficiency and promoting more integrated and environmentally conscious agricultural practices. Full article
Show Figures

Figure 1

19 pages, 837 KB  
Review
Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions
by Afeez Adesina Adedayo and Mary Tomi Olorunkosebi
Biology 2025, 14(11), 1505; https://doi.org/10.3390/biology14111505 - 28 Oct 2025
Viewed by 469
Abstract
The intricate connections between plants and the microbial populations that surround them are crucial for plant development and resilience, but little is known about the evolutionary processes influencing these partnerships. Less is known about how pathogenic and beneficial microbes coevolve with their plant [...] Read more.
The intricate connections between plants and the microbial populations that surround them are crucial for plant development and resilience, but little is known about the evolutionary processes influencing these partnerships. Less is known about how pathogenic and beneficial microbes coevolve with their plant hosts over ecological and evolutionary timeframes, despite the fact that several studies identify rhizosphere and endophytic microbes that support nutrient acquisition, disease resistance, and stress tolerance. Using molecular, ecological, and evolutionary investigations from soil, rhizosphere, and endosphere habitats, this review summarizes current findings on microbial coevolution in plant–microbe systems. We look at the endosymbiotic processes that underlie the development of organelles, the mechanisms of mutualism and antagonism, and the eco-evolutionary feedbacks that affect plant health and agricultural output. The inadequate comprehension of intraspecific microbial diversity, the application of laboratory coevolution experiments to field settings, and the long-term effects of climate change on the evolutionary dynamics of plants and microbiomes are some of the major knowledge gaps. When pathogenic and beneficial microbes apply selective pressures to one another and their common host, coevolution takes place. This results in mutual genetic and physiological adaptations, such as modifications to host immunity, microbial virulence, or competitive tactics, which influence the way the two types interact over time. We conclude that understanding plants as holobiont-integrated units of hosts and their microbiomes offers fresh chances to develop microbiome-based approaches to sustainable agriculture, such as coevolutionary breeding programs, precision biofertilizers, and resilient cropping systems. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

19 pages, 8658 KB  
Article
An Integrated Strategy of Nitrogen Reduction, Microbial Amendment, and Straw Incorporation Mitigates Soil Degradation and Enhances Cucumber Yield in Northern Chinese Greenhouses
by Yang Yang, Runze Guo, Xin Fu, Tianjie Sun, Yanqun Wang and Zhengping Peng
Agriculture 2025, 15(21), 2231; https://doi.org/10.3390/agriculture15212231 - 25 Oct 2025
Viewed by 441
Abstract
Facility agriculture is essential for modernizing the production of horticultural plants, while long-standing over-fertilization and improper tillage in some vegetable facilities in northern China have resulted in reduced soil quality, increased greenhouse gas (GHG) emissions, and diminished vegetable yields and quality. This study [...] Read more.
Facility agriculture is essential for modernizing the production of horticultural plants, while long-standing over-fertilization and improper tillage in some vegetable facilities in northern China have resulted in reduced soil quality, increased greenhouse gas (GHG) emissions, and diminished vegetable yields and quality. This study systematically analyzed the deteriorating health of typical cucumber facility soils in Hebei Province, China, induced by long-term over-fertilization. Based on field surveys, we explored dynamic changes in soil physicochemical properties across different durations of over-fertilization. Subsequently, a series of field trials were conducted to assess whether reducing nitrogen application, either alone or when combined with microbial agents, could ameliorate soil properties, reduce greenhouse gas emissions, and enhance cucumber productivity. The initial field assessment revealed severe topsoil salt and nutrient accumulation, with water-soluble salt content in 5-year-old greenhouses from Yongqing soaring to 3.82 g·kg−1, nearly eight times the level found in 1-year-old plots. Field experiments demonstrated that a 20% reduction in nitrogen application from the conventional rate of 900 kg·hm−2 effectively mitigated salt accumulation, improved the structure of the microbial community, and maintained cucumber yield at 66,914 kg·hm−2, an output comparable to conventional practices. More notably, integrating this 20% nitrogen reduction with an inoculation of Bacillus megaterium reduced the overall global warming potential by 26.7% and simultaneously increased cucumber yield to 72,747 kg·hm−2. The most comprehensive strategy combined deep tillage, soybean straw incorporation, and B. megaterium application under reduced nitrogen, which boosted nitrogen use efficiency by 13.7% and achieved the highest yield among all treatments. In conclusion, our findings demonstrate that a combined approach of nitrogen reduction, microbial amendment, and straw application offers an effective strategy to restore soil health, enhance crop productivity, and mitigate environmental impacts in protective vegetable production systems. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

13 pages, 296 KB  
Review
Technological Innovations in Pasture Fertilization in Brazil—Pathways to Sustainability and High Productivity
by Wagner Sousa Alves, Albert José dos Anjos, Danielle Nascimento Coutinho, Paulo Fortes Neto, Tamara Chagas da Silveira and Karina Guimarães Ribeiro
Grasses 2025, 4(4), 43; https://doi.org/10.3390/grasses4040043 - 25 Oct 2025
Viewed by 348
Abstract
Although pastures cover nearly half of Brazil’s agricultural land and form the backbone of national livestock production, they have historically received limited attention regarding management and fertilization, resulting in widespread degradation. Sustainable intensification of these pasture-based systems is therefore essential to meet growing [...] Read more.
Although pastures cover nearly half of Brazil’s agricultural land and form the backbone of national livestock production, they have historically received limited attention regarding management and fertilization, resulting in widespread degradation. Sustainable intensification of these pasture-based systems is therefore essential to meet growing global demand for animal products while minimizing environmental impacts. This review highlights recent technological innovations in pasture fertilization in Brazil, with a particular focus on alternative phosphorus sources such as natural reactive phosphates, which offer slow-release nutrients at lower costs compared to conventional fertilizers. Efforts to enhance nitrogen use efficiency through nitrification and urease inhibitors show promise in reducing nutrient losses and greenhouse gas emissions, despite current cost constraints limiting adoption. The integration of grass-legume intercropping, especially with Arachis pintoi, has been shown to enhance forage quality and system persistence when appropriately managed. Moreover, plant growth-promoting microorganisms emerge as sustainable biotechnological tools for restoring degraded pastures and boosting forage productivity without adverse environmental consequences. Properly treated agro-industrial residues also present a viable nutrient source for pastures, provided environmental regulations are strictly followed to prevent pollution. Together, these innovations offer a comprehensive framework for enhancing the productivity and sustainability of Brazilian livestock systems, highlighting the pressing need for continued research and the adoption of advanced fertilization strategies. Full article
18 pages, 2536 KB  
Article
Agronomic Potential and Limitations of Factory-Derived Tea Waste in Kale Cultivation Under Drought Stress
by Alparslan Oğuz and Hatice Filiz Boyacı
Agronomy 2025, 15(11), 2478; https://doi.org/10.3390/agronomy15112478 - 25 Oct 2025
Viewed by 411
Abstract
Plant-derived wastes are increasingly explored as organic matter sources for sustainable agriculture. Tea waste, a by-product of industrial tea processing, is often regarded as an environmental pollutant, yet its potential for agricultural use remains conditional and requires careful evaluation. This study examined the [...] Read more.
Plant-derived wastes are increasingly explored as organic matter sources for sustainable agriculture. Tea waste, a by-product of industrial tea processing, is often regarded as an environmental pollutant, yet its potential for agricultural use remains conditional and requires careful evaluation. This study examined the effects of factory-derived tea waste on kale (Brassica oleracea var. acephala) under drought stress. Plants were grown in soils amended with 5% or 10% tea waste and subjected to mild (75% field capacity) and moderate (50% field capacity) water deficits, compared with full irrigation (100% field capacity). Fifteen morphological and physiological parameters were assessed, and data were analyzed using principal component analysis (PCA) and correlation heatmaps to identify trait associations and stress markers. Drought stress significantly reduced all growth and yield traits, with stronger effects under more severe water deficit. Tea waste generally exacerbated stress impacts, increasing damage indices, reducing plant height, and lowering chlorophyll values. However, 10% tea waste under non-stress conditions increased plant and root dry weights without negatively affecting other traits, suggesting a partial nutrient contribution. In contrast, 5% tea waste aggravated stress effects, likely due to phenolic and caffeine toxicity. Overall, raw tea waste was found to be unsuitable for kale production under drought conditions. To harness its potential, bioactive compounds must be degraded or removed, and the material stabilized through composting or biochar conversion for safe integration into drought-resilient systems. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

30 pages, 5380 KB  
Article
Phytoindication Is a Useful Tool for Assessing the Response of Plant Communities to Environmental Factors
by Hanna Tutova, Olena Lisovets, Olha Kunakh and Olexander Zhukov
Diversity 2025, 17(10), 738; https://doi.org/10.3390/d17100738 - 21 Oct 2025
Viewed by 303
Abstract
Phytoindication represents a long-established ecological approach; however, its conceptual basis remains contested, particularly concerning whether it is merely a surrogate for measuring environmental factors or a distinct method for assessing biotic system responses. In this study, we analysed vegetation communities of the sandy [...] Read more.
Phytoindication represents a long-established ecological approach; however, its conceptual basis remains contested, particularly concerning whether it is merely a surrogate for measuring environmental factors or a distinct method for assessing biotic system responses. In this study, we analysed vegetation communities of the sandy terrace in the Dnipro-Oril Nature Reserve (Ukraine) using ecological indicator values, naturalness, and hemeroby indices. The Dnipro-Oril Nature Reserve provides an ideal setting for this study, as it integrates strong natural gradients of soil moisture, nutrient availability, and topography with pronounced anthropogenic influences from the surrounding industrial landscape. This allows the assessment of both natural and human-driven components of ecological variability within a single system. A dataset of 1079 relevés was collected and classified into 24 associations. Multivariate analyses were applied to reveal different aspects of vegetation–environment relationships: MANOVA was used to assess whether plant associations differed significantly in their ecological indicator profiles, CCA to identify the main gradients of species composition constrained by environmental factors, and partial CCA to isolate the specific patterns of vegetation response attributable to individual predictors while controlling for covariates. We found that the indicator values were not independent but strongly intercorrelated, reflecting integrated biotic responses rather than methodological artefacts. This was confirmed by consistent ecological interpretation of the principal component structure and the concordance between ordination patterns and vegetation classification results. Two primary gradients were identified: a natural gradient, which combines soil moisture and nutrient availability with decreasing light, temperature, continentality, and soil pH; and an anthropogenic gradient, represented by the hemeroby–naturalness axis. The interplay of these gradients offers a comprehensive explanation for vegetation structure across various spatial scales, with natural factors shaping community types and anthropogenic influences exerting broader, less specific effects due to their diffuse impact across multiple plant associations. Our findings reveal a novel conceptual perspective, supporting the view that phytoindication is a unique ecological tool for assessing the integrated response of plant communities to environmental drivers, including both natural and anthropogenic gradients, rather than a simplified or less precise substitute for instrumental measurements. Nevertheless, the use of phytoindication does not eliminate the need for instrumental measurements in situations requiring precise quantification of specific physical or chemical environmental parameters. The correlated structure of indicator values revealed in this study demonstrates that phytoindication patterns are specific to each landscape. Therefore, comparative assessments across regions or time periods should be based on the correlation patterns of indicator values rather than their absolute scores. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

15 pages, 1885 KB  
Article
Effect of Integrated Nutrient Management Through Targeted Yield Precision Model on Soil Microbes, Root Morphology, Productivity of Hybrid Castor on a Non-Calcareous Alfisol
by Abishek Ravichandran, Santhi Rangasamy, Maragatham Subramaniam, Gopalakrishnan Myleswami, Dhinesh Vadivel, Poovarasan Thangavel, Naveenkumar Arumugam, Vinothini Nedunchezhiyan and Dineshkumar Chandrasekar
Nitrogen 2025, 6(4), 95; https://doi.org/10.3390/nitrogen6040095 - 20 Oct 2025
Viewed by 257
Abstract
Precision application of fertiliser nutrients based on soil-available nutrients is a vital means of increasing castor (Ricinus communis L.) productivity. Fertiliser application based on the targeted yield model under inorganic fertilisers alone and Integrated Plant Nutrition System (IPNS) differ from the blanket [...] Read more.
Precision application of fertiliser nutrients based on soil-available nutrients is a vital means of increasing castor (Ricinus communis L.) productivity. Fertiliser application based on the targeted yield model under inorganic fertilisers alone and Integrated Plant Nutrition System (IPNS) differ from the blanket recommendation practices. Field experiments were conducted in two locations to validate the Soil Test Crop Response (STCR) targeted yield model developed for hybrid castor on non-calcareous Alfisol. The main objective was to determine the effect of inorganic fertilisers and organic manures on microbial populations, enzyme dynamics in soil, and productivity of castor. Experimental field data revealed that combined application of inorganic fertilisers along with 12.5 t ha−1 farmyard manure increased the soil microbial population and enzyme activity in the rhizosphere soils of castor. Castor responded positively with an increase in highest targeted yield level. The highest yield of 2726 and 2695 kg ha−1 were attained in the treatment T8 (STCR-IPNS −2.75 t ha−1) in both locations, and Treatment T5 (STCR-NPK alone −2.75 t ha−1) was on par with T8. The IPNS treatments showed higher percent achievement than the NPK treatments alone. Root length and dry matter production increased significantly with the application of a higher dose of fertiliser along with farmyard manure. Root dry matter production significantly contributed towards the castor seed yield. More soil-beneficial microorganisms and enzyme dynamics were observed in the IPNS treatment. Full article
Show Figures

Figure 1

22 pages, 997 KB  
Article
Rethinking Efficiency: How Increased Electricity Use Can Reduce Environmental Impacts in Controlled Hemp Cultivation—A Life Cycle Assessment (LCA) Study
by Adéla Kalkušová, Jaroslav Neumann, Nina Veselovská, Eliška Kůrková, Petr Konvalina, Reinhard W. Neugschwandtner and Jaroslav Bernas
Agronomy 2025, 15(10), 2400; https://doi.org/10.3390/agronomy15102400 - 16 Oct 2025
Viewed by 630
Abstract
This study aims to assess the environmental profile and identify environmental hotspots of indoor hemp (Cannabis sativa L.) cultivation through environmental impact analysis under four scenarios combining two nutrient solutions and two lighting intensities (540 W and 900 W). Indoor cultivation of [...] Read more.
This study aims to assess the environmental profile and identify environmental hotspots of indoor hemp (Cannabis sativa L.) cultivation through environmental impact analysis under four scenarios combining two nutrient solutions and two lighting intensities (540 W and 900 W). Indoor cultivation of industrial hemp is becoming increasingly relevant as plant production shifts to controlled environments, raising the need to evaluate its environmental implications. The assessment was conducted using the Life Cycle Assessment (LCA) methodology in accordance with the ISO 14040 and ISO 14044 standards, applying a cradle-to-gate system boundary and a functional unit of 1 kg of dried hemp inflorescence. Primary data were obtained from a controlled cultivation experiment, while secondary data were drawn from validated databases. The carbon footprint ranged from 1050 to 1610 kg CO2 eq per kilogram of dried inflorescence. Scenarios with 900 W lighting showed 30–35% lower impacts per kilogram compared to 540 W variants. Electricity production and consumption were identified as major environmental hotspots, dominating most impact categories. The study concludes that improving input–output efficiency is essential for sustainable indoor cultivation and that integrating renewable energy sources, such as photovoltaics or biomass, could further reduce environmental impacts. Full article
Show Figures

Figure 1

19 pages, 6817 KB  
Article
Community and Scientists Work Together to Identify Koalas Within the Plantations Inside the Proposed Great Koala National Park in New South Wales, Australia
by Rolf Schlagloth, Flavia Santamaria, Tim Cadman, Alexandra McEwan, Michael Danaher, Gabrielle McGinnis, Ian D. Clark, Fred Cahir, Sean Cadman and Matt Dell
Wild 2025, 2(4), 42; https://doi.org/10.3390/wild2040042 - 16 Oct 2025
Viewed by 1597
Abstract
There is a widespread belief that koala conservation measures should be focused on ending forestry operations in native forests and that plantations should be the alternative source for timber. While advocates for conservation continue to promote this strategic approach, they overlook the fact [...] Read more.
There is a widespread belief that koala conservation measures should be focused on ending forestry operations in native forests and that plantations should be the alternative source for timber. While advocates for conservation continue to promote this strategic approach, they overlook the fact that hardwood plantations also provide important habitats. Ongoing operations in both natural and planted forests continue to threaten the viability of the koala species, and populations in one of the koala’s core habitats in northern New South Wales (NSW) continue to decline. To improve conservation outcomes for this species in the wild, the Great Koala National Park (GKNP) has been proposed. While the process of establishing this park continues, ongoing forestry operations exert continuous pressure on koalas and their habitat within the proposed area of the park. This paper investigates how community stakeholders are collaborating with scientists to identify areas of high koala habitat value within the hardwood eucalypt plantations inside the proposed GKNP that are currently excluded from conservation and will be subject to ongoing timber extraction. Investigations of Tuckers Nob State Forest, which is inside the proposal area, confirmed the presence of both koalas and original forest inside the plantations which were excluded from conservation by the state government. Original trees and remnants were identified using historical aerial photography, which were orthorectified and matched against current NSW government imagery (SIX Maps); composite mosaics of photographic sheets and closeups (Quantum GIS) were imported into Google Earth Pro. Koala drone surveys, habitat ground-truthing, and on-ground scat and koala surveys of 120 ha involving various community stakeholders were conducted in December 2024 and revealed 25 koalas records, necessitating the reclassification of this area from plantation to prime koala habitat. Here, as in many other plantations in NSW, the findings of this study indicate significant numbers of original trees that are part of highly diverse nutrient-rich sites attractive to koalas. This leads to the conclusion that the exclusion of specific areas of the proposed park from conservation to allow for ongoing logging is inconsistent with recognized koala protection strategies. Hence, koala protection strategies need to consider the integrity of the reserve system in its entirety, and the whole area of the GKNP should be accorded the requisite status of a World Heritage Site. Full article
Show Figures

Figure 1

Back to TopTop