Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Place and Experimental Design
2.2. Slaughterhouse-Treated Effluent
2.3. Analyses Performed on Slaughterhouse-Treated Effluent
2.4. Irrigation Management
2.5. Cultivation of Vegetable Crops
2.6. Analysis on Vegetable Crops
2.7. Soil Chemical Characterization, Liming, and Fertilization
2.8. Soil Physicochemical Characterization
2.9. Statistical Analysis
3. Results and Discussion
3.1. Characterization of the Slaughterhouse-Treated Effluent
3.1.1. Irrigation Using Slaughterhouse-Treated Effluent
3.1.2. Nutrient Supply
3.2. Soil Analysis of the Experimental Plots
Soil Chemical Characterization
3.3. Agronomic Performance of Crops
3.3.1. Vegetative Development of Soybean and Sorghum Crops
3.3.2. Relative Chlorophyll Index
3.3.3. Yield of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent
3.4. Principal Component Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- ABIEC—Associação Brasileira das Indústrias Exportadoras de Carne. Exportações 2022. 2022. Available online: http://abiec.com.br/exportacoes/ (accessed on 10 June 2022).
- IBGE—Instituto Brasileiro de Geografia e Estatística. Pesquisa Trimestral do Abate de Animais. 2022. Available online: https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/21119-primeiros-resultados-2abate.html?=&t=series-historicas (accessed on 10 June 2022).
- Santos, J.J.N.; Sousa, I.C.S.; Bezerra, D.C.; Coimbra, V.C.S.; Chaves, N.P. Desafios de adequação à questão ambiental em frigoríficos na cidade de São Luís, Maranhão: Diagnóstico de situação. Arq. Inst. Biol. 2014, 81, 315–321. [Google Scholar] [CrossRef]
- Menegassi, L.C. Aspectos Agronômicos do Cultivo do Capim-Coastcross Irrigado com Efluente Tratado de Abatedouro. Master’s Thesis, ESALQ-USP, Piracicaba, Brazil, 2018. [Google Scholar]
- Lima, A.C.M.; Brichi, L.; Trevisan, L.R.; Leão de Souza Dominguez, A.; Nocera Santiago, G.; Gomes, T.M.; Rossi, F. Effects of Irrigation with Treated Slaughterhouse Effluent and Bradyrhizobium spp. Inoculation on Soybean Development and Productivity: Strategies for Sustainable Management. Agronomy 2025, 15, 167. [Google Scholar] [CrossRef]
- CONAMA—Conselho Nacional do Meio Ambiente. Resolução nº 430: Dispõe Sobre a Classificação de Corpos D’água e Estabelece as Condições e Padrões Para Lançamento de Efluentes, e dá Outras Providências; Diário Oficial da União: Brasília, Brazil, 2011.
- Menegassi, L.C.; Rossi, F.; Dominical, L.D.; Tommaso, G.; Montes, C.R.; Gomide, C.A.; Gomes, T.M. Reuse in the agro-industrial: Irrigation with treated slaughterhouse effluent in grass. J. Clean. Prod. 2020, 251, 119698. [Google Scholar] [CrossRef]
- Hernández-Chover, V.; Bellver-Domingo, Á.; Hernández-Sancho, F. Efficiency of wastewater treatment facilities: The influence of scale economies. J. Environ. Manag. 2018, 228, 77–84. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, T.; Li, Y.; Wang, X.; Wang, X.; Wang, Y. Physical clogging characteristics of labyrinth emitters in drip irrigation with low-quality water. Agronomy 2022, 12, 1615. [Google Scholar] [CrossRef]
- Hespanhol, I. Potencial de reuso de água no Brasil: Agricultura, indústria, municípios, recarga de aquíferos. Rev. Bras. Recur. Hídricos 2002, 7, 75–95. [Google Scholar] [CrossRef]
- Matsura, E.E.; Gomes, T.M. Água de reúso na agricultura irrigada. In Diferentes Abordagens Sobre a Agricultura no Brasil: História, Política Pública, Economia e Recurso Hídrico; Paolinelli, A., Dourado Neto, D., Mantovani, E., Eds.; ESALQ-USP: Piracicaba, Brazil, 2021; Volume 1, pp. 399–415. [Google Scholar] [CrossRef]
- Campos, F.; Araújo, K.B. Fertirrigação e o reúso de água na agricultura. InterfacEHS—Rev. Saúde Meio Ambiente Sustentabilidade 2020, 15, 29–41. [Google Scholar]
- Donatti, R.N.; Gomes, T.M.; Menegassi, L.C.; Tommaso, G.; Rossi, F. Sodium Phytoremediation by Green Manure Growing in Soil Irrigated with Wastewater of Dairy Industry. J. Braz. Assoc. Agric. Eng. 2017, 37, 665–675. [Google Scholar] [CrossRef]
- Nouri, H.; Chavoshi Borujeni, S.; Nirola, R.; Hassanli, A.; Beecham, S.; Alaghmand, S.; Saint, C.; Mulcahy, D. Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Saf. Environ. Prot. 2017, 107, 94–107. [Google Scholar] [CrossRef]
- Sá, F.V.S.; Brito, M.E.B.; Silva, L.A.; Moreira, R.C.L.; Paiva, E.P.; Souto, L.S. Correção de solo salino-sódico com condicionadores e doses de fósforo para cultivo do sorgo sacarino. Rev. Bras. Agric. Irrig. 2018, 12, 2854–2865. [Google Scholar] [CrossRef]
- EMBRAPA Milho e Sorgo–Empresa Brasileira de Pesquisa Agropecuária. Sorgo Forrageiro BRS 658. Soluções Tecnológicas; Embrapa Milho e Sorgo: Sete Lagoas, Brazil, 2015; Available online: https://www.embrapa.br/milho-e-sorgo/solucoes-tecnologicas (accessed on 10 April 2025).
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen’s climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef] [PubMed]
- Santos, H.G.; Jacomine, P.L.T.; dos Anjos, L.H.C.; de Oliveira, V.Á.; Lumbreras, J.F.; Coelho, M.R.C.; de Almeida, J.A.; Araújo Filho, J.A.; Lima, H.N.; Marques, F.A.; et al. Sistema Brasileiro de Classificação de Solos, 6th ed.; Embrapa: Brasília, Brazil, 2025; 393p, Available online: https://www.infoteca.cnptia.embrapa.br/infoteca/bitstream/doc/1176834/1/Sistema-Brasileiro-de-Classificacao-de-Solos-2025.pdf (accessed on 16 September 2025).
- Brichi, L. Soil Quality in the Black Oat and Soybean Succession System Irrigated with Treated Slaughterhouse Effluent. Ph.D. Thesis, “Luiz de Queiroz” College of Agriculture (ESALQ/USP), University of São Paulo, Piracicaba, Brazil, 2024; 156p. Available online: https://www.teses.usp.br/teses/disponiveis/11/11152/tde-05022024-170735/en.php (accessed on 9 April 2025).
- CETESB—Companhia Ambiental do Estado de São Paulo; ANA—Agência Nacional de Águas. Guia Nacional de Coleta e Preservação de Amostras de Água, Sedimento, Comunidades Aquáticas e Efluentes Líquidos; Brandão, C.J., Ed.; CETESB: São Paulo, Brazil; ANA: Brasília, Brazil, 2011; 326p.
- APHA—American Public Health Association; AWWA—American Water Works Association; WEF—Water Environment Federation. Standard Methods for the Examination of Water and Wastewater, 22nd ed.; APHA/AWWA/WEF: Washington, DC, USA, 2012. [Google Scholar]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Irrigation and Drainage Paper No. 29, Rev. 1; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1985; 218p, Available online: https://www.fao.org/3/t0234e/t0234e00.htm (accessed on 8 April 2025).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.r-project.org/ (accessed on 8 April 2025).
- OriginLab Corporation. OriginPro, version 10.15; OriginLab Corporation: Northampton, MA, USA, 2024; Available online: https://www.originlab.com (accessed on 16 September 2025).
- CETESB—Companhia Ambiental do Estado de São Paulo. Orientação Para Apresentação de Projeto Visando à Aplicação de Água de Reuso Proveniente de Estação de Tratamento de Esgoto Doméstico na Agricultura; CETESB: São Paulo, Brazil, 2006; 11p.
- Sawazaki, E.; Paziani, S.F.; Freitas, R.S.; Duarte, A.P. Sorgo Forrageiro (Sorghum spp.). In Boletim 200: Instruções Agrícolas para as Principais Culturas Econômicas, 7th ed.; Aguiar, A.T.E., Ed.; Instituto Agronômico: Recife, Brazil, 2014; pp. 370–373. 460p. [Google Scholar]
- Kolozsvári, I.; Kun, Á.; Jancsó, M.; Palágyi, A.; Bozán, C.; Gyuricza, C. Agronomic Performance of Grain Sorghum (Sorghum bicolor (L.) Moench) Cultivars under Intensive Fish Farm Effluent Irrigation. Agronomy 2022, 12, 1185. [Google Scholar] [CrossRef]









| Animal | 2020 | 2021 | 2022 | 2023 | Total | Mean |
|---|---|---|---|---|---|---|
| Poultry | 0 | 2470 | 1980 | 1000 | 5450 | 1363 |
| Swine | 562 | 647 | 398 | 669 | 2276 | 569 |
| Bovine | 131 | 248 | 23 | 145 | 547 | 137 |
| Sheep | 25 | 82 | 29 | 84 | 220 | 55 |
| Rabbit | 0 | 100 | 0 | 80 | 180 | 45 |
| Goats | 20 | 18 | 0 | 12 | 50 | 13 |
| Total | 738 | 3565 | 2430 | 1990 | 8723 | 2180 |
| Treatments | pH | P | S | K+ | Na+ | Ca2+ | Mg2+ | Al | H + Al | B | Cu | Fe | Mn | Zn |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| mg dm−3 | mmolc dm−3 | mg dm−3 | ||||||||||||
| 0% STE | 5.2 | 11.8 | 6.5 | 0.6 | 0.1 | 33.5 | 11.9 | 0.7 | 33.4 | 0.2 | 5.3 | 18.6 | 42.0 | 2.4 |
| 25% STE | 5.2 | 21.5 | 10.0 | 1.0 | 0.1 | 32.4 | 10.4 | 2.2 | 43.2 | 0.2 | 5.4 | 31.9 | 29.7 | 2.0 |
| 50% STE | 5.3 | 10.8 | 7.5 | 1.1 | 0.2 | 38.4 | 15.9 | 0.5 | 35.2 | 0.1 | 5.2 | 20.0 | 34.8 | 1.5 |
| 75% STE | 5.4 | 13.0 | 9.9 | 0.8 | 0.2 | 43.9 | 18.4 | 0.6 | 36.6 | 0.2 | 4.2 | 19.0 | 27.3 | 1.0 |
| 100% STE | 5.3 | 15.3 | 6.9 | 0.9 | 0.2 | 37.8 | 16.0 | 0.5 | 33.3 | 0.2 | 4.7 | 21.8 | 34.0 | 2.1 |
| Fertilization Stage | N * | P2O5 | K2O |
|---|---|---|---|
| kg ha−1 | |||
| Planting fertilizer | 30 | 50 | 50 |
| Top Dressing ** | 30 | - | 30 |
| Parameters | Values | Units |
|---|---|---|
| Hydrogen Potential (pH) | 7.7 ± 0.6 | |
| Electrical Conductivity (EC) | 0.6 ± 0.2 | dS m−1 |
| Chemical Oxygen Demand (Gross COD) | 267.5 ± 165.6 | mg L−1 |
| Chemical Oxygen Demand (Filtered COD) | 71.5 ± 65.8 | mg L−1 |
| Total Alkalinity | 311.8 ± 25.4 | mg L−1 |
| Ammonia Nitrogen () | 43.9 ± 18.7 | mg L−1 |
| Total Nitrogen Kjeldahl (N-NTK) | 56.4 ± 30.6 | mg L−1 |
| Phosphorus (P) | 5.5 ± 2.7 | mg L−1 |
| Potassium (K+) | 13.1 ± 3.8 | mg L−1 |
| Calcium (Ca2+) | 16.3 ± 5.0 | mg L−1 |
| Sodium (Na+) | 29.5 ± 12.1 | mg L−1 |
| Sulphur (S) | 2.2 ± 1.7 | mg L−1 |
| Iron (Fe) | 1.3 ± 1.8 | mg L−1 |
| Magnesium (Mg2+) | 1.7 ± 0.5 | mg L−1 |
| Manganese (Mn) | 0.1 ± 0.04 | mg L−1 |
| Aluminium (Al) | 0.2 ± 0.2 | mg L−1 |
| Silicon (Si) | 0.7 ± 0.1 | mg L−1 |
| % Slaughterhouse-Treated Effluent | ||||
|---|---|---|---|---|
| 25 | 50 | 75 | 100 | |
| Parameters | kg ha−1 | |||
| Nitrogen Kjeldahl (N-NTk) | 61.2 | 122.1 | 182.5 | 243.3 |
| Phosphorus (P) | 5.9 | 11.8 | 17.7 | 23.6 |
| Potassium (K+) | 14.2 | 28.3 | 42.3 | 56.4 |
| Calcium (Ca2+) | 17.7 | 35.2 | 52.6 | 70.2 |
| Sodium (Na+) | 32.0 | 63.9 | 95.4 | 127.2 |
| Magnesium (Mg2+) | 1.8 | 3.7 | 5.5 | 7.3 |
| Sulphur (S) | 2.4 | 4.7 | 7.0 | 9.3 |
| Aluminium (Al) | 0.2 | 0.4 | 0.6 | 0.8 |
| Iron (Fe) | 1.4 | 2.9 | 4.3 | 5.7 |
| Manganese (Mn) | 0.1 | 0.2 | 0.3 | 0.4 |
| Silicon (Si) | 0.8 | 1.6 | 2.4 | 3.2 |
| Treatments | pH n.s. | P(res) n.s. | S n.s. | K+(res) n.s. | Na+ | Ca2+ n.s. | Mg2+ n.s. | H + Al n.s. | M.O. n.s. | C.T. n.s. |
|---|---|---|---|---|---|---|---|---|---|---|
| CaCl2 | mg dm−3 (ppm) | mmolc.dm−3 | g kg−1 | |||||||
| Depth 0–20 cm | ||||||||||
| 0% STE | 5.3 | 17.5 | 11.8 | 1.6 | 0.01 c | 30.8 | 13.8 | 29.3 | 32.3 | 18.6 |
| 25% STE | 5.3 | 24.0 | 9.5 | 1.5 | 0.04 b | 30.5 | 14.3 | 31.8 | 62.5 | 36.3 |
| 50% STE | 5.4 | 22.0 | 10.3 | 1.5 | 0.08 a | 33.8 | 15.0 | 28.5 | 32.3 | 18.7 |
| 75% STE | 5.3 | 17.5 | 9.3 | 2.2 | 0.08 a | 33.5 | 13.3 | 29.3 | 33.0 | 19.2 |
| 100% STE | 5.1 | 19.0 | 11.8 | 2.2 | 0.10 a | 27.0 | 11.5 | 33.5 | 61.0 | 35.3 |
| C.V. (%) | 2.83 | 42.1 | 18.1 | 20.4 | 17.6 | 14.2 | 17.3 | 8.3 | 85.6 | 85.9 |
| Depth 20–40 cm | ||||||||||
| 0% STE | 5.2 | 15.0 | 15.0 | 1.4 | 0.01 c | 26.8 | 12.5 | 30.3 | 32.3 | 18.8 |
| 25% STE | 5.2 | 19.3 | 11.0 | 1.4 | 0.04 b | 28.8 | 12.8 | 33.3 | 31.5 | 18.2 |
| 50% STE | 5.3 | 19.3 | 13.0 | 1.4 | 0.08 a | 29.0 | 12.0 | 29.3 | 31.8 | 18.4 |
| 75% STE | 5.2 | 15.3 | 10.3 | 1.9 | 0.09 a | 28.8 | 12.0 | 31.5 | 32.5 | 18.9 |
| 100% STE | 5.0 | 17.3 | 12.0 | 2.1 | 0.10 a | 23.5 | 10.5 | 34.3 | 31.8 | 18.5 |
| C.V. (%) | 2.6 | 35.3 | 28.7 | 22.0 | 17.7 | 15.5 | 18.6 | 10.6 | 4.4 | 4.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Giz, A.M.d.; Oliveira Junior, M.R.d.; Gomes, T.M.; Cunha, Â.S.M.; Vizú, J.d.F.; Rossi, F. Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent. Agriculture 2025, 15, 2245. https://doi.org/10.3390/agriculture15212245
Giz AMd, Oliveira Junior MRd, Gomes TM, Cunha ÂSM, Vizú JdF, Rossi F. Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent. Agriculture. 2025; 15(21):2245. https://doi.org/10.3390/agriculture15212245
Chicago/Turabian StyleGiz, Amarilys Macari de, Marcos Rodrigues de Oliveira Junior, Tamara Maria Gomes, Ângela Silviane Moura Cunha, Juliana de Fátima Vizú, and Fabrício Rossi. 2025. "Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent" Agriculture 15, no. 21: 2245. https://doi.org/10.3390/agriculture15212245
APA StyleGiz, A. M. d., Oliveira Junior, M. R. d., Gomes, T. M., Cunha, Â. S. M., Vizú, J. d. F., & Rossi, F. (2025). Agronomic Performance of Soybean and Sorghum Irrigated with Slaughterhouse-Treated Effluent. Agriculture, 15(21), 2245. https://doi.org/10.3390/agriculture15212245

