Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture
Abstract
1. Introduction to Smart Agriculture
2. The Role of Beneficial Microbes in Agriculture
2.1. Types of Beneficial Microbes
2.2. Mechanisms of Action
2.2.1. Enhanced Resource Acquisition
2.2.2. Hormonal Regulation and Signaling
2.2.3. Pathogen Antagonism and Biocontrol
2.2.4. Tolerance to Abiotic Stress
2.3. Applications in Crop Production
3. Sensor Technologies in Agriculture
3.1. Types of Sensors Used
3.1.1. Optical Sensors
3.1.2. Electromagnetic Sensors
3.1.3. Electrochemical Sensors
3.1.4. Biosensors for Soil Microbial Activity
3.1.5. Location Sensors (Geosensors)
3.1.6. Acoustic and Airflow Sensors
3.1.7. Common Environmental Sensors in Agriculture
3.2. Data Collection and Analysis
3.2.1. Data Acquisition Through On-the-Go Sensors
3.2.2. Challenges of Interoperability and Data Standardization
3.2.3. Farm Management and Decision Support Systems
3.2.4. Data Quality, Transfer, and Integration
3.3. Integration with Farming Practices
4. Combining Microbial and Sensor Technologies
4.1. Synergistic Effects
4.1.1. Enhanced Microbial Efficacy Through Sensor Feedback
4.1.2. Reduced Dependence on Agrochemicals
4.1.3. Support for Sustainable and Climate-Resilient Agriculture
4.2. Case Studies
5. Sustainable Practices in Agriculture
5.1. Case Studies in Sustainable Agricultural Practices
5.2. Benefits of Sustainable Agriculture
6. Challenges in Implementing Smart Agriculture
6.1. Technical Barriers
6.2. Economic Barriers
6.3. Regulatory and Social Barriers
7. Future Trends in Smart Agriculture
7.1. Advancements in Microbial Research
7.2. Emerging Sensor Technologies
7.3. Policy and Regulation Changes
8. Case Studies of Successful Implementations
8.1. Global Examples
8.2. Local Innovations
9. Economic Impacts of Smart Agriculture
9.1. Cost–Benefit Analysis
9.2. Market Trends
10. Environmental Impacts of Smart Agriculture
10.1. Soil Health Improvement
10.2. Biodiversity Enhancement
11. Social Implications of Smart Agriculture
11.1. Community Engagement
11.2. Education and Training
12. Technological Innovations in Microbial Applications
12.1. Biotechnology in Microbial Enhancement
12.2. Nanotechnology Applications
13. Regulatory Framework for Smart Agriculture
13.1. Current Regulations
13.2. Future Policy Directions
14. Conclusions
Funding
Conflicts of Interest
References
- Shen, Y.; Oki, T.; Utsumi, N.; Kanae, S.; Hanasaki, N. Toward sustainable agriculture: Balancing water, food, energy, and environmental needs. Front. Sustain. Food Syst. 2020, 4, 120. [Google Scholar]
- Wolfert, S.; Ge, L.; Verdouw, C.; Bogaardt, M.J. Big Data in Smart Farming—A review. Agric. Syst. 2017, 153, 69–80. [Google Scholar] [CrossRef]
- Li, B.; Zhang, Z.; Wang, Y. Integration of IoT and microbial technologies for sustainable smart farming. J. Clean. Prod. 2022, 350, 131489. [Google Scholar]
- Wu, Y.; Yang, Z.; Liu, Y. Internet-of-Things-Based Multiple-Sensor Monitoring System for Soil Information Diagnosis Using a Smartphone. Micromachines 2023, 14, 1395. [Google Scholar] [CrossRef] [PubMed]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A review on the plant microbiome: Ecology, functions, and emerging trends in microbial application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Backer, R.; Rokem, J.S.; Ilangumaran, G.; Lamont, J.; Praslickova, D.; Ricci, E.; Smith, D.L. Plant growth-promoting rhizobacteria: Context, mechanisms of action, and roadmap to commercialization of biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1473. [Google Scholar] [CrossRef] [PubMed]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular mycorrhizal fungi as natural biofertilizers: Let’s benefit from past successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef]
- Verma, A.; Shameem, N.; Jatav, H.S.; Sathyanarayana, E.; Parray, J.A.; Poczai, P.; Sayyed, R.Z. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture. Front. Plant Sci. 2022, 13, 953836. [Google Scholar] [CrossRef]
- Vafa, Z.N.; Sohrabi, Y.; Heidari, G.; Rizwan, M.; Sayyed, R.Z. Wheat Growth and Yield Response Are Regulated by Mycorrhizae Application and Supplemental Irrigation. Chemosphere 2024, 364, 143068. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 622926. [Google Scholar] [CrossRef]
- Batista, B.D.; Singh, B.K. Realities and hopes in the application of microbial tools in agriculture. Microb. Biotechnol. 2021, 14, 1258–1268. [Google Scholar] [CrossRef]
- Singh, J.S.; Pandey, V.C.; Singh, D.P. Efficient soil microorganisms: A new dimension for sustainable agriculture and environmental development. Agric. Ecosyst. Environ. 2011, 140, 339–353. [Google Scholar] [CrossRef]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Aloo, B.N.; Makumba, B.A.; Mbega, E.R. The potential of endophytic bacteria as biofertilizers and biocontrol agents for sustainable agriculture. Microbiol. Res. 2019, 219, 26–37. [Google Scholar] [CrossRef] [PubMed]
- Mitter, B.; Pfaffenbichler, N.; Sessitsch, A. Plant–microbe partnerships in 2021: Why the future of agriculture lies in biodiversity. Curr. Opin. Biotechnol. 2021, 70, 30–36. [Google Scholar]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.C.; Charles, T.; Schloter, M. Microbiome definition re-visited: Old concepts and new challenges. Microbiome 2017, 5, 27. [Google Scholar]
- Liu, H.; Brettell, L.E.; Qiu, Z.; Singh, B.K. Microbiome-mediated stress resistance in plants. Trends Plant Sci. 2020, 25, 733–743. [Google Scholar] [CrossRef]
- Gupta, A.; Singh, U.B.; Sahu, P.K.; Paul, S.; Kumar, A.; Malviya, D.; Singh, S.; Kuppusamy, P.; Singh, P.; Paul, D.; et al. Linking Soil Microbial Diversity to Modern Agriculture Practices: A Review. Int. J. Environ. Res. Public Health 2022, 19, 3141. [Google Scholar] [CrossRef]
- Woo, S.L.; Pepe, O. Microbial consortia: Promising probiotics as plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 9, 1801. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Sharma, A.; Singh, B.; Chauhan, H. Role of microbial inoculants in sustainable crop production and stress management. Agronomy 2022, 12, 1118. [Google Scholar]
- Kumar, R.; Kumar, V.; Singh, J. Applications of nanotechnology in sustainable agriculture: Recent developments and future prospects. Environ. Nanotechnol. Monit. Manag. 2019, 11, 100212. [Google Scholar]
- Thessler, S.; Kooistra, L.; Teye, F.; Huitu, H.; Bregt, A.K. Geosensors to support crop production: Current applications and user requirements. Sensors 2011, 11, 6656–6684. [Google Scholar] [CrossRef]
- Miguel-Rojas, C.; Pérez-de-Luque, A. Nanobiosensors and nanoformulations in agriculture: New advances and challenges for sustainable agriculture. Emerg. Top. Life Sci. 2023, 7, 229–238. [Google Scholar] [CrossRef]
- Esfahani, M.; Shadmehri, A.; Soleimani, H. Electrochemical sensors for sustainable agriculture: Progress, challenges, and future perspectives. Sens. Actuators B Chem. 2021, 343, 130153. [Google Scholar]
- Zhao, X.; Li, Y.; Wang, C. Applications of electrochemical biosensors for precision agriculture: From field monitoring to smart farming. Biosens. Bioelectron. 2022, 204, 114067. [Google Scholar]
- Chaudhary, V.; Kim, J. Recent advances in nanobiosensors for agriculture and food safety applications. Biosensors 2019, 9, 20. [Google Scholar]
- Seymour, I.; Narayan, T.; Creedon, N.; Kennedy, K.; Murphy, A.; Sayers, R.; Kennedy, E.; O’Connell, I.; Rohan, J.F.; O’Riordan, A. Advanced Solid State Nano-Electrochemical Sensors and System for Agri 4.0 Applications. Sensors 2021, 21, 3149. [Google Scholar] [CrossRef] [PubMed]
- Jawad, H.M.; Nordin, R.; Gharghan, S.K.; Jawad, A.M.; Ismail, M. Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 2017, 17, 1781. [Google Scholar] [CrossRef]
- Khanna, A.; Kaur, S.; Deep, V. Internet of Things (IoT) based precision farming: Predictive analysis using artificial neural network. Comput. Electron. Agric. 2019, 157, 218–231. [Google Scholar] [CrossRef]
- Mafla-Endara, P.M.; Arellano-Caicedo, C.; Aleklett, K.; Pucetaite, M.; Ohlsson, P.; Hammer, E.C. Microfluidic chips provide visual access to in situ soil ecology. Commun. Biol. 2021, 4, 889. [Google Scholar] [CrossRef] [PubMed]
- Shafi, U.; Mumtaz, R.; García-Nieto, J.; Hassan, S.A.; Zaidi, S.A.R.; Iqbal, N. Precision agriculture techniques and practices: From considerations to applications. Sensors 2019, 19, 3796. [Google Scholar] [CrossRef]
- Kour, K.; Gupta, D.; Gupta, K.; Anand, D.; Elkamchouchi, D.H.; Pérez-Oleaga, C.M.; Ibrahim, M.; Goyal, N. Monitoring Ambient Parameters in the IoT Precision Agriculture Scenario: An Approach to Sensor Selection and Hydroponic Saffron Cultivation. Sensors 2022, 22, 8905. [Google Scholar] [CrossRef]
- Kamilaris, A.; Kartakoullis, A.; Prenafeta-Boldú, F.X. A review on the practice of big data analysis in agriculture. Comput. Electron. Agric. 2017, 143, 23–37. [Google Scholar] [CrossRef]
- Peets, S.; Mouazen, A.M.; Blackburn, K.; Kuang, B.; Wiebensohn, J. Methods and procedures for automatic collection and management of data acquired from on-the-go sensors with application to on-the-go soil sensors. Comput. Electron. Agric. 2012, 80, 80–88. [Google Scholar] [CrossRef]
- van Evert, F.K.; Gaitán-Cremaschi, D.; Fountas, S.; Kempenaar, C. Big data for weed control and crop protection. Weed Res. 2017, 57, 218–233. [Google Scholar] [CrossRef]
- Zhang, C.; Walters, D.; Kovacs, J.M.; Liu, J. Applications of low-cost multi-spectral sensors for monitoring crop growth and health. Remote Sens. 2019, 11, 681. [Google Scholar]
- Tseng, T.-L.B.; Hsieh, F.-S.; Chen, Y.H.; Lin, Y.-C. Integration of drones and IoT for precision agriculture applications. Comput. Electron. Agric. 2020, 178, 105757. [Google Scholar]
- Adetunji, A.T.; Lewu, F.B.; Mulidzi, R.; Ncube, B. The biological activities of β-glucosidase, phosphatase and urease as soil quality indicators: A review. J. Soil Sci. Plant Nutr. 2020, 20, 794–807. [Google Scholar] [CrossRef]
- Bhakta, I.; Phadikar, S.; Majumder, K. State-of-the-art technologies in precision agriculture: A systematic review. J. Sci. Food Agric. 2019, 99, 4878–4888. [Google Scholar] [CrossRef]
- Mahlein, A.-K. Plant disease detection by imaging sensors—Parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef]
- Hungria, M.; Mendes, I.C. Nitrogen fixation with soybean: The perfect symbiosis? In Biological Nitrogen Fixation; de Bruijn, W., Ed.; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1005–1019. [Google Scholar]
- Olmo, R.; Wetzels, S.U.; Armanhi, J.S.L.; Arruda, P.; Berg, G.; Cernava, T.; Cotter, P.D.; Araujo, S.C.; de Souza, R.S.C.; Ferrocino, I.; et al. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems—A Selection of Case Studies. Front. Microbiol. 2022, 13, 834622. [Google Scholar] [CrossRef]
- Mabhaudhi, T.; Chimonyo, V.G.P.; Hlahla, S.; Massawe, F.; Mayes, S.; Nhamo, L.; Modi, A.T. Prospects of orphan crops in climate change. Planta 2019, 250, 695–708. [Google Scholar] [CrossRef] [PubMed]
- Rockström, J.; Williams, J.; Daily, G.; Noble, A.; Matthews, N.; Gordon, L.; Smith, J. Sustainable intensification of agriculture for human prosperity and global sustainability. Ambio 2017, 46, 4–17. [Google Scholar] [CrossRef]
- El Bilali, H. Research on agro-food sustainability transitions: A systematic review of research themes and an analysis of research gaps. J. Clean. Prod. 2019, 221, 353–367. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef]
- Kremen, C.; Merenlender, A.M. Landscapes that work for biodiversity and people. Science 2018, 362, eaau6020. [Google Scholar] [CrossRef]
- Pretty, J.; Benton, T.G.; Bharucha, Z.P.; Dicks, L.V.; Flora, C.B.; Godfray, H.C.J.; Wratten, S. Global assessment of agricultural system redesign for sustainable intensification. Nat. Sustain. 2018, 1, 441–446. [Google Scholar] [CrossRef]
- Tittonell, P. Assessing resilience and adaptability in agroecological transitions. Agric. Syst. 2020, 184, 102862. [Google Scholar] [CrossRef]
- Timmusk, S.; Behers, L.; Muthoni, J.; Muraya, A.; Aronsson, A.-C. Perspectives and challenges of microbial application for crop improvement. Front. Plant Sci. 2017, 8, 49. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.-P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef]
- Bashir, A.; Rizwan, M.; Hussain, T.; Rehman, M.Z.U.; Iqbal, M. Challenges and prospects of using microbial inoculants in sustainable agriculture. Appl. Soil Ecol. 2020, 147, 103438. [Google Scholar]
- Rose, D.C.; Chilvers, J. Agriculture 4.0: Broadening responsible innovation in an era of smart farming. Front. Sustain. Food Syst. 2018, 2, 87. [Google Scholar] [CrossRef]
- Ferrández-Pastor, F.J.; García-Chamizo, J.M.; Nieto-Hidalgo, M.; Mora-Pascual, J.; Mora-Martínez, J. Developing Ubiquitous Sensor Network Platform Using Internet of Things: Application in Precision Agriculture. Sensors 2016, 16, 1141. [Google Scholar] [CrossRef]
- Jaiswal, A.K.; Elad, Y.; Graber, E.R.; Frenkel, O.; Kallenbach, C.M. Harnessing microbiomes for sustainable agriculture. Nat. Rev. Microbiol. 2020, 18, 701–702. [Google Scholar]
- Zhao, L.; Walkowiak, S.; Fernando, W.G.D. Artificial intelligence: A promising tool in exploring the phytomicrobiome in managing disease and promoting plant health. Plants 2023, 12, 1852. [Google Scholar] [CrossRef]
- Klerkx, L.; Rose, D. Dealing with the game-changing technologies of Agriculture 4.0: How do we manage diversity and responsibility in food system transition pathways? Glob. Food Sec. 2020, 24, 100347. [Google Scholar] [CrossRef]
- Rijswijk, K.; Klerkx, L.; Turner, J.A. Digitalisation in the New Zealand agricultural knowledge and innovation system: Initial understandings and emerging organisational responses to digital agriculture. NJAS Wagening J. Life Sci. 2021, 92, 100356. [Google Scholar] [CrossRef]
- Bronson, K. Looking through a responsible innovation lens at uneven engagements with digital farming. NJAS Wagening J. Life Sci. 2019, 90–91, 100294. [Google Scholar] [CrossRef]
- Sessitsch, A.; Mitter, B. 21st century agriculture: Integration of plant microbiomes for improved crop production and food security. Biotechnol. J. 2015, 10, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Kojo Gyamfi, E.; ElSayed, Z.; Kropczynski, J.; Awinsongya Yakubu, M.; Elsayed, N. Agricultural 4.0 leveraging on technological solutions: Study for smart farming sector. Sustainability 2024, 16, 2455. [Google Scholar]
- Sundh, I.; Del Giudice, T.; Cembalo, L. Reaping the Benefits of Microorganisms in Cropping Systems: Is the Regulatory Policy Adequate? Microorganisms 2021, 9, 1437. [Google Scholar] [CrossRef]
- Chandler, D.; Bailey, A.S.; Tatchell, G.M.; Davidson, G.; Greaves, J.; Grant, W.P. The development, regulation and use of biopesticides for integrated pest management. Philos. Trans. R. Soc. B 2015, 370, 20140255. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Liu, X.; Ruan, Y. Regulatory challenges and perspectives for microbial biopesticides. Crop Prot. 2020, 135, 105200. [Google Scholar]
- Le Mire, G.; Nguyen, M.L.; Fassotte, B.; du Jardin, P.; Verheggen, F.; Delaplace, P. Implementing biocontrol and biostimulant agents in the EU regulatory framework: Challenges and opportunities. Biocontrol Sci. Technol. 2016, 26, 651–669. [Google Scholar]
- Rezac, S.; Kok, C.R.; Heermann, M.; Hutkins, R. Fermented foods as a dietary source of live organisms. Front. Microbiol. 2018, 9, 1785. [Google Scholar] [CrossRef]
- Siegner, A.; Sowerwine, J.; Acey, C. Does urban agriculture improve food security and food sovereignty for low-income people of color? Insights from the case of Oakland, California. Food Policy 2021, 100, 102019. [Google Scholar]
- Sharma, S.B.; Sharma, R.; Gaur, R.K. Smart farming and sustainable agriculture: The role of beneficial microbes and digital technologies. Sustainability 2021, 13, 4654. [Google Scholar]
- Obade, V.P.; Gaya, C. Digital technology dilemma: On unlocking the soil quality index conundrum. Bioresour. Bioproc. 2021, 8, 6. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Soil health and climate change: An overview. J. Soil Water Conserv. 2020, 75, 123A–129A. [Google Scholar]
- Yadav, A.N.; Verma, P.; Kumar, V.; Kumar, M. Beneficial microbiomes for sustainable agriculture: Soil microbial diversity for improved crop production and soil health. Arch. Microbiol. 2021, 203, 3351–3373. [Google Scholar]
- Singh, J.; Kumar, A.; Sharma, V.; Guo, D. Soil microbial communities and their role in improving soil health through sustainable agricultural practices. Front. Microbiol. 2022, 13, 884767. [Google Scholar]
- Mishra, S.; Keswani, C.; Abhilash, P.C.; Fraceto, L.F.; Singh, H.B. Integrated approach of agri-nanotechnology: Challenges and future trends. Front. Plant Sci. 2017, 8, 471. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, R.; Ulanova, D.; Wick, L.Y.; Bode, H.B.; Garbeva, P. Microbe-driven chemical ecology: Past, present and future. ISME J. 2019, 13, 2656–2663. [Google Scholar] [CrossRef]
- Méndez, V.; Cortés, P.; Muñoz-Carpena, R. Smart sensors in agriculture for water stress detection: Recent trends and applications. Agric. Water Manag. 2020, 239, 106263. [Google Scholar]
- Rose, D.C.; Wheeler, R.; Winter, M.; Lobley, M.; Chivers, C.A. Agriculture 4.0: Making it work for people, production, and the planet. Land Use Policy 2021, 100, 104933. [Google Scholar] [CrossRef]
- Barea, J.M.; Pozo, M.J.; Azcón, R.; Azcón-Aguilar, C. Microbial co-operation in the rhizosphere. J. Exp. Bot. 2018, 69, 3261–3275. [Google Scholar] [CrossRef]
- Kah, M.; Kookana, R.S.; Gogos, A.; Bucheli, T.D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 2019, 14, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Rai, M.; Ingle, A.P.; Paralikar, P.; Anasane, N.; Santos, C.A. Emerging role of nanobiosensors in detection of plant pathogens: Current trends and future perspectives. Appl. Microbiol. Biotechnol. 2021, 105, 3617–3631. [Google Scholar]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef]
- Sekhon, B.S. Nanotechnology in agri-food production: An overview. Nanotechnol. Sci. Appl. 2014, 7, 31–53. [Google Scholar] [CrossRef]
- Ehlers, R.-U. Regulation of biological control agents and plant strengtheners in the European Union: An ongoing story. BioControl 2020, 65, 357–368. [Google Scholar]








| Microbial Group | Representative Genera/Species | Primary Mechanism(s) of Action | Agronomic Impact | Selected References | 
|---|---|---|---|---|
| Plant Growth-Promoting Rhizobacteria (PGPR) | Bacillus, Pseudomonas, Azospirillum, Burkholderia | Nitrogen fixation, phosphate solubilization, siderophore and phytohormone production (auxins, gibberellins, cytokinins), induction of systemic resistance | Improved nutrient uptake, enhanced root development, increased biomass and yield | [6,10,11,15,16] | 
| Rhizobia | Rhizobium, Bradyrhizobium, Sinorhizobium | Symbiotic nitrogen fixation in legumes; modulation of nodulation signaling | Increased nitrogen supply and legume productivity; reduced need for chemical N fertilizers | [10,15,16] | 
| Arbuscular Mycorrhizal Fungi (AMF) | Glomus, Gigaspora, Rhizophagus, Funneliformis | Enhancement of P, Zn, and water uptake; improvement of soil aggregation; stress alleviation | Greater nutrient efficiency, drought/salinity tolerance, and soil health | [7,10,11,18] | 
| Trichoderma spp. | Trichoderma harzianum, T. atroviride, T. asperellum | Antagonism via mycoparasitism, antibiosis, hydrolytic enzyme production, VOC emission | Reduced disease incidence, improved root vigor, induced systemic resistance | [6,11,18] | 
| Phosphate-Solubilizing Bacteria (PSB) | Bacillus, Pseudomonas, Penicillium, Aspergillus | Secretion of organic acids and phosphatases to mobilize insoluble P | Improved phosphorus bioavailability and fertilizer-use efficiency | [14,15,16] | 
| Endophytic Microbes | Serendipita indica, Piriformospora, Clonostachys, Burkholderia spp. | Production of growth regulators, stress-protection metabolites, and antagonistic enzymes within host tissues | Enhanced plant tolerance to abiotic stress, improved growth and defense | [10,11,18] | 
| Crop/System | Region/Country | Microbial Technology | Sensor/Monitoring Tool | Key Outcome | Validation Type | Reference | 
|---|---|---|---|---|---|---|
| Banana | Asia, East Africa | Microbial consortia + biocontrol | IoT field sensors | Reducing Disease, Increasing soil microbiota | Pilot field trials | [6] | 
| Soybean | Brazil | Bradyrhizobium, Azospirillum | Soil nutrient sensors | Reducing chemical N by 30% | Commercial application | [41] | 
| Vineyard/Wheat | Europe | Gigaspora rosea + Penicillium bilaiae | Nutrient sensors | Increasing P uptake, Increasing growth | Greenhouse + multi-site field | [41] | 
| Fruit Orchards | USA | Biopesticide + microbial control | Semios IoT network | Reducing pesticide use 25% | Commercial deployment | [40] | 
| Challenge Category | Specific Issues | Impact on Smart Agriculture | Possible Mitigation Strategies | Reference | 
|---|---|---|---|---|
| Biological | Variable microbial performance in field conditions; interaction with native microbiota | Inconsistent inoculant efficacy and crop response | Use locally adapted strains; develop microbial consortia and stable formulations | [10,50] | 
| Technical | Short shelf life, storage and transport limitations; sensor calibration issues | Reduced product reliability and monitoring accuracy | Encapsulation, freeze-drying, or carrier optimization; standardized sensor maintenance protocols | [11,53,55] | 
| Economic | High cost of equipment and inoculants | Low adoption rate among smallholders | Subsidies, cooperative equipment sharing, development of low-cost IoT platforms | [52,54] | 
| Regulatory/Institutional | Lack of product certification and extension support | Poor market confidence; limited farmer guidance | Establish regulatory frameworks; promote certification and training programs | [52] | 
| Educational/Social | Limited farmer knowledge of microbial and sensor benefits | Reluctance to adopt new technologies | Demonstration plots, participatory workshops, and digital outreach tools | [11,52,54] | 
| Region/Country | Technology/Approach | Key Microbes/Sensors Used | Outcome | Reference | 
|---|---|---|---|---|
| Brazil | Biological nitrogen fixation in soybean | Bradyrhizobium japonicum | Reduced fertilizer input, higher yield | [41] | 
| Asia (Japan/China) | Disease resistance in rice | Sphingomonas melonis | Enhanced resistance, reduced chemical fungicides | [4] | 
| EU/USA | Phosphorus solubilization via microbial biofertilizer | Penicillium bilaiae + soil sensors | Improved P efficiency and soil fertility | [40] | 
| Pakistan | Smart irrigation and energy-efficient farming for saffron | IoT sensors + beneficial microbes | Increased water- and nutrient-use efficiency, improved livelihoods | [11] | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezaee Danesh, Y. Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture. Sensors 2025, 25, 6631. https://doi.org/10.3390/s25216631
Rezaee Danesh Y. Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture. Sensors. 2025; 25(21):6631. https://doi.org/10.3390/s25216631
Chicago/Turabian StyleRezaee Danesh, Younes. 2025. "Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture" Sensors 25, no. 21: 6631. https://doi.org/10.3390/s25216631
APA StyleRezaee Danesh, Y. (2025). Harnessing Beneficial Microbes and Sensor Technologies for Sustainable Smart Agriculture. Sensors, 25(21), 6631. https://doi.org/10.3390/s25216631
 
        
 
                                                

 
       