Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,085)

Search Parameters:
Keywords = integrated farming management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3001 KiB  
Article
Agroecosystem Modeling and Sustainable Optimization: An Empirical Study Based on XGBoost and EEBS Model
by Meiqing Xu, Zilong Yao, Yuxin Lu and Chunru Xiong
Sustainability 2025, 17(15), 7170; https://doi.org/10.3390/su17157170 (registering DOI) - 7 Aug 2025
Abstract
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that [...] Read more.
As agricultural land continues to expand, the conversion of forests to farmland has intensified, significantly altering the structure and function of agroecosystems. However, the dynamic ecological responses and their interactions with economic outcomes remain insufficiently modeled. This study proposes an integrated framework that combines a dynamic food web model with the Eco-Economic Benefit and Sustainability (EEBS) model, utilizing empirical data from Brazil and Ghana. A system of ordinary differential equations solved using the fourth-order Runge–Kutta method was employed to simulate species interactions and energy flows under various land management strategies. Reintroducing key species (e.g., the seven-spot ladybird and ragweed) improved ecosystem stability to over 90%, with soil fertility recovery reaching 95%. In herbicide-free scenarios, introducing natural predators such as bats and birds mitigated disturbances and promoted ecological balance. Using XGBoost (Extreme Gradient Boosting) to analyze 200-day community dynamics, pest control, resource allocation, and chemical disturbance were identified as dominant drivers. EEBS-based multi-scenario optimization revealed that organic farming achieves the highest alignment between ecological restoration and economic benefits. The model demonstrated strong predictive power (R2 = 0.9619, RMSE = 0.0330), offering a quantitative basis for green agricultural transitions and sustainable agroecosystem management. Full article
(This article belongs to the Section Sustainable Agriculture)
27 pages, 1523 KiB  
Article
Reinforcement Learning-Based Agricultural Fertilization and Irrigation Considering N2O Emissions and Uncertain Climate Variability
by Zhaoan Wang, Shaoping Xiao, Jun Wang, Ashwin Parab and Shivam Patel
AgriEngineering 2025, 7(8), 252; https://doi.org/10.3390/agriengineering7080252 - 7 Aug 2025
Abstract
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance [...] Read more.
Nitrous oxide (N2O) emissions from agriculture are rising due to increased fertilizer use and intensive farming, posing a major challenge for climate mitigation. This study introduces a novel reinforcement learning (RL) framework to optimize farm management strategies that balance crop productivity with environmental impact, particularly N2O emissions. By modeling agricultural decision-making as a partially observable Markov decision process (POMDP), the framework accounts for uncertainties in environmental conditions and observational data. The approach integrates deep Q-learning with recurrent neural networks (RNNs) to train adaptive agents within a simulated farming environment. A Probabilistic Deep Learning (PDL) model was developed to estimate N2O emissions, achieving a high Prediction Interval Coverage Probability (PICP) of 0.937 within a 95% confidence interval on the available dataset. While the PDL model’s generalizability is currently constrained by the limited observational data, the RL framework itself is designed for broad applicability, capable of extending to diverse agricultural practices and environmental conditions. Results demonstrate that RL agents reduce N2O emissions without compromising yields, even under climatic variability. The framework’s flexibility allows for future integration of expanded datasets or alternative emission models, ensuring scalability as more field data becomes available. This work highlights the potential of artificial intelligence to advance climate-smart agriculture by simultaneously addressing productivity and sustainability goals in dynamic real-world settings. Full article
(This article belongs to the Special Issue Implementation of Artificial Intelligence in Agriculture)
Show Figures

Figure 1

14 pages, 637 KiB  
Article
Relationship Between Hyperkeratosis, Teat Conformation Traits, Microbiological Isolation, and Somatic Cell Count in Milk from Dairy Cows
by Leonardo Leite Cardozo, Deise Aline Knob, Pauline Thais dos Santos, Angela Pelizza, Ana Paula Mori, Mauricio Camera, Sandra Maria Ferraz, Marcella Zampoli de Assis and André Thaler Neto
Dairy 2025, 6(4), 45; https://doi.org/10.3390/dairy6040045 - 7 Aug 2025
Abstract
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic [...] Read more.
Maintaining teat-end integrity in dairy cows is essential to preventing intramammary infections (IMIs) in dairy cows, yet the relationship between hyperkeratosis, teat conformation, and mammary health remais underexplored. This study evaluated the relationship between teat-end hyperkeratosis, teat conformation traits, microbial colonization, and somatic cell count (SCC) in milk from 170 cows on ten commercial dairy farms in Santa Catarina, Brazil. During two farm visits, milk and teat-end swab samples from paired teats (one with hyperkeratosis, one without) were analyzed for microbial growth and SCC. SCC data were transformed into somatic cell scores (SCS). Results showed no significant association between hyperkeratosis and mastitis microorganisms, although environmental microorganisms tended to be more frequent in hyperkeratotic teats (p = 0.0778). Major microorganisms in milk were significantly associated with higher SCC (p = 0.0132). No relationship was observed between teat conformation traits and hyperkeratosis. These findings suggest that hyperkeratosis may subtly influence the teat canal to environmental bacterial colonization, underscoring the need for improved milking management practices to minimize hyperkeratosis and associated mastitis risks. Full article
(This article belongs to the Special Issue Farm Management Practices to Improve Milk Quality and Yield)
Show Figures

Figure 1

14 pages, 646 KiB  
Review
The Role of Sensor Technologies in Estrus Detection in Beef Cattle: A Review of Current Applications
by Inga Merkelytė, Artūras Šiukščius and Rasa Nainienė
Animals 2025, 15(15), 2313; https://doi.org/10.3390/ani15152313 - 7 Aug 2025
Abstract
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each [...] Read more.
Modern beef cattle reproductive management faces increasing challenges due to the growing global demand for beef. Reproductive efficiency is a critical factor determining the productivity and profitability of beef cattle operations. Optimal reproductive performance in a beef cattle herd is achieved when each cow produces one calf per year, maintaining a calving interval of 365 days. However, this goal is difficult to achieve, as the gestation period in beef cows lasts approximately 280 days, leaving only 80–85 days for successful conception. Traditional methods, such as visual estrus detection, are becoming increasingly unreliable due to expanding herd sizes and the subjectivity of visual observation. Additionally, silent estrus—where ovulation occurs without noticeable behavioral changes—further complicates the accurate estrous-based identification of the optimal insemination period. To enhance reproductive efficiency, advanced technologies are increasingly being integrated into cattle management. Sensor-based monitoring systems, including accelerometers, pedometers, and ruminoreticular boluses, enable the precise tracking of activity changes associated with the estrous cycle. Furthermore, infrared thermography offers a non-invasive method for detecting body temperature fluctuations, allowing for more accurate estrus identification and optimized timing of insemination. The use of these innovative technologies has the potential to significantly improve reproductive efficiency in beef cattle herds and contribute to overall farm productivity and sustainability. The objective of this review is to examine advancements in smart technologies applied to beef cattle reproductive management, presenting commercially available technologies and recent scientific studies on innovative systems. The focus is on sensor-based monitoring systems and infrared thermography for optimizing reproduction. Additionally, the challenges associated with these technologies and their potential to enhance reproductive efficiency and sustainability in the beef cattle industry are discussed. Despite the benefits of advanced technologies, their implementation in cattle farms is hindered by financial and technical challenges. High initial investment costs and the complexity of data analysis may limit their adoption, particularly in small and medium-sized farms. However, the continuous development of these technologies and their adaptation to farmers’ needs may significantly contribute to more efficient and sustainable reproductive management in beef cattle production. Full article
(This article belongs to the Special Issue Reproductive Management Strategies for Dairy and Beef Cows)
Show Figures

Figure 1

23 pages, 2767 KiB  
Article
Sustainable Cotton Production in Sicily: Yield Optimization Through Varietal Selection, Mycorrhizae, and Efficient Water Management
by Giuseppe Salvatore Vitale, Nicolò Iacuzzi, Noemi Tortorici, Giuseppe Indovino, Loris Franco, Carmelo Mosca, Antonio Giovino, Aurelio Scavo, Sara Lombardo, Teresa Tuttolomondo and Paolo Guarnaccia
Agronomy 2025, 15(8), 1892; https://doi.org/10.3390/agronomy15081892 - 6 Aug 2025
Abstract
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown [...] Read more.
This study explores the revival of cotton (Gossypium spp. L.) farming in Italy through sustainable practices, addressing economic and water-related challenges by integrating cultivar selection, arbuscular mycorrhizal fungi (AMF) inoculation, and deficit irrigation under organic farming. Field trials evaluated two widely grown Mediterranean cultivars (Armonia and ST-318) under three irrigation levels (I-100: 100% crop water requirement; I-70: 70%; I-30: 30%) across two Sicilian soil types (sandy loam vs. clay-rich). Under I-100, lint yields reached 0.99 t ha−1, while severe deficit (I-30) yielded only 0.40 t ha−1. However, moderate deficit (I-70) maintained 75–79% of full yields, proving a viable strategy. AMF inoculation significantly enhanced plant height (68.52 cm vs. 65.85 cm), boll number (+22.1%), and seed yield (+12.5%) (p < 0.001). Cultivar responses differed: Armonia performed better under water stress, while ST-318 thrived with full irrigation. Site 1, with higher organic matter, required 31–38% less water and achieved superior irrigation water productivity (1.43 kg m−3). Water stress also shortened phenological stages, allowing earlier harvests—important for avoiding autumn rains. These results highlight the potential of combining adaptive irrigation, resilient cultivars, and AMF to restore sustainable cotton production in the Mediterranean, emphasizing the importance of soil-specific management. Full article
(This article belongs to the Section Farming Sustainability)
Show Figures

Graphical abstract

19 pages, 18533 KiB  
Article
Modeling of Marine Assembly Logistics for an Offshore Floating Photovoltaic Plant Subject to Weather Dependencies
by Lu-Jan Huang, Simone Mancini and Minne de Jong
J. Mar. Sci. Eng. 2025, 13(8), 1493; https://doi.org/10.3390/jmse13081493 - 2 Aug 2025
Viewed by 133
Abstract
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to [...] Read more.
Floating solar technology has gained significant attention as part of the global expansion of renewable energy due to its potential for installation in underutilized water bodies. Several countries, including the Netherlands, have initiated efforts to extend this technology from inland freshwater applications to open offshore environments, particularly within offshore wind farm areas. This development is motivated by the synergistic benefits of increasing site energy density and leveraging the existing offshore grid infrastructure. The deployment of offshore floating photovoltaic (OFPV) systems involves assembling multiple modular units in a marine environment, introducing operational risks that may give rise to safety concerns. To mitigate these risks, weather windows must be considered prior to the task execution to ensure continuity between weather-sensitive activities, which can also lead to additional time delays and increased costs. Consequently, optimizing marine logistics becomes crucial to achieving the cost reductions necessary for making OFPV technology economically viable. This study employs a simulation-based approach to estimate the installation duration of a 5 MWp OFPV plant at a Dutch offshore wind farm site, started in different months and under three distinct risk management scenarios. Based on 20 years of hindcast wave data, the results reveal the impacts of campaign start months and risk management policies on installation duration. Across all the scenarios, the installation duration during the autumn and winter period is 160% longer than the one in the spring and summer period. The average installation durations, based on results from 12 campaign start months, are 70, 80, and 130 days for the three risk management policies analyzed. The result variation highlights the additional time required to mitigate operational risks arising from potential discontinuity between highly interdependent tasks (e.g., offshore platform assembly and mooring). Additionally, it is found that the weather-induced delays are mainly associated with the campaigns of pre-laying anchors and platform and mooring line installation compared with the other campaigns. In conclusion, this study presents a logistics modeling methodology for OFPV systems, demonstrated through a representative case study based on a state-of-the-art truss-type design. The primary contribution lies in providing a framework to quantify the performance of OFPV installation strategies at an early design stage. The findings of this case study further highlight that marine installation logistics are highly sensitive to local marine conditions and the chosen installation strategy, and should be integrated early in the OFPV design process to help reduce the levelized cost of electricity. Full article
(This article belongs to the Special Issue Design, Modeling, and Development of Marine Renewable Energy Devices)
Show Figures

Figure 1

24 pages, 5968 KiB  
Article
Life Cycle Assessment of a Digital Tool for Reducing Environmental Burdens in the European Milk Supply Chain
by Yuan Zhang, Junzhang Wu, Haida Wasim, Doris Yicun Wu, Filippo Zuliani and Alessandro Manzardo
Appl. Sci. 2025, 15(15), 8506; https://doi.org/10.3390/app15158506 - 31 Jul 2025
Viewed by 119
Abstract
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A [...] Read more.
Food loss and waste from the European Union’s dairy supply chain, particularly in the management of fresh milk, imposes significant environmental burdens. This study demonstrates that implementing Radio Frequency Identification (RFID)-enabled digital decision-support tools can substantially reduce these impacts across the region. A cradle-to-grave life cycle assessment (LCA) was used to quantify both the additional environmental burdens from RFID (tag production, usage, and disposal) and the avoided burdens due to reduced milk losses in the farm, processing, and distribution stages. Within the EU’s fresh milk supply chain, the implementation of digital tools could result in annual net reductions of up to 80,000 tonnes of CO2-equivalent greenhouse gas emissions, 81,083 tonnes of PM2.5-equivalent particulate matter, 84,326 tonnes of land use–related carbon deficit, and 80,000 cubic meters of freshwater-equivalent consumption. Spatial analysis indicates that regions with historically high spoilage rates, particularly in Southern and Eastern Europe, see the greatest benefits from RFID enabled digital-decision support tools. These environmental savings are most pronounced during the peak months of milk production. Overall, the study demonstrates that despite the environmental footprint of RFID systems, their integration into the EU’S dairy supply chain enhances transparency, reduces waste, and improves resource efficiency—supporting their strategic value. Full article
(This article belongs to the Special Issue Artificial Intelligence and Numerical Simulation in Food Engineering)
Show Figures

Figure 1

21 pages, 1928 KiB  
Article
A CNN-Transformer Hybrid Framework for Multi-Label Predator–Prey Detection in Agricultural Fields
by Yifan Lyu, Feiyu Lu, Xuaner Wang, Yakui Wang, Zihuan Wang, Yawen Zhu, Zhewei Wang and Min Dong
Sensors 2025, 25(15), 4719; https://doi.org/10.3390/s25154719 - 31 Jul 2025
Viewed by 344
Abstract
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning [...] Read more.
Accurate identification of predator–pest relationships is essential for implementing effective and sustainable biological control in agriculture. However, existing image-based methods struggle to recognize insect co-occurrence under complex field conditions, limiting their ecological applicability. To address this challenge, we propose a hybrid deep learning framework that integrates convolutional neural networks (CNNs) and Transformer architectures for multi-label recognition of predator–pest combinations. The model leverages a novel co-occurrence attention mechanism to capture semantic relationships between insect categories and employs a pairwise label matching loss to enhance ecological pairing accuracy. Evaluated on a field-constructed dataset of 5,037 images across eight categories, the model achieved an F1-score of 86.5%, mAP50 of 85.1%, and demonstrated strong generalization to unseen predator–pest pairs with an average F1-score of 79.6%. These results outperform several strong baselines, including ResNet-50, YOLOv8, and Vision Transformer. This work contributes a robust, interpretable approach for multi-object ecological detection and offers practical potential for deployment in smart farming systems, UAV-based monitoring, and precision pest management. Full article
(This article belongs to the Special Issue Sensor and AI Technologies in Intelligent Agriculture: 2nd Edition)
Show Figures

Figure 1

30 pages, 12776 KiB  
Article
Multi-Source Data Integration for Sustainable Management Zone Delineation in Precision Agriculture
by Dušan Jovanović, Miro Govedarica, Milan Gavrilović, Ranko Čabilovski and Tamme van der Wal
Sustainability 2025, 17(15), 6931; https://doi.org/10.3390/su17156931 - 30 Jul 2025
Viewed by 231
Abstract
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, [...] Read more.
Accurate delineation of within-field management zones (MZs) is essential for implementing precision agriculture, particularly in spatially heterogeneous environments. This study evaluates the spatiotemporal consistency and practical value of MZs derived from three complementary data sources: electromagnetic conductivity (EM38-MK2), basic soil chemical properties (pH, humus, P2O5, K2O, nitrogen), and vegetation/surface indices (NDVI, SAVI, LCI, BSI) derived from Sentinel-2 imagery. Using kriging, fuzzy k-means clustering, percentile-based classification, and Weighted Overlay Analysis (WOA), MZs were generated for a five-year period (2018–2022), with 2–8 zone classes. Stability and agreement were assessed using the Cohen Kappa, Jaccard, and Dice coefficients on systematic grid samples. Results showed that EM38-MK2 and humus-weighted BSP data produced the most consistent zones (Kappa > 0.90). Sentinel-2 indices demonstrated strong alignment with subsurface data (r > 0.85), offering a low-cost alternative in data-scarce settings. Optimal zoning was achieved with 3–4 classes, balancing spatial coherence and interpretability. These findings underscore the importance of multi-source data integration for robust and scalable MZ delineation and offer actionable guidelines for both data-rich and resource-limited farming systems. This approach promotes sustainable agriculture by improving input efficiency and allowing for targeted, site-specific field management. Full article
Show Figures

Figure 1

25 pages, 3891 KiB  
Review
The Carbon Footprint of Milk Production on a Farm
by Mariusz Jerzy Stolarski, Kazimierz Warmiński, Michał Krzyżaniak, Ewelina Olba-Zięty and Paweł Dudziec
Appl. Sci. 2025, 15(15), 8446; https://doi.org/10.3390/app15158446 - 30 Jul 2025
Viewed by 339
Abstract
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the [...] Read more.
The environmental impact of milk production, particularly its share of greenhouse gas (GHG) emissions, is a topic under investigation in various parts of the world. This paper presents an overview of current knowledge on the carbon footprint (CF) of milk production at the farm level, with a particular focus on technological, environmental and organisational factors affecting emission levels. The analysis is based on a review of, inter alia, 46 peer-reviewed publications and 11 environmental reports, legal acts and databases concerning the CF in different regions and under various production systems. This study identifies the main sources of emissions, including enteric fermentation, manure management, and the production and use of feed and fertiliser. It also demonstrates the significant variability of the CF values, which range, on average, from 0.78 to 3.20 kg CO2 eq kg−1 of milk, determined by the farm scale, nutritional strategies, local environmental and economic determinants, and the methodology applied. Moreover, this study stresses that higher production efficiency and integrated farm management could reduce the CF per milk unit, with further intensification having, however, diminishing effects. The application of life cycle assessment (LCA) methods is essential for a reliable assessment and comparison of the CF between systems. Ultimately, an effective CF reduction requires a comprehensive approach that combines improved nutritional practices, efficient use of resources, and implementation of technological innovations adjusted to regional and farm-specific determinants. The solutions presented in this paper may serve as guidelines for practitioners and decision-makers with regard to reducing GHG emissions. Full article
(This article belongs to the Special Issue Environmental Management in Milk Production and Processing)
Show Figures

Figure 1

13 pages, 239 KiB  
Article
In Vitro Detection of Acaricide Resistance in Hyalomma Species Ticks with Emphasis on Farm Management Practices Associated with Acaricide Resistance in Abu Dhabi, United Arab Emirates
by Shameem Habeeba, Yasser Mahmmod, Hany Mohammed, Hashel Amer, Mohamed Moustafa, Assem Sobhi, Mohamed El-Sokary, Mahmoud Hussein, Ameer Tolba, Zulaikha Al Hammadi, Mohd Al Breiki and Asma Mohamed Shah
Vet. Sci. 2025, 12(8), 712; https://doi.org/10.3390/vetsci12080712 - 29 Jul 2025
Viewed by 311
Abstract
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for [...] Read more.
Acaricide usage has led to the growing problem of resistance in ticks. A heavy tick burden and the presence of ticks on animals throughout the year, despite the monthly application of acaricides, in farms in the United Arab Emirates formed the motivation for this study. The objectives of this research were as follows: (a) to assess the acaricide resistance status of the most prevalent tick Hyalomma spp. to widely used acaricides Cypermethrin and Deltamethrin; (b) to identify the association of farm management practices and farm-level risk factors with the failure of tick treatment (acaracide resistance). A total of 1600 ticks were collected from 20 farms located in three different regions of Abu Dhabi Emirate including Al Ain (n = 10), Al Dhafra (n = 5), and Abu Dhabi (n = 5). The ticks were subjected to an in vitro bioassay adult immersion test (AIT) modified with a discriminating dose (AIT-DD) against commercial preparations of Cypermethrin and Deltamethrin. A questionnaire was designed to collect metadata and information on farm management and the farm-level risk factors associated with routine farm practices relating to the treatment and control of tick and blood parasite infections in camels and small ruminant populations. Hyalomma anatolicum and Hyalomma dromedarii were identified among the collected ticks, with H. anatolicum being the most prevalent tick species (70%) in the present study. The test results of the in vitro bioassay revealed varied emerging resistance to both of the acaricides in the majority of the three regions; fully susceptible tick isolates with zero resistance to Deltamethrin were recorded in one farm at Al Ain and two farms in the Abu Dhabi region. A questionnaire analysis showed that the failure of tick treatment in farms varied with the presence or absence of vegetation areas, types of animal breeds, and management practices. This study reports the emergence of resistance in ticks to Cypermethrin and Deltamethrin across the Abu Dhabi Emirate, indicating a strict warning for the cautious use of acaricides. There is also a need to improve awareness about sound tick management and control practices among farm owners through a multidisciplinary approach adopting integrated pest management strategies that engage farmers, veterinarians, and policy makers. Full article
(This article belongs to the Topic Ticks and Tick-Borne Pathogens)
20 pages, 1346 KiB  
Article
Integrated Smart Farm System Using RNN-Based Supply Scheduling and UAV Path Planning
by Dongwoo You, Yukai Chen and Donkyu Baek
Drones 2025, 9(8), 531; https://doi.org/10.3390/drones9080531 - 28 Jul 2025
Viewed by 349
Abstract
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned [...] Read more.
Smart farming has emerged as a promising solution to address challenges such as climate change, population growth, and limited agricultural infrastructure. To enhance the operational efficiency of smart farms, this paper proposes an integrated system that combines Recurrent Neural Networks (RNNs) and Unmanned Aerial Vehicles (UAVs). The proposed framework forecasts future resource shortages using an RNN model and recent environmental data collected from the field. Based on these forecasts, the system schedules a resource supply plan and determines the UAV path by considering both dynamic energy consumption and priority levels, aiming to maximize the efficiency of the resource supply. Experimental results show that the proposed integrated smart farm framework achieves an average reduction of 81.08% in the supply miss rate. This paper demonstrates the potential of an integrated AI- and UAV-based smart farm management system in achieving both environmental responsiveness and operational optimization. Full article
(This article belongs to the Section Drones in Agriculture and Forestry)
Show Figures

Figure 1

19 pages, 338 KiB  
Article
Top Management Challenges in Using Artificial Intelligence for Sustainable Development Goals: An Exploratory Case Study of an Australian Agribusiness
by Amanda Balasooriya and Darshana Sedera
Sustainability 2025, 17(15), 6860; https://doi.org/10.3390/su17156860 - 28 Jul 2025
Viewed by 355
Abstract
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life [...] Read more.
The integration of artificial intelligence into sustainable agriculture holds significant potential to transform traditional agricultural practices. This transformation of agricultural practices through AI directly intersects with several critical sustainable development goals, such as Climate Action (SDG13), Life Below Water (SDG 14), and Life on Land (SDG 15). However, such implementations are fraught with multifaceted challenges. This study explores the technological, organizational, and environmental challenges confronting top management in the agricultural sector utilizing the technological–organizational–environmental framework. As interest in AI-enabled sustainable initiatives continues to rise globally, this exploration is timely and relevant. The study employs an interpretive case study approach, drawing insights from a carbon sequestration project within the agricultural sector where AI technologies have been integrated to support sustainability goals. The findings reveal six key challenges: sustainable policy inconsistency, AI experts lacking farming knowledge, farmers’ resistance to change, limited knowledge and expertise to deploy AI, missing links in the existing system, and transition costs, which often hinder the achievement of long-term sustainability outcomes. This study emphasizes the importance of field realities and cross-disciplinary collaboration to optimize the role of AI in sustainability efforts. Full article
Show Figures

Figure 1

14 pages, 2980 KiB  
Article
Assessing Two Decades of Organic Farming: Effects on Soil Heavy Metal Concentrations and Biodiversity for Sustainable Management
by Yizhi Chen, Jianning Guo, Hanyue Zhao, Guangyu Qu, Siqi Han and Caide Huang
Sustainability 2025, 17(15), 6817; https://doi.org/10.3390/su17156817 - 27 Jul 2025
Viewed by 314
Abstract
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional [...] Read more.
Organic farming is widely recognized as a promising practice for sustainable agriculture, yet its long-term ecological impacts remain insufficiently investigated. In this study, we evaluated these impacts by comparing heavy metal concentrations, soil invertebrate communities, and microbial profiles between long-term organic and conventional farming systems. A comparative analysis was conducted on 24 plot soils from two paired organic and conventional farm systems in Beijing, each managed continuously for over 20 years. Our results revealed that soils under organic management consistently contained 10.8% to 73.7% lower heavy metals, along with reduced geo-accumulation indices (Igeo, a standardized metric for soil contamination assessment), indicating decreased contamination risks. In terms of soil fauna, while conventional soils showed higher Collembola abundance, organic farming significantly enhanced Collembola richness and diversity by 20.6% to 55.0%. Microbial sequencing likewise revealed enhanced richness and diversity of bacteria and fungi in organic soils. These microbial communities also displayed shifts in dominant taxa and more stable co-occurrence networks under organic management. Principal component analysis and Mantel tests identified soil pH and nutrients as key drivers of soil biodiversity, while heavy metals also imposed negative influences. Collectively, these findings demonstrate that long-term organic farming not only mitigates environmental risks associated with soil contaminants but also promotes belowground ecological integrity by supporting biodiversity of soil fauna and microbiota. This study highlights the ecological significance of sustained organic practices and provides critical insights for advancing sustainable agricultural developments. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Graphical abstract

25 pages, 4048 KiB  
Article
Grid Stability and Wind Energy Integration Analysis on the Transmission Grid Expansion Planned in La Palma (Canary Islands)
by Raúl Peña, Antonio Colmenar-Santos and Enrique Rosales-Asensio
Processes 2025, 13(8), 2374; https://doi.org/10.3390/pr13082374 - 26 Jul 2025
Viewed by 452
Abstract
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and [...] Read more.
Island electrical networks often face stability and resilience issues due to their weakly meshed structure, which lowers system inertia and compromises supply continuity. This challenge is further intensified by the increasing integration of renewable energy sources, promoted by decarbonization goals, whose intermittent and variable nature complicates grid stability management. To address this, Red Eléctrica de España—the transmission system operator of Spain—has planned several improvements in the Canary Islands, including the installation of new wind farms and a second transmission circuit on the island of La Palma. This new infrastructure will complement the existing one and ensure system stability in the event of N-1 contingencies. This article evaluates the stability of the island’s electrical network through dynamic simulations conducted in PSS®E, analyzing four distinct fault scenarios across three different grid configurations (current, short-term upgrade and long-term upgrade with wind integration). Generator models are based on standard dynamic parameters (WECC) and calibrated load factors using real data from the day of peak demand in 2021. Results confirm that the planned developments ensure stable system operation under severe contingencies, while the integration of wind power leads to a 33% reduction in diesel generation, contributing to improved environmental and operational performance. Full article
Show Figures

Figure 1

Back to TopTop