Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions
Simple Summary
Abstract
1. Introduction
2. The Concept of Microbial Coevolution
2.1. Molecular Mechanism of Coevolution
2.2. Coevolutionary Trend of R-Gene/Effectors or Mycorrhizal Signaling Coadaptation
2.3. Ecological Evidence from Natural and Experimental Systems
3. Microbial Communities’ Co-Evolution in Plant–Microbial Interaction
3.1. Endosymbiotic Coevolution
Symbiotic Nodule Microbes and Their Coevolution with Plants
3.2. Antagonistic Coevolution in Plant–Microbe Interactions
4. Plant Holobiont Potential to Promote Sustainable Agriculture
4.1. Comparative Findings and Active Controversies
4.2. Methodological Limitations of Culturing, Metagenomics, and Inference
4.3. Experimental Design Limitations and Inference Challenges
4.4. Translation of Laboratory Evolution Field
5. Recommendations to Reduce the Knowledge Gap and Improve Inference
- Connect taxa, genes, and activities, and combine multi-omics, strain-resolved genomics, and culture;
- Determine whether kinds of interactions scale to increasingly complex systems, and use artificial communities with varying levels of complexity;
- Maintain experimental control while conducting long-term, repeatable field studies using mesocosms that provide ecological and seasonal realism;
- Quantify reciprocal fitness effects across host genotypes and settings, conduct experimental evolution and reciprocal transplant trials in soil;
- Assist the community in identifying the environmental or managerial factors that impact success, report metadata, and negative outcomes when inoculants fail.
5.1. Practical Implications and Future Direction
5.2. Disease-Resistant and Microbiome-Responsive Breeding
5.3. Climate Resilience and Stress Adaptation
5.4. Emerging Technologies Enabling These Applications
5.5. Agricultural Application and Future Direction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| UV | Ultraviolet |
| DNA | Deoxyribonucleic Acid |
| PGPR | Plant Growth-Promoting Rhizobacteria |
| PGPF | Plant Growth-Promoting Fungi |
References
- Babalola, O.O.; Adedayo, A.A.; Fadiji, A.E. Metagenomic Survey of Tomato Rhizosphere Microbiome Using the Shotgun Approach. Microbiol. Resour. Announc. 2022, 11, e01131. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O.; Prigent-Combaret, C.; Cruz, C.; Stefan, M.; Kutu, F.; Glick, B.R. The application of plant growth-promoting rhizobacteria in Solanum lycopersicum production in the agricultural system: A review. PeerJ 2022, 10, e13405. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Fadiji, A.E.; Babalola, O.O. Plant Health Status Affects the Functional Diversity of the Rhizosphere Microbiome Associated With Solanum lycopersicum. Front. Sustain. Food Syst. 2022, 6, 894312. [Google Scholar] [CrossRef]
- Babalola, O.O.; Adedayo, A.A. Endosphere microbial communities and plant nutrient acquisition toward sustainable agriculture. Emerg. Top. Life Sci. 2023, 7, 207–217. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Fadiji, A.E.; Babalola, O.O. The Effects of Plant Health Status on the Community Structure and Metabolic Pathways of Rhizosphere Microbial Communities Associated with Solanum lycopersicum. Horticulturae 2022, 8, 404. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Babalola, O.O. Fungi That Promote Plant Growth in the Rhizosphere Boost Crop Growth. J. Fungi 2023, 9, 239. [Google Scholar] [CrossRef]
- López-García, P.; Eme, L.; Moreira, D. Symbiosis in eukaryotic evolution. J. Theor. Biol. 2017, 434, 20–33. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.; Friman, V.-P. Microbial eco-evolutionary dynamics in the plant rhizosphere. Curr. Opin. Microbiol. 2022, 68, 102153. [Google Scholar] [CrossRef]
- Wang, J.; Xiong, X.; Li, P.; Wan, H.F.; Yang, Y.H. Characteristics and Influencing Factors of Rhizosphere Microbial Communities of Tuber himalayense-Corylus heterophylla Ectomycorrhizosphere. Pol. J. Microbiol. 2025, 74, 177–191. [Google Scholar] [CrossRef] [PubMed]
- Haritika; Negi, A.K. The underestimated role of understory vegetation dynamics for forest ecosystem resilience: A review. Plant Ecol. 2025, 226, 763–787. [Google Scholar] [CrossRef]
- Mesny, F.; Hacquard, S.; Thomma, B.P.H.J. Co-evolution within the plant holobiont drives host performance. EMBO Rep. 2023, 24, e57455. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Huang, L.; Zhao, L.; Zeng, Q.; Liu, X.; Sheng, Y.; Shi, L.; Wu, G.; Jiang, H.; Li, F. A critical review of mineral–microbe interaction and co-evolution: Mechanisms and applications. Natl. Sci. Rev. 2022, 9, nwac128. [Google Scholar] [CrossRef] [PubMed]
- Monclaro, A.V.; Gomes, H.A.R.; Duarte, G.C.; de Souza Moreira, L.R.; Filho, E.X.F. Unveiling the Biomass Valorization: The Microbial Diversity in Promoting a Sustainable Socio-economy. BioEnergy Res. 2024, 17, 1355–1374. [Google Scholar] [CrossRef]
- Xiao, Q.; Wang, B.; Li, Z.; Zhang, Z.; Xie, K.; Zhou, J.; Lin, K.; Geng, X.; Li, X.; Chen, J. The assembly process and co-occurrence network of soil microbial community driven by cadmium in volcanic ecosystem. Resour. Environ. Sustain. 2024, 17, 100164. [Google Scholar] [CrossRef]
- Koza, N.A.; Adedayo, A.A.; Babalola, O.O.; Kappo, A.P. Microorganisms in Plant Growth and Development: Roles in Abiotic Stress Tolerance and Secondary Metabolites Secretion. Microorganisms 2022, 10, 1528. [Google Scholar] [CrossRef]
- Adedayo, A.A. Microbial Contribution to Agricultural Development and Environmental Conservation. Am. J. Biomed. Sci. 2023, 20, 546–549. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Fadiji, A.E.; Babalola, O.O. Quantifying the Respiratory Pattern of Rhizosphere Microbial Communities in Healthy and Diseased Tomato Plants Using Carbon Substrates. J. Soil. Sci. Plant Nutr. 2023, 23, 6485–6496. [Google Scholar] [CrossRef]
- Minerdi, D.; Sabbatini, P. Exploring the Grapevine Microbiome: Insights into the Microbial Ecosystem of Grape Berries. Microorganisms 2025, 13, 438. [Google Scholar] [CrossRef]
- Liang, X.; Yang, S.; Radosevich, M.; Wang, Y.; Duan, N.; Jia, Y. Bacteriophage-driven microbial phenotypic heterogeneity: Ecological and biogeochemical importance. npj Biofilms Microbiomes 2025, 11, 82. [Google Scholar] [CrossRef]
- Sahoo, A.; Yadav, G.; Mehta, T.; Meena, M.; Swapnil, P. Omics-driven insights into plant growth-promoting microorganisms for sustainable agriculture. Discov. Sustain. 2025, 6, 659. [Google Scholar] [CrossRef]
- Liu, Q.; Xiao, Y.; Smith, S.R. The implications of host–pathogen co-evolutionary outcomes on macro-epidemics based on a combined-host strategy. Bull. Math. Biol. 2025, 87, 148. [Google Scholar] [CrossRef]
- Patyka, M.V.; Khablak, S.H.; Patyka, T.I.; Bondareva, L.M.; Dolia, M.M.; Spychak, V.M.; Lykholat, Y.V. Evolution of immune mechanisms in monocots and dicots in response to microbial pathogens and abiotic stressors. Biosyst. Divers. 2025, 33, e2531. [Google Scholar] [CrossRef]
- Morgan, A.D.; Koskella, B. 6-Coevolution of Host and Pathogen. In Genetics and Evolution of Infectious Disease; Tibayrenc, M., Ed.; Elsevier: London, UK, 2011; pp. 147–171. [Google Scholar] [CrossRef]
- Santoyo, G.; Guzmán-Guzmán, P.; Parra-Cota, F.I.; Santos-Villalobos, S.D.; Orozco-Mosqueda, M.D.; Glick, B.R. Plant Growth Stimulation by Microbial Consortia. Agronomy 2021, 11, 219. [Google Scholar] [CrossRef]
- Lü, P.; Liu, Y.; Yu, X.; Shi, C.-L.; Liu, X. The right microbe-associated molecular patterns for effective recognition by plants. Front. Microbiol. 2022, 13, 1019069. [Google Scholar] [CrossRef]
- Clay, K.; Kover, P.X. The Red Queen Hypothesis and Plant/Pathogen Interactions. Annu. Rev. Phytopathol. 1996, 34, 29–50. [Google Scholar] [CrossRef] [PubMed]
- Dimitriu, T. Evolution of horizontal transmission in antimicrobial resistance plasmids. Microbiology 2022, 168, 001214. [Google Scholar] [CrossRef] [PubMed]
- Lyu, D.; Msimbira, L.A.; Nazari, M.; Antar, M.; Pagé, A.; Shah, A.; Monjezi, N.; Zajonc, J.; Tanney, C.A.S.; Backer, R.; et al. The Coevolution of Plants and Microbes Underpins Sustainable Agriculture. Microorganisms 2021, 9, 1036. [Google Scholar] [CrossRef]
- Nuc, K.; Olejnik, P. Molecular Mechanisms Underlying Root Nodule Formation and Activity. Agronomy 2025, 15, 1552. [Google Scholar] [CrossRef]
- Chan, D.T.C.; Agarwal, V.; Baltrus, D.A.; Dillon, M.M. Unified Classification of the Type III Secreted Effectors of Bacterial Plant Pathogens to Advance Phytopathology Research. Phytopathology 2025. PHYTO-02-25-0055-FI. [Google Scholar] [CrossRef]
- Ikram, A.U.; Khan, M.S.S.; Islam, F.; Ahmed, S.; Ling, T.; Feng, F.; Sun, Z.; Chen, H.; Chen, J. All Roads Lead to Rome: Pathways to Engineering Disease Resistance in Plants. Adv. Sci. 2025, 12, 2412223. [Google Scholar] [CrossRef]
- Soteras, F.; Longo, S.; Cofré, N.; Bernaschini, M.L.; Marro, N.; Rodríguez, J.; Curá, M.B.; Peralta Alderete, R.S.; Costas, S.M.; Giaquinta, A.; et al. Phenotypic selection gradients in a tripartite plant interaction in southern South America. Proc. R. Soc. B 2025, 292, 20251182. [Google Scholar] [CrossRef]
- Zheng, Z.; Zou, K.; Lu, G.; Wang, Z.; Cui, H.; Wang, A. A Mycorrhiza-Associated Receptor-like Kinase Regulates Disease Resistance in Rice. Agronomy 2025, 15, 2298. [Google Scholar] [CrossRef]
- Kandel, P.P.; Baltrus, D.A.; Hockett, K.L. Pseudomonas can survive tailocin killing via persistence-like and heterogenous resistance mechanisms. J. Bacteriol. 2020, 202, 10-1128. [Google Scholar] [CrossRef]
- Koskella, B.; Brockhurst, M.A. Bacteria–phage coevolution as a driver of ecological and evolutionary processes in microbial communities. FEMS Microbiol. Rev. 2014, 38, 916–931. [Google Scholar] [CrossRef] [PubMed]
- Lyons, T.W.; Tino, C.J.; Fournier, G.P.; Anderson, R.E.; Leavitt, W.D.; Konhauser, K.O.; Stüeken, E.E. Co-evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 2024, 22, 572–586. [Google Scholar] [CrossRef] [PubMed]
- Kabiraj, A.; Halder, U.; Chitikineni, A.; Varshney, R.K.; Bandopadhyay, R. Insight into the genome of an arsenic loving and plant growth-promoting strain of Micrococcus luteus isolated from arsenic contaminated groundwater. Environ. Sci. Pollut. Res. 2024, 31, 39063–39076. [Google Scholar] [CrossRef]
- Castledine, M.; Padfield, D.; Schoeman, M.; Berry, A.; Buckling, A. Bacteria–phage (co)evolution is constrained in a synthetic community across multiple bacteria–phage pairs. Microbiology 2025, 171, 001577. [Google Scholar] [CrossRef]
- Adedayo, A.A.; Fadiji, A.E.; Babalola, O.O. Biochemical and molecular characterization of bacterial and fungal isolates associated with the rhizosphere of healthy and diseased Solanum lycopersicum. Int. J. Agric. Biol. 2023, 30, 281–290. [Google Scholar] [CrossRef]
- Stelkens, R. A microbial perspective on speciation. Evol. J. Linn. Soc. 2024, 3, kzae023. [Google Scholar] [CrossRef]
- Stanojković, A.; Skoupý, S.; Johannesson, H.; Dvořák, P. The global speciation continuum of the cyanobacterium Microcoleus. Nat. Commun. 2024, 15, 2122. [Google Scholar] [CrossRef]
- Lin, L.-Q.; Tembrock, L.R.; Wang, L. Prevalence and underlying mechanisms of phylosymbiosis in land plants. J. Plant Ecol. 2024, 17, rtae051. [Google Scholar] [CrossRef]
- Qiu, X.; Challagundla, L.; Senghore, M.; Hanage, W.P.; Robinson, D.A. Chapter 3-Population Structure of Pathogenic Bacteria. In Genetics and Evolution of Infectious Diseases, 3rd ed.; Tibayrenc, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 57–78. [Google Scholar] [CrossRef]
- Li, S.; Laderman, E.; Märkle, H.; Yang, Y.; Bergelson, J.; Pascual, M. Negative frequency-dependent selection contributes to modular structure of effector repertoires in Pseudomonas syringae. bioRxiv 2025. [Google Scholar] [CrossRef]
- Boyd, B.M.; James, I.; Johnson, K.P.; Weiss, R.B.; Bush, S.E.; Clayton, D.H.; Dale, C. Stochasticity, determinism, and contingency shape genome evolution of endosymbiotic bacteria. Nat. Commun. 2024, 15, 4571. [Google Scholar] [CrossRef]
- Łukasik, P.; Kolasa, M.R. With a little help from my friends: The roles of microbial symbionts in insect populations and communities. Philos. Trans. R. Soc. B Biol. Sci. 2024, 379, 20230122. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.; Havird, J.C.; Jansen, R.K. Recombination and retroprocessing in broomrapes reveal a universal roadmap for mitochondrial evolution in heterotrophic plants. bioRxiv 2025. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, S.; Jones, A.; Murray, K.; Andrew, R.L.; Schwessinger, B.; Bothwell, H.; Borevitz, J. Exploring the role of polymorphic interspecies structural variants in reproductive isolation and adaptive divergence in Eucalyptus. GigaScience 2024, 13, giae029. [Google Scholar] [CrossRef]
- Itabangi, H.; Sephton-Clark, P.C.S.; Tamayo, D.P.; Zhou, X.; Starling, G.P.; Mahamoud, Z.; Insua, I.; Probert, M.; Correia, J.; Moynihan, P.J.; et al. A bacterial endosymbiont of the fungus Rhizopus microsporus drives phagocyte evasion and opportunistic virulence. Curr. Biol. 2022, 32, 1115–1130.e1116. [Google Scholar] [CrossRef]
- Dawe, A.L.; Nuss, D.L. Hypoviruses and Chestnut Blight: Exploiting Viruses to Understand and Modulate Fungal Pathogenesis. Annu. Rev. Genet. 2001, 35, 1–29. [Google Scholar] [CrossRef]
- Harada, R.; Hirakawa, Y.; Yabuki, A.; Kim, E.; Yazaki, E.; Kamikawa, R.; Nakano, K.; Eliáš, M.; Inagaki, Y. Encyclopedia of Family A DNA Polymerases Localized in Organelles: Evolutionary Contribution of Bacteria Including the Proto-Mitochondrion. Mol. Biol. Evol. 2024, 41, msae014. [Google Scholar] [CrossRef] [PubMed]
- Stadnichuk, I.N.; Kusnetsov, V.V. Endosymbiotic Origin of Chloroplasts in Plant Cells’ Evolution. Russ. J. Plant Physiol. 2021, 68, 1–16. [Google Scholar] [CrossRef]
- Yang, X.; Liu, Z.; Zhang, Y.; Shi, X.; Wu, Z. Dinoflagellate–Bacteria Interactions: Physiology, Ecology, and Evolution. Biology 2024, 13, 579. [Google Scholar] [CrossRef]
- Fernie, A.R.; de Vries, S.; de Vries, J. Evolution of plant metabolism: The state-of-the-art. Philos. Trans. B 2024, 379, 20230347. [Google Scholar] [CrossRef]
- Glibert, P.M. Endosymbiosis and Evolution. In Phytoplankton Whispering: An Introduction to the Physiology and Ecology of Microalgae; Glibert, P.M., Ed.; Springer International Publishing: Cham, Switzerland, 2024; pp. 213–227. [Google Scholar] [CrossRef]
- Öztürk, M.; Kayaaslan, Z. Investigation of the Genetic Diversity of Erwinia amylovora Strains Originating from Pome Fruits in Turkey. Appl. Fruit. Sci. 2024, 66, 341–352. [Google Scholar] [CrossRef]
- Provorov, N.A.; Vorobyov, N.I. Interplay of Darwinian and frequency-dependent selection in the host-associated microbial populations. Theor. Popul. Biol. 2006, 70, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Zverev, A.O.; Kichko, A.A.; Pinaev, A.G.; Provorov, N.A.; Andronov, E.E. Diversity Indices of Plant Communities and Their Rhizosphere Microbiomes: An Attempt to Find the Connection. Microorganisms 2021, 9, 2339. [Google Scholar] [CrossRef]
- Kaziūnienė, J.; Gegeckas, A.; Lapinskienė, L.; Razbadauskienė, K.; Mažylytė, R.; Supronienė, S. Competitiveness and Nitrogen Fixation Efficiency Analysis of Rhizobium leguminosarum Strains in Different Field Pea (Pisum sativum L.) Genotypes. Agric. 2025, 15, 1784. [Google Scholar] [CrossRef]
- Liu, R.; Li, C.; Zhang, Y.; Liu, C.; Xue, J.; Zheng, Y. Enhanced biological nitrogen fixation and nodulation in alfalfa through the synergistic interactions between Sinorhizobium meliloti and Priestia aryabhattai. World J. Microbiol. Biotechnol. 2025, 41, 180. [Google Scholar] [CrossRef]
- Olszewski, J.; Dzienis, G.; Okorski, A.; Goś, W.; Pszczółkowska, A. Fungal Colonization of the Anatomical Parts of Soybean Seeds Supplied with Different Nitrogen Rates and Inoculated with Bradyrhizobium japonicum. Agriculture 2025, 15, 857. [Google Scholar] [CrossRef]
- Ortiz, J.; Sanhueza, C.; Romero-Munar, A.; Sierra, S.; Palma, F.; Aroca, R.; de la Peña, T.C.; López-Gómez, M.; Bascuñán-Godoy, L.; Del-Saz, N.F. Nitrogen source and availability associate to mitochondrial respiratory pathways and symbiotic function in Lotus japonicus. J. Plant Physiol. 2025, 314, 154606. [Google Scholar] [CrossRef]
- Jaiswal, S.K.; Dakora, F.D. Maximizing Photosynthesis and Plant Growth in African Legumes Through Rhizobial Partnerships: The Road Behind and Ahead. Microorganisms 2025, 13, 581. [Google Scholar] [CrossRef]
- Domeignoz-Horta, L.A.; Cappelli, S.L.; Shrestha, R.; Gerin, S.; Lohila, A.K.; Heinonsalo, J.; Nelson, D.B.; Kahmen, A.; Duan, P.; Sebag, D.; et al. Plant diversity drives positive microbial associations in the rhizosphere enhancing carbon use efficiency in agricultural soils. Nat. Commun. 2024, 15, 8065. [Google Scholar] [CrossRef]
- Anderson, J.P.; Gleason, C.A.; Foley, R.C.; Thrall, P.H.; Burdon, J.B.; Singh, K.B. Plants versus pathogens: An evolutionary arms race. Funct. Plant Biol. 2010, 37, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Gui, Y.; Li, Z.; Jiang, C.; Guo, J.; Niu, D. Induced Systemic Resistance for Improving Plant Immunity by Beneficial Microbes. Plants 2022, 11, 386. [Google Scholar] [CrossRef] [PubMed]
- Klein, M.; Stewart, J.D.; Porter, S.S.; Weedon, J.T.; Kiers, E.T. Evolution of manipulative microbial behaviors in the rhizosphere. Evol. Appl. 2022, 15, 1521–1536. [Google Scholar] [CrossRef]
- Arhin, A.; Wiegand, S.; Foriska, I.; Brown, K.; Crayne, K.; Stroscio, K.; Mohan, R. Comparative Analysis of Endophytic Curtobacterium Species Reveals Commonalities and Adaptations. Bacteria 2025, 4, 25. [Google Scholar] [CrossRef]
- Omomowo, I.O.; Adedayo, A.A.; Omomowo, O.I. Biocontrol Potential of Rhizospheric Fungi from Moringa oleifera, their Phytochemicals and Secondary Metabolite Assessment Against Spoilage Fungi of Sweet Orange (Citrus sinensis). Asian J. Appl. Sci. 2020, 8, 35–48. [Google Scholar] [CrossRef]
- Jaglan, A.B.; Vashisth, M.; Sharma, P.; Verma, R.; Virmani, N.; Bera, B.C.; Vaid, R.K.; Singh, R.K.; Anand, T. Phage Mediated Biocontrol: A Promising Green Solution for Sustainable Agriculture. Indian. J. Microbiol. 2024, 64, 318–327. [Google Scholar] [CrossRef]
- Wang, X.; Tang, Y.; Yue, X.; Wang, S.; Yang, K.; Xu, Y.; Shen, Q.; Friman, V.-P.; Wei, Z. The role of rhizosphere phages in soil health. FEMS Microbiol. Ecol. 2024, 100, fiae052. [Google Scholar] [CrossRef] [PubMed]
- Triplett, L.R.; Taerum, S.J.; Patel, R.R. Protists at the plant-bacterial interface: Impacts and prospective applications. Physiol. Mol. Plant Pathol. 2023, 125, 102011. [Google Scholar] [CrossRef]
- Cui, Y.; Kim, J.; Sun, M.; Park, M.; Nam, K.-H.; Lee, J.-W.; Lee, C.S.; Lim, A.S.; Chun, S.-J. Generalists and keystone species drive rhizosphere microbial diversity and stability in feral Brassica napus. Sci. Rep. 2025, 15, 17479. [Google Scholar] [CrossRef]
- Li, S.; Pu, L.; Wang, Z.; Liu, S.; Liang, F.; Ma, Y.; Jia, M.; Li, Z.; Ke, X.; Wu, L. Impact of the soil springtail Folsomia candida on the composition, function, and microbial network of root-associated microbes of host plant Sedum plumbizincicola. Eur. J. Soil. Biol. 2025, 126, 103748. [Google Scholar] [CrossRef]
- Jain, A.; Sarsaiya, S.; Singh, R.; Gong, Q.; Wu, Q.; Shi, J. Omics approaches in understanding the benefits of plant-microbe interactions. Front. Microbiol. 2024, 15, 1391059. [Google Scholar] [CrossRef]
- Anas, M.; Khalid, A.; Saleem, M.H.; Ali Khan, K.; Ahmed Khattak, W.; Fahad, S. Symbiotic Synergy: Unveiling Plant-Microbe Interactions in Stress Adaptation. J. Crop Health 2024, 77, 18. [Google Scholar] [CrossRef]
- Ge, A.-H.; Wang, E. Exploring the plant microbiome: A pathway to climate-smart crops. Cell 2025, 188, 1469–1485. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Xiao, R.; Tao, Y. Enhancing plant stress resilience and agricultural sustainability through rhizosphere microbiome optimization. Plant Soil 2025, 513, 1711–1723. [Google Scholar] [CrossRef]
- Mukherjee, A.; Singh, B.N.; Kaur, S.; Sharma, M.; Ferreira de Araújo, A.S.; Pereira, A.P.d.A.; Morya, R.; Puopolo, G.; Melo, V.M.M.; Verma, J.P. Unearthing the power of microbes as plant microbiome for sustainable agriculture. Microbiol. Res. 2024, 286, 127780. [Google Scholar] [CrossRef]
- Kumar, A.; Singh, A.; Kumari, N.; Kumar, D.; Yadav, D.K. Chapter 16-Diversity of various symbiotic associations between microbes and host plants. In Microbiome Drivers of Ecosystem Function; Parray, J.A., Shameem, N., Egamberdieva, D., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 367–394. [Google Scholar] [CrossRef]
- Ijaz, U.; Zhao, C.; Shabala, S.; Zhou, M. Molecular Basis of Plant–Pathogen Interactions in the Agricultural Context. Biology 2024, 13, 421. [Google Scholar] [CrossRef]
- Lahlali, R.; Ezrari, S.; Radouane, N.; Kenfaoui, J.; Esmaeel, Q.; El Hamss, H.; Belabess, Z.; Barka, E.A. Biological Control of Plant Pathogens: A Global Perspective. Microorganisms 2022, 10, 596. [Google Scholar] [CrossRef] [PubMed]
- Omomowo, I.O.; Adedayo, A.A.; Omomowo, O.; Majolagbe, O.N.; Ogundola, A.F. Preliminary study on potential edible coatings derived from Carboxyl Methylcellulose and Fungi cultured metabolites on the Shelf-life extension of sweet orange (Citrus sinensis). J. Exp. Biol. Agric. Sci. 2021, 9, 663–671. [Google Scholar] [CrossRef]
- Pathma, J.; Kennedy, R.K.; Bhushan, L.S.; Shankar, B.K.; Thakur, K. Microbial Biofertilizers and Biopesticides: Nature’s Assets Fostering Sustainable Agriculture. In Recent Developments in Microbial Technologies; Prasad, R., Kumar, V., Singh, J., Upadhyaya, C.P., Eds.; Springer Nature Singapore: Singapore, 2021; pp. 39–69. [Google Scholar] [CrossRef]
- Kemen, A.C.; Agler, M.T.; Kemen, E. Host–microbe and microbe–microbe interactions in the evolution of obligate plant parasitism. New Phytol. 2015, 206, 1207–1228. [Google Scholar] [CrossRef]
- Gorgia, P.; Tsikou, D. Tripartite Symbiosis Between Legumes, Arbuscular Mycorrhizal Fungi and Nitrogen Fixing Rhizobia: Interactions and Regulation. Plant Cell Environ. 2025, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Gao, T.; Li, Y.; Yang, N.; Xiong, W.; Liang, X.; Wang, Y. Plant-rhizosphere microbe interactions and their roles in nitrogen cycles under periodic flooding: From cooperation mechanisms to ecological responses. Crit. Rev. Environ. Sci. Technol. 2025, 55, 1358–1382. [Google Scholar] [CrossRef]
- Smith, K.F.; Pochon, X.; Melvin, S.D.; Wheeler, T.T.; Tremblay, L.A. Integration of “Omics”-Based Approaches in Environmental Risk Assessment to Establish Cause and Effect Relationships: A Review. Toxics 2025, 13, 714. [Google Scholar] [CrossRef]
- Kortright, K.E.; Chan, B.K.; Evans, B.R.; Turner, P.E. Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. J. Evol. Biol. 2022, 35, 1475–1487. [Google Scholar] [CrossRef]
- Noman, M.; Ahmed, T.; Ijaz, U.; Shahid, M.; Azizullah; Li, D.; Manzoor, I.; Song, F. Plant–Microbiome Crosstalk: Dawning from Composition and Assembly of Microbial Community to Improvement of Disease Resilience in Plants. Int. J. Mol. Sci. 2021, 22, 6852. [Google Scholar] [CrossRef]
- Fan, B.-L.; Chen, L.-H.; Chen, L.-L.; Guo, H. Integrative Multi-Omics Approaches for Identifying and Characterizing Biological Elements in Crop Traits: Current Progress and Future Prospects. Int. J. Mol. Sci. 2025, 26, 1466. [Google Scholar] [CrossRef] [PubMed]

| Microbes | Microbial Functions | Natural Selection | Reference |
|---|---|---|---|
| Bacteria species | The speciation of microbes is controlled by divergent natural selection, which contributes to gene flow and reproductive modes. | This occurs either genetically or ecologically. | [40] |
| Cyanobacterium (Microcoleus) | The bacteria produce certain genes that control secondary metabolite synthesis and stress response. | The bacteria are responsible for at least 12 lineages of the global speciation continuum. | [41] |
| Endophytes | These microbes are more involved in phylosymbiosis signaling compared to other microbes, like rhizosphere microbes and epiphytes. | The phylosymbiosis is attributed to the microbial phylogeny and taxonomic classification of the plants they interact with. | [42] |
| Pathogenic bacteria | The study presents how the bacteria colonize and proliferate within or between the host plant(s) during the process of bacterial phylogeography. | The population of the bacteria is controlled by genetic drift, mutation, recombination, natural selection, and demographic history. | [43] |
| Phytopathogen (Pseudomonas syringae) | Plants produce a resistance gene (R-gene) against the invasion of the phytopathogen. | This reveals the similarity clustering, with eco-evolutionary dynamics arising from the ecological niche due to the coexistence of the bacterial strain. | [44] |
| Endosymbiotic bacteria (Sodalis) | The bacteria are responsible for gene production that carries out functions such as amino acid biosynthesis, including the respiratory chain and DNA repair pathways. | Natural selection involves the coming together of various functions between the microbes found in the symbiont lineage and stochastic mutation. | [45] |
| Symbionts and insects | The symbiont is involved in a beneficial interaction with the insects. | They contribute to insect response to various stresses in their ecosystem, and by so doing, help insects adapt to various environments. | [46] |
| DNA and Mitochondria | There is transmission of plastid DNA to mitochondria present in the green leaves of plants. | The rate of evolution of the genetic materials depends on the high contingency of mitochondrial genomic evolution. | [47] |
| Interspecies microbes (E. melliodora and E. sideroxylon) | The organisms can produce genetic materials that look like eucalyptus plants to recognize structural variation. | Structural variation reveals the differences between the rate of recombination and genetic differentiation between the two interspecific interactions. | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adedayo, A.A.; Olorunkosebi, M.T. Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions. Biology 2025, 14, 1505. https://doi.org/10.3390/biology14111505
Adedayo AA, Olorunkosebi MT. Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions. Biology. 2025; 14(11):1505. https://doi.org/10.3390/biology14111505
Chicago/Turabian StyleAdedayo, Afeez Adesina, and Mary Tomi Olorunkosebi. 2025. "Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions" Biology 14, no. 11: 1505. https://doi.org/10.3390/biology14111505
APA StyleAdedayo, A. A., & Olorunkosebi, M. T. (2025). Coevolution Dynamics of Beneficial and Pathogenic Microbes in Plant–Microbe Interactions. Biology, 14(11), 1505. https://doi.org/10.3390/biology14111505

