Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (83)

Search Parameters:
Keywords = integrated absorption–mineralization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 18140 KB  
Article
Mapping Soil Trace Metals Using VIS–NIR–SWIR Spectroscopy and Machine Learning in Aligudarz District, Western Iran
by Saeid Pourmorad, Samira Abbasi and Luca Antonio Dimuccio
Remote Sens. 2026, 18(3), 465; https://doi.org/10.3390/rs18030465 (registering DOI) - 1 Feb 2026
Abstract
Detecting trace metals in soil across geologically diverse terrains remains challenging due to complex mineral–metal interactions and the limited spatial coverage of traditional geochemical tests. This study develops a scalable VIS–NIR–SWIR spectroscopy and machine learning (ML) framework to predict and map soil concentrations [...] Read more.
Detecting trace metals in soil across geologically diverse terrains remains challenging due to complex mineral–metal interactions and the limited spatial coverage of traditional geochemical tests. This study develops a scalable VIS–NIR–SWIR spectroscopy and machine learning (ML) framework to predict and map soil concentrations of Cr, As, Cu, and Cd in the Aligudarz District, located within the geotectonically complex Sanandaj–Sirjan Zone of western Iran. Laboratory reflectance spectra (~350–2500 nm) obtained from 110 soil samples were pre-processed using derivative filtering, scatter-correction techniques, and genetic algorithm (GA)-based wavelength optimisation to enhance diagnostic absorption features linked to Fe-oxides, clay minerals, and carbonates. Multiple ML-based approaches, including artificial neural networks (ANNs), support vector regression (SVR), and partial least squares regression (PLSR), as well as stepwise multiple linear regression (SMLR), were compared using nested, spatial, and external validation. Nonlinear models, particularly ANNs, exhibited the highest predictive accuracy, with strong generalisation confirmed via an independent test set. GA-selected wavelengths and derivative-enhanced spectra revealed mineralogical controls on metal retention, confirming that spectral predictions reflect underlying geological processes. Ordinary kriging of spectral-ML residuals generated spatially consistent metal-distribution maps that aligned well with local and regional geological features. The integrated framework demonstrates high predictive accuracy and operational scalability, providing a reproducible, field-ready method for rapid geochemical assessment. The findings highlight the potential of VIS–NIR–SWIR spectroscopy, combined with advanced modelling and geostatistics, to support environmental monitoring, mineral exploration, and risk assessment in geologically complex terrains. Full article
Show Figures

Figure 1

21 pages, 4150 KB  
Article
Multi-Scale Optimization of Volcanic Scoria Lightweight Aggregate Concrete via Synergistic Incorporation of Styrene-Acrylic Emulsion, Foaming Agent, and Straw Fibers
by Jinhong Zhang, Rong Li and Guihua Xu
Buildings 2026, 16(3), 492; https://doi.org/10.3390/buildings16030492 - 25 Jan 2026
Viewed by 171
Abstract
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. [...] Read more.
Volcanic Scoria Lightweight Aggregate Concrete (VSLAC) has been identified as a material with considerable potential for use in carbon-neutral construction; however, its application is often hindered by two main issues. Firstly, the low density of scoria often results in aggregate segregation and stratification. Secondly, its high hygroscopicity can lead to shrinkage cracking. In order to address the aforementioned issues, this study proposes a multi-scale modification strategy. The cementitious matrix was first strengthened using a binary blend of Fly Ash and Ground Granulated Blast Furnace Slag (GGBS), followed by the incorporation of a ternary admixture system containing Styrene-Acrylic Emulsion (SAE), a foaming agent (FA), and alkali-treated Straw Fibres (SF) to enhance workability and durability. The findings of this study demonstrate that a mineral admixture comprising 10% Fly Ash and 10% GGBS results in a substantial enhancement of matrix compactness, culminating in a 20% increase in compressive strength. An orthogonal test was conducted to identify the optimal formulation (D13), which was found to contain 4% SAE, 0.1% FA, and 5% SF. This formulation yielded a compressive strength of 35.2 MPa, a flexural strength of 7.5 MPa, and reduced water absorption to 8.0%. A comparative analysis was conducted between the mineral admixture mix ratio (Control group) and the Optimal mix ratio (Optimization group). The results of this analysis reveal that the Optimization group exhibited superior durability and thermal characteristics. Specifically, the water penetration depth of the optimized composite was successfully restricted to within 3.18 mm, while its thermal insulation performance demonstrated a significant enhancement of 12.3%. In the context of freeze–thaw cycles, the modified concrete demonstrated notable durability, exhibiting a 51.4% reduction in strength loss and a marginal 0.64% restriction in mass loss. SEM analysis revealed that the interaction between SAE and the FA resulted in the densification of the Interfacial Transition Zone (ITZ). In addition, the 3D network formed by SF redistributed internal stresses, thereby shifting the failure mode from brittle fracture to ductile deformation. The findings demonstrate that modifying VSLAC at both micro- and macro-levels can effectively balance structural integrity with thermal efficiency for sustainable construction applications. Full article
(This article belongs to the Special Issue Sustainable Approaches to Building Repair)
Show Figures

Figure 1

15 pages, 3252 KB  
Article
Hydrophobic Modification of Concrete Using a Hydrophobizing Admixture
by Dulat Abdrassilov, Aleksej Aniskin, Zhanbolat Shakhmov and Rauan Lukpanov
Constr. Mater. 2026, 6(1), 3; https://doi.org/10.3390/constrmater6010003 - 6 Jan 2026
Viewed by 242
Abstract
The construction industry relies on building materials that provide not only high physical and mechanical performance but also adequate thermal and durability properties. However, several factors still limit the quality and service life of concrete products. The development of the construction industry provides [...] Read more.
The construction industry relies on building materials that provide not only high physical and mechanical performance but also adequate thermal and durability properties. However, several factors still limit the quality and service life of concrete products. The development of the construction industry provides new opportunities for designing efficient construction facilities. To obtain enhanced design capabilities, it is very important to relieve the load on the structure, this can be achieved by reducing the mass of materials without losing strength. This study investigates the enhancement of foam concrete through the combined incorporation of mineral fibers recycled from basalt insulation waste and complex polymer modifiers. The aim was to improve the material’s mechanical performance, durability, and pore structure stability while promoting the sustainable use of industrial by-products. The experimental program included tests on density, compressive strength, water absorption, and thermal conductivity for mixtures of different densities (400–1100 kg/m3). The results demonstrated that the inclusion of mineral fibers and polymer modifiers significantly enhanced structural uniformity and pore wall integrity. Compressive strength increased by up to 35%, water absorption decreased by 25%, and thermal conductivity was reduced by 18% compared with the control mixture. Full article
Show Figures

Figure 1

37 pages, 1251 KB  
Review
Thyroid–Microbiome Allostasis and Mitochondrial Performance: An Integrative Perspective in Exercise Physiology
by Adrian Odriozola, Adriana González, Iñaki Odriozola, Francesc Corbi and Jesús Álvarez-Herms
Nutrients 2026, 18(1), 59; https://doi.org/10.3390/nu18010059 - 24 Dec 2025
Viewed by 905
Abstract
Exercise acts as a physiological stimulus, requiring precise coordination among endocrine, microbial, and mitochondrial systems to maintain metabolic stability through allostatic regulation. The goal of the article is to integrate multidisciplinary evidence to characterize the thyroid–microbiome–mitochondrial axis as a key regulator of the [...] Read more.
Exercise acts as a physiological stimulus, requiring precise coordination among endocrine, microbial, and mitochondrial systems to maintain metabolic stability through allostatic regulation. The goal of the article is to integrate multidisciplinary evidence to characterize the thyroid–microbiome–mitochondrial axis as a key regulator of the allostatic state in athletic physiological response. During acute, chronic, and overload training phases, the thyroid–microbiome–mitochondrial axis operates bidirectionally, coupling microbial signaling with endocrine and mitochondrial networks to mediate metabolic response to exercise. This response shows interindividual variability driven by sex, age, genetics, and nutritional status, shaping the boundaries between adaptive efficiency and allostatic overload. Microbial metabolites, such as short-chain fatty acids (SCFA) and secondary bile acids, modulate deiodinase activity, bile acid recycling, and mitochondrial biogenesis through AMPK–SIRT1–PGC1α signaling, optimizing substrate use and thermogenic capacity. Thyroid hormones reciprocally regulate gut motility, luminal pH, and bile secretion, maintaining microbial diversity and mineral absorption. Under excessive training load, caloric restriction, or inadequate recovery, this network becomes transiently unbalanced: SCFA synthesis decreases, D3 activity increases, and a reversible low-T3/high-rT3 pattern emerges, resembling early Hashimoto- or Graves-like responses. Selenium-, zinc-, and iron-dependent enzymes form the redox link between microbial metabolism, thyroid control, and mitochondrial defense. In conclusion, the thyroid–microbiome–mitochondrial axis provides the physiological basis for the allostatic state, a reversible phase of dynamic recalibration that integrates training, nutrition, environmental stress, and circadian cues to sustain thyroid activity, mitochondrial efficiency, and microbial balance. This integrative perspective supports precision interventions to optimize recovery and performance in athletes. Full article
Show Figures

Figure 1

42 pages, 3761 KB  
Review
A Comprehensive Review of Carbon Capture, Storage, and Reduction Strategies Within the Built Environment
by Eyad Abdelsalam Elsayed Hamed, Shoukat Alim Khan, Arslan Yousaf and Muammer Koç
Materials 2025, 18(24), 5646; https://doi.org/10.3390/ma18245646 - 16 Dec 2025
Viewed by 994
Abstract
The built environment (BE) encompasses an enormous volume and substantial material mass. However, structures within it typically serve single, limited functions. Enhancing these structures with multifunctional capabilities holds significant potential for achieving broader sustainability goals and creating impactful environmental benefits. Among these potential [...] Read more.
The built environment (BE) encompasses an enormous volume and substantial material mass. However, structures within it typically serve single, limited functions. Enhancing these structures with multifunctional capabilities holds significant potential for achieving broader sustainability goals and creating impactful environmental benefits. Among these potential multifunctional applications, carbon capture, reduction, and storage are especially critical, given the current built environment’s substantial contribution of approximately 40% of global energy and CO2 emissions. Keeping this potential in view, this comprehensive review critically evaluates carbon management strategies for the built environment via three interrelated approaches: carbon capture (via photosynthesis, passive concrete carbonation, and microbial biomineralization), carbon storage (employing carbonation curing, mineral carbonation, and valorization of construction and demolition waste), and carbon reduction (integrating industrial waste, alternative binders, and bio-based materials). The review also evaluates the potential of novel direct air-capture materials, assessing their feasibility for integration into construction processes and existing infrastructure. Key findings highlight significant advancements, quantify CO2 absorption potentials across various construction materials, and reveal critical knowledge gaps, thereby providing a strategic roadmap for future research direction toward a low-carbon, climate-resilient built environment. Full article
(This article belongs to the Special Issue Advances in Natural Building and Construction Materials (2nd Edition))
Show Figures

Graphical abstract

16 pages, 4352 KB  
Article
Colorimetry Characteristics and Influencing Factors of Sulfur-Rich Lapis Lazuli
by Xiaorui Ma, Xu Huang, Ying Guo, Zhili Jia and Shuo Jia
Crystals 2025, 15(12), 1035; https://doi.org/10.3390/cryst15121035 - 4 Dec 2025
Cited by 1 | Viewed by 402
Abstract
Lapis lazuli is a valued gemstone that displays a wide spectrum of blue hues, yet the quantitative link between its color and internal sulfur speciation remains unresolved. This study integrates colorimetry with electron probe microanalysis and UV-Vis, Raman, and X-ray photoelectron spectroscopy to [...] Read more.
Lapis lazuli is a valued gemstone that displays a wide spectrum of blue hues, yet the quantitative link between its color and internal sulfur speciation remains unresolved. This study integrates colorimetry with electron probe microanalysis and UV-Vis, Raman, and X-ray photoelectron spectroscopy to establish this relationship and build a robust grading framework within the CIE 1976 L*a*b* color space. X-ray diffraction was employed to determine the mineral composition and confirm that the chromogenic elements originated from lazurite. K-means clustering with Fisher’s discriminant validation classifies samples into four grades: Fancy Blue, Fancy Intense Blue, Fancy Deep Blue, and Fancy Dark Blue. Multimodal analyses identify three sulfur species—[S3]·−, S2−, and SO42—and show that higher sulfur content correlates with lower lightness, reduced chroma, and a violetish-blue shift. [S3]·− is confirmed as the dominant chromophore, producing the strong 600 nm absorption that defines the blue hue. A weak absorption band observed near 400 nm in some samples can be attributed to S2− and SO42 species, but no visually perceptible effect of this band on the overall color was detected. Full article
(This article belongs to the Section Mineralogical Crystallography and Biomineralization)
Show Figures

Figure 1

19 pages, 8279 KB  
Article
Integrated Transcriptomic and Biochemical Analyses Reveal the Root Development-Promoting Mechanism of Piriformospora indica on Blueberry Under Tap Water Irrigation
by Sijian Guo, Pengyan Qu, Shitao Du, Rui Liu, Yongyan Zhang and Chunzhen Cheng
Plants 2025, 14(23), 3646; https://doi.org/10.3390/plants14233646 - 29 Nov 2025
Viewed by 596
Abstract
Piriformospora indica, a broad-spectrum plant growth-promoting fungus, has been successfully applied in blueberry (Vaccinium corymbosum L.). In this study, through an integrated transcriptomic and biochemical analyses, we investigated the effects of P. indica colonization on blueberry root growth under long-term tap [...] Read more.
Piriformospora indica, a broad-spectrum plant growth-promoting fungus, has been successfully applied in blueberry (Vaccinium corymbosum L.). In this study, through an integrated transcriptomic and biochemical analyses, we investigated the effects of P. indica colonization on blueberry root growth under long-term tap water (EC ≈ 1500 μs/cm) irrigation. Comparative transcriptomic analysis revealed that P. indica colonization greatly influenced the expression of genes involved in RNA biosynthesis, solute transport, response to external stimuli, phytohormone action, carbohydrate metabolism, cell wall organization, and secondary metabolism pathways. Consistently, the fungal colonization significantly improved the nutrient absorption ability, and increased the contents of sucrose, starch, trehalose, total phenolic, total flavonoids, and indole-3-acetic acid (IAA), while suppressing the accumulations of jasmonic acid (JA), abscisic acid (ABA), 1-aminocyclopropane-1-carboxylic acid (ACC), and strigolactone (SL) in blueberry roots. Quantitative real-time PCR verification also confirmed the fungal influences on genes associated with these pathways/parameters, such as auxin homoeostasis-associated WAT1, cell wall metabolism-related EXP, phenylpropanoid biosynthesis-related PAL and CHS, carotenoid degradation-related CCD8, transportation-related CNGC, trehalose metabolism-related TPP, and so on. Our study demonstrated that P. indica improved blueberry adaptability to mild salt stress by synergistically regulating cell wall metabolism, secondary metabolism, stress responses, hormone homeostasis, sugar and mineral element transportation, and so on. Full article
Show Figures

Figure 1

17 pages, 1516 KB  
Article
Novel Process Configuration of Photobioreactor and Supercritical Water Oxidation for Energy Production from Microalgae
by Alessandro Cosenza, Serena Lima, Francesca Scargiali, Franco Grisafi and Giuseppe Caputo
Processes 2025, 13(12), 3860; https://doi.org/10.3390/pr13123860 - 29 Nov 2025
Viewed by 559
Abstract
This study presents the first comprehensive investigation of direct supercritical water oxidation (SCWO) of microalgae biomass integrated with photobioreactor oxygen recovery for sustainable energy production. Laboratory-scale experiments were conducted on Nannochloropsis gaditana at optimized conditions (650 °C, 24 MPa, 1 min residence time), [...] Read more.
This study presents the first comprehensive investigation of direct supercritical water oxidation (SCWO) of microalgae biomass integrated with photobioreactor oxygen recovery for sustainable energy production. Laboratory-scale experiments were conducted on Nannochloropsis gaditana at optimized conditions (650 °C, 24 MPa, 1 min residence time), achieving extraordinary conversion efficiency of 99.99% at biomass concentrations as low as 0.5 wt%. Process simulation using Aspen Plus demonstrated that this integrated photobioreactor-SCWO system can recover oxygen produced during photosynthesis, reducing compressor energy demands by 10–15% compared to conventional air-fed systems. The coupled system achieved net thermal power outputs of 47–66 kW from a 1 kg/min microalgae feed at 5–10 wt% biomass concentration, corresponding to an overall system thermal efficiency of approximately 18%. CO2 recovery via mono-ethanolamine absorption enabled 70–80% carbon cycle closure, while simultaneous nutrient recycling through the aqueous phase supports sustainable circular economy principles. This coupled photobioreactor-SCWO process represents an efficient pathway for energy recovery from wet microalgae biomass, eliminating the energy-intensive drying requirement (typically 60–70% of conventional processing energy) and achieving complete mineralization of organic compounds. The system demonstrates technical and energetic viability for scaling to pilot demonstration scale. Full article
Show Figures

Graphical abstract

15 pages, 3180 KB  
Article
Comparative Transcriptomic and Metabolomic Profiling of Ovaries from Two Pig Breeds with Contrasting Reproductive Phenotype
by Sui Liufu, Jun Ouyang, Yi Jiang, Lanlin Xiao, Bohe Chen, Kaiming Wang, Wenwu Chen, Xin Xu, Caihong Liu and Haiming Ma
Agriculture 2025, 15(23), 2471; https://doi.org/10.3390/agriculture15232471 - 28 Nov 2025
Viewed by 420
Abstract
Although numerous quantitative trait loci (QTLs) and candidate genes have been implicated in litter size in certain pig breeds, the genetic basis underlying the pronounced differences in reproductive capacity among breeds remains incompletely understood. To elucidate the underlying mechanisms responsible for the heterogeneity [...] Read more.
Although numerous quantitative trait loci (QTLs) and candidate genes have been implicated in litter size in certain pig breeds, the genetic basis underlying the pronounced differences in reproductive capacity among breeds remains incompletely understood. To elucidate the underlying mechanisms responsible for the heterogeneity in reproductive capacity, we performed integrated transcriptomic and metabolomic analyses on ovarian tissues from two pig breeds with contrasting litter sizes: Diannan Small-ear (DSE) pigs and Yorkshire (YK) pigs. YK pigs exhibited significantly higher total born piglets. Transcriptome analysis revealed that upregulated DEGs in YK ovaries were enriched in ovarian steroidogenesis, retinol metabolism, vitamin digestion/absorption, and folate biosynthesis. In contrast, DSE pigs showed enrichment in inflammatory and immune-related pathways. Furthermore, integrative transcriptomic and metabolomic analysis revealed that upregulated DEGs in YK pigs, such as STAR and COL3A1, and concurrently elevated metabolites (e.g., L-threonine, L-asparagine, L-proline, L-methionine, arachidonic acid, and progesterone) were jointly enriched in three key pathways: protein digestion and absorption, mineral absorption, and aldosterone synthesis and secretion. These genes and metabolites are implicated in granulosa cell and oocyte proliferation, maturation, and protection against oxidative damage. Our findings provide a theoretical foundation for future strategies aimed at improving reproductive performance through targeted modulation of key genes and metabolites. Full article
Show Figures

Figure 1

17 pages, 5727 KB  
Article
Bio-Based Epoxy Adhesives Reinforced with Recycled Fillers
by Alberto Cellai, Lorenzo Pezzana, Valentina Casalegno, Milena Salvo and Marco Sangermano
Polymers 2025, 17(22), 2975; https://doi.org/10.3390/polym17222975 - 7 Nov 2025
Viewed by 596
Abstract
This study explores the potential of a bio-based thermosetting adhesive system incorporating recycled fillers to enhance structural bonding applications while promoting sustainability. Diglycidylether of vanillyl alcohol (DGEVA) was selected as the resin matrix due to its favorable thermomechanical properties and low moisture absorption. [...] Read more.
This study explores the potential of a bio-based thermosetting adhesive system incorporating recycled fillers to enhance structural bonding applications while promoting sustainability. Diglycidylether of vanillyl alcohol (DGEVA) was selected as the resin matrix due to its favorable thermomechanical properties and low moisture absorption. To improve mechanical performance and support circular economy principles, recycled carbon fibers (RCFs) and mineral wool (MW) were integrated into the adhesive formulation in varying proportions (10, 30, and 50 phr). A cationic thermal initiator, ytterbium (III) trifluoromethanesulfonate (YTT), was used to permit polymerization. Comprehensive characterization was performed to assess the curing behavior, thermal stability, and mechanical performance of the adhesive. FTIR spectroscopy monitored the polymerization process, while DSC and dynamic DSC provided insights into reaction kinetics, including activation energy, and curing rates. The mechanical and thermomechanical properties were evaluated using dynamic mechanical thermal analysis (DMTA) and shear lap testing on bonded joints. Additionally, SEM imaging was employed to examine fillers’ morphology and joint interfaces. The results indicated that increasing filler content slowed polymerization and raised activation energy but still permitted high conversion rates. Both RCF- and MW-containing formulations exhibited improved stiffness and adhesion strength, particularly in CMC joints. These findings suggest that DGEVA-based adhesives reinforced with recycled fillers offer a viable and sustainable alternative for structural bonding, contributing to waste valorization and green material development in engineering applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 3311 KB  
Article
Sustainable Foam Concrete Materials Utilizing Mineral Fibers Recovered from Industrial Waste
by Duman Dyussembinov, Arailym Askerbekova, Rauan Lukpanov, Zhanbolat Shakhmov and Assel Jexembayeva
Appl. Sci. 2025, 15(21), 11712; https://doi.org/10.3390/app152111712 - 2 Nov 2025
Viewed by 605
Abstract
The basis of the construction industry is building materials with high-quality indicators in terms of physical, mechanical, and thermophysical characteristics, however, there are a number of issues affecting the quality of manufactured products. The development of the construction industry provides new opportunities for [...] Read more.
The basis of the construction industry is building materials with high-quality indicators in terms of physical, mechanical, and thermophysical characteristics, however, there are a number of issues affecting the quality of manufactured products. The development of the construction industry provides new opportunities for designing efficient construction facilities. To obtain enhanced design capabilities, it is very important to relieve the load on the structure, and this can be achieved by reducing the mass of materials without losing strength. This study investigates the enhancement of foam concrete through the combined incorporation of mineral fibers recycled from basalt insulation waste and complex polymer modifiers. The aim was to improve the material’s mechanical performance, durability, and pore structure stability while promoting sustainable use of industrial by-products. The experimental program included tests on density, compressive strength, water absorption, and thermal conductivity for mixtures of different densities (400–1100 kg/m3). Results demonstrated that the inclusion of mineral fibers and polymer modifiers significantly enhanced structural uniformity and pore wall integrity. Compressive strength increased by up to 35%, water absorption decreased by 25%, and thermal conductivity was reduced by 18% compared with the control mixture. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

21 pages, 3585 KB  
Article
Combined Transcriptome and Metabolome Analyses of Oxidative Stress Regulatory Mechanism in Porcine Follicular Granulosa Cells
by Xilin Bi, Shu Niu, Yu Zhang, Qiang Liu, Qihang Zhang and Ruirong Hao
Biology 2025, 14(11), 1519; https://doi.org/10.3390/biology14111519 - 30 Oct 2025
Viewed by 724
Abstract
Follicular atresia is mainly driven by the oxidative stress-induced apoptosis of granulosa cells (GCs). Oxidative stress mediated by H2O2 is the predominant form of stress in cells and plays a key role in the death of porcine GCs. In the [...] Read more.
Follicular atresia is mainly driven by the oxidative stress-induced apoptosis of granulosa cells (GCs). Oxidative stress mediated by H2O2 is the predominant form of stress in cells and plays a key role in the death of porcine GCs. In the present study, using integrated transcriptomic and untargeted metabolomic approaches, we explored the mechanisms underlying the regulation of oxidative stress in porcine follicular GCs. Per the transcriptomic analysis, compared with the control group, we identified 328 differentially expressed mRNAs (260 upregulated, 68 downregulated) in the H2O2-treatment group; these mRNAs were significantly enriched in apoptosis-related pathways, including the tumour necrosis factor (TNF) and p53 signalling pathways. Furthermore, via untargeted metabolomic analysis, we identified 150 differentially expressed metabolites (101 positive, 49 negative). The pathways associated with protein digestion and absorption, glycine, serine, and threonine metabolism, amino acid biosynthesis, and carbon metabolism were enriched with these metabolites. The integrated transcriptomic and metabolomic analyses revealed taurine, creatine, L-serine, and hypoxanthine as the key metabolites under H2O2-induced oxidative stress. Both the differential genes and metabolites were notably enriched in the FOXO and mineral absorption pathways. In the present study, we elucidated the regulatory mechanism underlying H2O2-induced oxidative stress in porcine follicular GCs via transcriptomic and metabolomic analyses. Our findings offer novel insights into the alleviation of oxidative stress in GCs. Full article
Show Figures

Graphical abstract

17 pages, 4535 KB  
Article
Petrophysical Characterisation and Suitability of Serpentinites from the Monteferrato Area (Tuscany, Italy) for Architectural Restoration
by Alba P. Santo, Carlo Alberto Garzonio, Elena Pecchioni and Teresa Salvatici
Minerals 2025, 15(11), 1105; https://doi.org/10.3390/min15111105 - 23 Oct 2025
Viewed by 483
Abstract
This study investigates the mineralogical and physical properties of serpentinite from the Monteferrato area (Tuscany, Italy) to evaluate its potential use in Tuscany architectural restoration. The research addresses the need to identify replacement materials compatible with historic stones while preserving their original features. [...] Read more.
This study investigates the mineralogical and physical properties of serpentinite from the Monteferrato area (Tuscany, Italy) to evaluate its potential use in Tuscany architectural restoration. The research addresses the need to identify replacement materials compatible with historic stones while preserving their original features. Representative specimens from the Bagnolo quarry were analysed through physical testing and a wide range of mineralogical and geochemical techniques, including polarised light microscopy, X-ray diffraction, electron probe micro-analysis, whole-rock chemistry, and fibre quantification. The results show a mineralogical composition dominated by serpentine-group minerals and magnetite, with physical properties generally consistent across samples. Measured capillary water absorption ranges from 3.27 to 5.27 g/m2·s0.5, open porosity from 5.25% to 8.93%, apparent densities range from 2.49 to 2.56 g/cm3, and imbibition coefficient from 2.16% to 3.71%. Comparative analysis with serpentinite from historic sources (Figline di Prato quarry, Tuscany) and from monuments (Baptistery of San Giovanni, Florence) demonstrates close compositional and textural affinities, supporting the suitability of the rock from the studied quarry for restoration purposes in Tuscany monuments. However, chrysotile concentrations up to 14,153 mg/kg, exceeding Italian regulatory thresholds, represent a critical limitation. This not only requires the implementation of strict safety measures but also raises serious concerns regarding the practical feasibility of using this stone in conservation projects. More broadly, the presence of asbestiform minerals in serpentinites highlights a significant and often underestimated health risk associated with their extraction, processing, and use. Despite its importance, detailed fibre count data are rarely published or made publicly accessible, hindering both transparent risk assessment and informed decision-making. By integrating petrographic, mineralogical, and physical–mechanical characterisation with fibre quantification, this study not only assesses the technical suitability of Monteferrato serpentinites for restoration of Tuscan monuments but also contributes to a more responsible and evidence-based approach to their use, emphasising the urgent need for transparency and health protection in conservation practices. Full article
Show Figures

Figure 1

27 pages, 1859 KB  
Article
Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries
by Alessandro Croce, Francesca Ugo, Annalisa Roveta, Carlotta Bertolina, Caterina Rinaudo, Antonio Maconi and Marinella Bertolotti
Geosciences 2025, 15(10), 395; https://doi.org/10.3390/geosciences15100395 - 12 Oct 2025
Viewed by 1062
Abstract
Asbestos, consisting of six natural mineral fibrous silicate phases, was widely utilized in industrial development during the 20th century and has left a global legacy of health, environmental, and regulatory challenges. Its remarkable properties (e.g., heat resistance, sound absorption, and tensile strength) made [...] Read more.
Asbestos, consisting of six natural mineral fibrous silicate phases, was widely utilized in industrial development during the 20th century and has left a global legacy of health, environmental, and regulatory challenges. Its remarkable properties (e.g., heat resistance, sound absorption, and tensile strength) made it a useful material in numerous applications. However, scientific research revealed its serious health risks in the early 1900s, with growing evidence during the 1960s, and nowadays its role in the development of different diseases (e.g., respiratory diseases, such as lung cancer, mesothelioma, and asbestosis) is well defined. Mapping this complex history requires integrating heterogeneous and often inconsistent information from nearly 200 countries. In this study, we tested the use of generative artificial intelligence (AI) tools as exploratory and comparative instruments to support the collection of asbestos-related data worldwide. Using Google Gemini (version 2.5 flash) and OpenAI ChatGPT (GPT-4-turbo variant), we gathered historical, medical, and regulatory information and then systematically verified and contextualized it with expert analysis. This dual approach allowed us to assess both the global asbestos situation and the reliability, advantages, and limitations of AI-assisted research. Our results highlight how AI can accelerate data collection and provide useful first drafts while underscoring the necessity of human expertise for validation, interpretation, and critical integration. This study, therefore, contributes a dual perspective: a comprehensive overview of the asbestos legacy across countries and a methodological reflection on the opportunities and pitfalls of employing AI in geoscientific and environmental research. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

32 pages, 9263 KB  
Article
Properties of Geopolymers Based on Fly Ash with the Addition of Asphalt from Road Surface Demolition
by Barbara Kozub
Materials 2025, 18(19), 4488; https://doi.org/10.3390/ma18194488 - 26 Sep 2025
Viewed by 699
Abstract
This article presents the results of a comprehensive investigation into geopolymer composites synthesized from fly ash, incorporating ground asphalt derived from reclaimed road pavement and quartz sand. The primary objective of this study was to elucidate the influence of mixture composition on the [...] Read more.
This article presents the results of a comprehensive investigation into geopolymer composites synthesized from fly ash, incorporating ground asphalt derived from reclaimed road pavement and quartz sand. The primary objective of this study was to elucidate the influence of mixture composition on the mechanical, physical, and microstructural characteristics of the developed materials. The innovative aspect of this research lies in the integration of two distinct filler types—mineral (quartz sand) and organic-mineral (milled asphalt)—within a single geopolymer matrix, while preserving key performance parameters required for engineering applications, including compressive and flexural strength, density, water absorption, and abrasion resistance. The experimental methodology encompassed the characterization of the raw materials by X-ray diffraction (XRD), chemical composition analysis via X-ray fluorescence (XRF), and assessment of particle size distribution. Additionally, the produced geopolymer materials underwent density determination, compressive and flexural strength measurements, abrasion testing, and mass water absorption evaluation. The chemical composition was further examined using XRF, and the surface morphology of the specimens was analyzed by scanning electron microscopy (SEM). The findings demonstrate that the incorporation of quartz sand enhances the density and mechanical strength of the composites, whereas the addition of recycled asphalt, despite causing a modest reduction in mechanical performance at elevated dosages, augments water resistance. Moreover, ternary composite material provide an optimal compromise between mechanical strength and durability under humid conditions. Overall, the results substantiate the feasibility of utilizing asphalt waste for the fabrication of functional and sustainable geopolymer materials suitable for construction applications. Full article
Show Figures

Figure 1

Back to TopTop