Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Asbestos History Collection
3.1.1. Prehistoric Period
3.1.2. Ancient Civilizations
3.1.3. Middle Ages and Renaissance
3.1.4. Modern Period
3.2. Asbestos-Related Diseases History Collection
3.2.1. Prehistoric Period
3.2.2. Classical Antiquity
3.2.3. Middle Ages and Renaissance
3.2.4. Industrial Precursors: Proto-Clinical Recognition in the 19th Century
3.2.5. Methodological Limitations and Retrospective Epidemiology (AI Opinion)
3.2.6. The 20th Century
3.3. Country-Specific Timelines
3.3.1. Ukraine (First Answer “Ban in 2022”, Second Answer “No Ban”)
3.3.2. Liechtenstein (First Answer “Ban in 2005”, Second Answer “No Ban”)
3.4. Asbestos Ban Status Worldwide
3.5. Comparative Analysis of Global Asbestos Histories
3.5.1. Early Adoption and Industrial Enthusiasm
3.5.2. Industry Influence and Regulatory Delay
3.5.3. Role of Litigation and Civil Society
3.5.4. Economic Dependency and Continued Use
3.5.5. Regional Coordination and Global Disparities
4. Discussion
4.1. Epistemic Accountability and Content Validation
4.2. Methodological Transparency and Reproducibility of Results
4.3. Systemic Biases and Information Inequalities
4.4. Cognitive Delegation and the Role of the Human Researcher
4.5. Comparing Free and Premium Versions of AI Generative Tools
4.6. Copyright and Use of AI in Science
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AI | artificial intelligence | 
| ARD | asbestos-related disease | 
| EEA | European Economic Area | 
| EU | European Union | 
| IARC | International Agency for Research on Cancer | 
| ILO | International Labor Organization | 
| JAMA | Journal of the American Medical Association | 
| LLMs | large language models | 
| PRC | People’s Republic of China | 
| USGS | United States Geological Survey | 
| UN | United Nations | 
| WHO | World Health Organization | 
References
- International Agency for Research on Cancer (IARC). Asbestos (chrysotile, amosite, crocidolite, tremolite, actinolite, and anthophyllite). In IARC Monographs on the Evaluation of Carcinogenic Risks to Humans; IARC: Lyon, France, 2012; Volume 100C, pp. 219–309. ISBN 978-92-832-1320-8. [Google Scholar]
 - Bartrip, P.W.J. History of asbestos related disease. Postgrad. Med. J. 2004, 80, 72–76. [Google Scholar] [CrossRef]
 - Donaldson, K.; Seaton, A. A short history of the toxicology of inhaled particles. Part. Fibre Toxicol. 2012, 9, 13. [Google Scholar] [CrossRef]
 - Bowker, M. The disease of the slaves. In Fatal Deception: The Terrifying True Story of How Asbestos Is Killing America; Touchstone: New York, NY, USA, 2003; ISBN 0-7432-5143-1. [Google Scholar]
 - Croce, A.; Capella, S.; Belluso, E.; Grosso, F.; Mariani, N.; Libener, R.; Rinaudo, C. Asbestos fibre burden in gallbladder: A case study. Micron 2018, 105, 98–104. [Google Scholar] [CrossRef]
 - Ehrlich, A.; Gordon, R.E.; Dikman, S.H. Carcinoma of the colon in asbestos-exposed workers: Analysis of asbestos content in colon tissue. Am. J. Ind. Med. 1991, 19, 629–636. [Google Scholar] [CrossRef]
 - Ehrlich, A.; Rohl, A.N.; Holstein, E.C. Asbestos bodies in carcinoma of colon in an insulation worker with asbestosis. JAMA 1985, 254, 2932–2933. [Google Scholar] [CrossRef] [PubMed]
 - Gamble, J.F. Asbestos and colon cancer: A weight-of-the-evidence review. Environ. Health Perspect. 1994, 102, 1038–1050. [Google Scholar] [CrossRef]
 - Grosso, F.; Croce, A.; Libener, R.; Mariani, N.; Pastormerlo, M.; Maconi, A.; Rinaudo, C. Asbestos fiber identification in liver from cholangiocarcinoma patients living in an asbestos polluted area: A preliminary study. Tumori J. 2019, 105, 404–410. [Google Scholar] [CrossRef]
 - Grosso, F.; Croce, A.; Trincheri, N.F.; Mariani, N.; Libener, R.; Degiovanni, D.; Rinaudo, C. Asbestos fibres detected by scanning electron microscopy in the gallbladder of patients with malignant pleural mesothelioma (MPM). J. Microsc. 2017, 266, 48–54. [Google Scholar] [CrossRef]
 - Grosso, F.; Randi, L.; Croce, A.; Mirabelli, D.; Libener, R.; Magnani, C.; Bellis, D.; Allegrina, M.; Bertolotti, M.; Degiovanni, D.; et al. Asbestos fibers in the gallbladder of patients affected by benign biliary tract diseases. Eur. J. Gastroenterol. Hepatol. 2015, 27, 860–864. [Google Scholar] [CrossRef]
 - Kobayashi, H.; Ming, Z.W.; Watanabe, H.; Ohnishi, Y. A quantitative study on the distribution of asbestos bodies in extrapulmonary organs. Acta Pathol. Jpn. 1987, 37, 375–383. [Google Scholar] [CrossRef]
 - Rinaudo, C.; Croce, A.; Erra, S.; Nada, E.; Bertolotti, M.; Grosso, F.; Maconi, A.; Amisano, M. Asbestos Fibers and Ferruginous Bodies Detected by VP-SEM/EDS in Colon Tissues of a Patient Affected by Colon-Rectum Cancer: A Case Study. Minerals 2021, 11, 658. [Google Scholar] [CrossRef]
 - Pesonen, P. Early asbestos ware. In Pithouses and Potmakers in Eastern Finland: Reports of the Ancient Lake Saimaa Project; Helsinki Papers in Archaeology; Tuija Kirkinen, University of Helsinki: Helsinki, Finland, 1996; pp. 9–39. ISBN 951-45-7613-6. [Google Scholar]
 - Mökkönen, T.; Nordqvist, K. Kierikki Ware and the Contemporary Neolithic Asbestos- and Organic-tempered Potteries in North-east Europe. Fennosc. Archaeol. 2017, 34, 83–116. [Google Scholar]
 - Pira, E.; Donato, F.; Maida, L.; Discalzi, G. Exposure to asbestos: Past, present and future. J. Thorac. Dis. 2018, 10, S237–S345. [Google Scholar] [CrossRef]
 - Szmoniewski, B.S. From salamander to the robe of the fire rat: An outline history of the asbestos from Prehistory to the Middle Ages. Pontica. Yearb. Mus. Natl. Hist. Archaeol. Constanța 2022, 60, 115–141. [Google Scholar]
 - Ross, M.; Nolan, R.P. History of asbestos discovery and use and asbestos-related disease in context with the occurrence of asbestos within ophiolite complexes. In Ophiolite Concept and the Evolution of Geological Thought; Dilek, Y., Newcomb, S., Eds.; Geological Society of America: Boulder, CO, USA, 2003; Volume 373, pp. 447–470. [Google Scholar]
 - Kakoulli, I.; Prikhodko, S.V.; King, A.; Fischer, C. Earliest evidence for asbestos composites linked to Byzantine wall paintings production. J. Archaeol. Sci. 2014, 44, 148–153. [Google Scholar] [CrossRef]
 - Paché, G. A systematic policy of misinformation on the toxicity of asbestos: Lobbying as key component of a major health crisis. Inf. Manag. Bus. Rev. 2022, 14, 25–35. [Google Scholar] [CrossRef]
 - Asbestos—Historical Statistics (Data Series 140). Available online: https://www.usgs.gov/media/files/asbestos-historical-statistics-data-series-140 (accessed on 4 July 2025).
 - The Worst Economic Times Since the Great Depression? A Reality Check. Available online: http://rotmaniib.blogspot.com/2009/09/worst-economic-times-since-great.html (accessed on 5 May 2025).
 - Cooke, W.E. Pulmonary Asbestosis. Br. Med. J. 1927, 2, 1024–1025. [Google Scholar] [CrossRef]
 - Browne, K.; Murray, R. Asbestos and the Romans. Lancet 1990, 336, 445. [Google Scholar] [CrossRef]
 - History of Asbestos, Pt. 2: Asbestos in the Middle Ages. Available online: https://www.simmonsfirm.com/blog/history-of-asbestos-in-the-middle-ages/ (accessed on 6 May 2025).
 - Felton, J.S.; Newman, J.P.; Read, D.L. Georgius Agricola. In Man, Medicine, and Work: Historic Events in Occupational Medicine; U.S. Department of Health, Education, and Welfare, Public Health Service, Division of Occupational Health: Washington, DC, USA, 1964; pp. 17–18. [Google Scholar]
 - Greenberg, M. Selikoff, asbestos and “la trahison des clercs”. Eur. J. Oncol. 2008, 13, 149–159. [Google Scholar]
 - Tweedale, G. A physical paradox. In Magic Mineral to Killer Dust: Turner & Newall and the Asbestos Hazard; Oxford University Press: Oxford, UK, 2003; pp. 11–17. ISBN 0-19-924399-9. [Google Scholar]
 - Yates, D.H. Asbestos: Insights from women. Lancet Resp. Med. 2017, 5, 782–784. [Google Scholar] [CrossRef]
 - Rosner, D.; Markowitz, G. Deadly Dust: Silicosis and the Politics of Occupational Disease in Twentieth-Century America, 2nd ed.; The University of Michigan Press: Ann Arbor, MI, USA, 1991; ISBN 0-472-03110-4. [Google Scholar]
 - Lee, D.H.K.; Selikoff, I.J. Historical background to the asbestos problem. Environ. Res. 1979, 18, 300–314. [Google Scholar] [CrossRef]
 - Wagner, J.C.; Sleggs, C.A.; Marchand, P. Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province. Occup. Environ. Med. 1960, 17, 260–271. [Google Scholar] [CrossRef]
 - Bartrip, P. Nellie Kershaw, Turner and Newall, and Asbestos-Related Disease in 1920s Britain. Hist. Stud. Ind. Relat. 2000, 9, 101–116. [Google Scholar] [CrossRef]
 - Castleman, B.I.; Berger, S.L. Asbestos: Medical and Legal Aspects, 5th ed.; Aspen Law & Business: Burlington, MA, USA, 2005; ISBN 978-0-7355-5260-9. [Google Scholar]
 - Gee, D.; Greenberg, M. Asbestos: From ‘magic’ to malevolent mineral. In Late Lessons from Early Warnings: The Precautionary Principle 1896–2000; Gee, D., von Krauss, M.K., Eds.; European Environment Agency: Copenhagen, Denmark, 2002; pp. 52–63. ISBN 92-9167-323-4. [Google Scholar]
 - LaDou, J. The asbestos cancer epidemic. Environ. Health Perspect. 2004, 112, 285–290. [Google Scholar] [CrossRef]
 - World Health Organization (WHO). Asbestos: Elimination of Asbestos-Related Diseases. Available online: https://www.who.int/publications/i/item/WHO-FWC-PHE-EPE-14.01 (accessed on 15 May 2025).
 - Stayner, L.T.; Dankovic, D.A.; Lemen, R.A. Occupational exposure to chrysotile asbestos and cancer risk: A review of the amphibole hypothesis. Am. J. Public Health 1996, 86, 179–186. [Google Scholar] [CrossRef]
 - Frank, A.L.; Joshi, T.K. The global spread of asbestos. Ann. Glob. Health 2014, 80, 257–262. [Google Scholar] [CrossRef]
 - Marinaccio, A.; Binazzi, A.; Cauzillo, G.; Cavone, D.; De Zotti, R.; Ferrante, P.; Gennaro, V.; Gorini, G.; Menegozzo, M.; Mensi, C.; et al. Analysis of latency time and its determinants in asbestos related malignant mesothelioma cases of the Italian register. Eur. J. Cancer 2007, 43, 2722–2728. [Google Scholar] [CrossRef]
 - Selikoff, I.J.; Churg, J.; Hammond, E.C. Asbestos exposure and neoplasia. JAMA 1964, 188, 22–26. [Google Scholar] [CrossRef]
 - International Ban Asbestos Secretariat. Current Asbestos Bans. Available online: https://www.ibasecretariat.org/alpha_ban_list.php (accessed on 16 May 2025).
 - Kakoulaki, G.; Maduta, C.; Tsionis, G.; Zangheri, P.; Bavetta, M. Identification of Vulnerable EU Regions Considering Asbestos Presence and Seismic Risk; Publications Office of the European Union: Luxembourg, 2023; ISBN 978-92-68-04254-0. [Google Scholar] [CrossRef]
 - European Union. Directive 2009/148/EC of the European Parliament and of the Council of 30th November 2009 on the Protection of Workers from the Risks Related to Exposure to Asbestos at Work (Codified Version) OJ L 330; European Union: Luxembourg, 2009. [Google Scholar]
 - USGS. Asbestos. (Data in Metric Tons Unless Otherwise Specified). Available online: https://pubs.usgs.gov/periodicals/mcs2024/mcs2024-asbestos.pdf (accessed on 7 July 2025).
 - Markowitz, G.; Rosner, D. Deceit and Denial: The Deadly Politics of Industrial Pollution; University of California Press: Berkeley, CA, USA, 2002; ISBN 0-520-21749-7. [Google Scholar]
 - Comba, P.; D’Angelo, M.; Fazzo, L.; Magnani, C.; Marinaccio, A.; Mirabelli, D.; Terracini, B. Mesothelioma in Italy: The Casale Monferrato model to a national epidemiological surveillance system. Ann. Ist. Super. Sanità 2018, 54, 139–148. [Google Scholar] [CrossRef]
 - Leigh, J.; Driscoll, T. Malignant mesothelioma in Australia, 1945–2000. Int. J. Occup. Environ. Health 2003, 9, 206–217. [Google Scholar] [CrossRef]
 - Paraciani, R. Riconoscere la criminalità d’impresa: Il caso Eternit di Casale Monferrato. RCVS 2016, 10, 51–66. (In Italian) [Google Scholar] [CrossRef]
 - Clarence Borel, Plaintiff-Appellee, v. Fibreboard Paper Products Corporation et al., Defendants-Appellants, Nationalsurety Corporation, Intervenor-Appellee, 493 F.2d 1076 (5th Cir. 1973). Available online: https://law.resource.org/pub/us/case/reporter/F2/493/493.F2d.1076.72-1492.html (accessed on 17 July 2025).
 - Safe Work Australia. Safe Work Australia Annual Report 2018–19; Safe Work Australia: Canberra, Australia, 2019.
 - Kazan-Allen, L. The Asbestos War. Int. J. Occup. Environ. Health 2003, 9, 173–193. [Google Scholar] [CrossRef]
 - Italia. Legge 27 Marzo 1992 n. 257. Norme Relative alla Cessazione Dell’impiego Dell’amianto; Suppl. Ord. alla Gazzetta Ufficiale—Serie Generale n. 87 del 13 Aprile 1992. Available online: http://www.salute.gov.it/resources/static/primopiano/amianto/normativa/Legge_27_marzo_1992.pdf (accessed on 18 July 2025).
 - LaDou, J.; Castleman, B.; Frank, A.; Gochfeld, M.; Greenberg, M.; Huff, J.; Joshi, T.K.; Landrigan, P.J.; Lemen, R.; Myers, J.; et al. The case for a global ban on asbestos. Environ. Health Perspect. 2010, 118, 897–901. [Google Scholar] [CrossRef]
 - Lungs Clearance Mechanism or Why Is Chrysotile One of the Safest Fibers. Available online: https://chrysotile.ru/en/page/lungs-clearance-mechanism-or-why-is-chrysotile-one-of-the-safest-fibers/ (accessed on 7 July 2025).
 - European Commission. Directive 1999/77/EC of 26 July 1999 on Adapting to Technical Progress for the Sixth Time. Annex I to Council Directive 76/769/EEC on the Approximation of the Laws, Regulations and Administrative Provisions of the Member States Relating to Restrictions on the Marketing and Use of Certain Dangerous Substances and Preparations (Asbestos). Off. J. Eur. Commun. 1999, L207, 18–20. Available online: http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:1999:207:0018:0020:EN:PDF (accessed on 7 July 2025).
 - Bender, E.M.; Gebru, T.; McMillan-Major, A.; Shmitchell, S. On the Dangers of Stochastic Parrots: Can Language Models Be Too Big? In Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency (FAccT ‘21), Association for Computing Machinery, New York, NY, USA, 3–10 March 2021; pp. 610–623, ISBN 978-1-4503-8309-7/21/03. [Google Scholar] [CrossRef]
 - Fricker, M. Epistemic Injustice: Power and the Ethics of Knowing; Oxford Academic: Oxford, UK, 2007; ISBN 978-0-19-823790-7. [Google Scholar] [CrossRef]
 - Jo, E.S.; Gebru, T. Lessons from archives: Strategies for collecting sociocultural data in machine learning. In Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency (FAT* ‘20), Barcelona, Spain, 27–30 January 2020; Association for Computing Machinery: New York, NY, USA, 2020; pp. 306–316. [Google Scholar] [CrossRef]
 - Hutchinson, B.; Prabhakaran, V.; Denton, E.; Webster, K.; Zhong, Y.; Denuyl, S. Social Biases in NLP Models as Barriers for Persons with Disabilities. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, Online, 5–10 July 2020; Association for Computational Linguistics: Stroudsburg, PA, USA, 2020; pp. 5491–5501. [Google Scholar] [CrossRef]
 - Birhane, A.; Prabhu, V.U. Large image datasets: A pyrrhic win for computer vision? In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA, 3–8 January 2021; IEEE: New York, NY, USA, 2021; pp. 1536–1546, ISBN 978-1-6654-0477-8. [Google Scholar] [CrossRef]
 - Brown, T.B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell, A.; et al. Language models are few-shot learners. In Proceedings of the 34th International Conference on Neural Information Processing Systems (NIPS ‘20), Online, 6–12 December 2020; Curran Associates Inc.: Red Hook, NY, USA, 2020; Volume 159, pp. 1877–1901, ISBN 9781713829546. [Google Scholar]
 - Holtzman, A.; Buys, J.; Forbes, M.; Choi, Y. The Curious Case of Neural Text Degeneration. arXiv 2019. [Google Scholar] [CrossRef]
 - Liang, P.; Bommasani, R.; Lee, T.; Tsipras, D.; Soylu, D.; Yasunaga, M.; Zhang, Y.; Narayanan, D.; Wu, Y.; Kumar, A.; et al. Holistic evaluation of language models. arXiv 2022. [Google Scholar] [CrossRef]
 - Bender, E.M.; Friedman, B. Data Statements for Natural Language Processing: Toward Mitigating System Bias and Enabling Better Science. Trans. Assoc. Comput. Linguist. 2018, 6, 587–604. [Google Scholar] [CrossRef]
 - Barocas, S.; Hardt, M.; Narayanan, A. Fairness and Machine Learning: Limitations and Opportunities. Available online: https://fairmlbook.org/pdf/fairmlbook.pdf (accessed on 14 July 2025).
 - Mitchell, M.; Wu, S.; Zaldivar, A.; Barnes, P.; Vasserman, L.; Hutchinson, B.; Spitzer, E.; Raji, I.D.; Gebru, T. Model Cards for Model Reporting. In Proceedings of the Conference on Fairness, Accountability, and Transparency (FAT* ‘19), Atlanta, GA, USA, 29–31 January 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 220–229. [Google Scholar] [CrossRef]
 - OECD Legal Instruments. Recommendation of the Council on Artificial Intelligence. Available online: https://legalinstruments.oecd.org/en/instruments/OECD-LEGAL-0449 (accessed on 15 July 2025).
 - Birhane, A.; Ruane, E.; Laurent, T.; Brown, M.S.; Flowers, J.; Ventresque, A.; Dancy, C.L. The Forgotten Margins of AI Ethics. In Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT ‘22), Seoul, Republic of Korea, 21–24 June 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 948–958. [Google Scholar] [CrossRef]
 - Crawford, K. The Atlas of AI: Power, Politics, and the Planetary Costs of Artificial Intelligence; Yale University Press: New Haven, CT, USA, 2021. [Google Scholar] [CrossRef]
 - D’Ignazio, C.; Klein, L.F. Data Feminism; The MIT Press: Cambridge, MA, USA, 2020; ISBN 9780262044004. [Google Scholar] [CrossRef]
 - Gebru, T.; Morgenstern, J.; Vecchione, B.; Vaughan, J.W.; Wallach, H.; Daumé, H.I.I.I.; Crawford, K. Datasheets for datasets. Commun. ACM 2021, 64, 86–92. [Google Scholar] [CrossRef]
 - Floridi, L.; Cowls, J. A Unified Framework of Five Principles for AI in Society. Harv. Data Sci. Rev. 2019, 1. [Google Scholar] [CrossRef]
 - Clark, A.; Chalmers, D. The Extended Mind. Analysis 1998, 58, 7–19. [Google Scholar] [CrossRef]
 - Frické, M. The knowledge pyramid: A critique of the DIKW hierarchy. J. Inf. Sci. 2008, 35, 131–142. [Google Scholar] [CrossRef]
 - Naudts, L. Towards a Code of Ethics for Artificial Intelligence by Paula Boddington. Delphi Interdisc. Rev. Emerg. Technol. 2019, 2, 105–106. [Google Scholar] [CrossRef]
 - Mittelstadt, B.D.; Allo, P.; Taddeo, M.; Wachter, S.; Floridi, L. The ethics of algorithms: Mapping the debate. Big Data Soc. 2016, 3, 1–21. [Google Scholar] [CrossRef]
 - Bergstrom, C.T.; Bak-Coleman, J. AI, peer review and the human activity of science. Nature, 2025; ahead of print. [Google Scholar] [CrossRef]
 - The EU Artificial Intelligence Act. Up-to-Date Developments and Analyses of the EU AI Act. Available online: https://artificialintelligenceact.eu/ (accessed on 11 September 2025).
 - Bohr, A.; Memarzadeh, K. The rise of artificial intelligence in healthcare applications. Artif. Int. Healthc. 2020, 25–60. [Google Scholar] [CrossRef]
 - Bernstein, D.M. The health effects of short fiber chrysotile and amphibole asbestos. Crit. Rev. Toxicol. 2022, 52, 89–112. [Google Scholar] [CrossRef]
 - Croce, A.; Musa, M.; Allegrina, M.; Rinaudo, C.; Baris, Y.I.; Dogan, A.U.; Powers, A.; Rivera, Z.; Bertino, P.; Yang, H.; et al. Micro-Raman spectroscopy identifies crocidolite and erionite fibers in tissue sections. J. Raman Spectrosc. 2013, 44, 1440–1445. [Google Scholar] [CrossRef]
 - Di Ciaula, A. Asbestos ingestion and gastrointestinal cancer: A possible underestimated hazard. Expert Rev. Gastroenterol. Hepatol. 2017, 11, 419–425. [Google Scholar] [CrossRef]
 - Gazzano, E.; Petriglieri, J.R.; Aldieri, E.; Fubini, B.; Laporte-Magoni, C.; Pavan, C.; Tomatis, M.; Turci, F. Cytotoxicity of fibrous antigorite from New Caledonia. Environ. Res. 2023, 230, 115046. [Google Scholar] [CrossRef]
 - Hahad, O.; Al-Kindi, S.; Leliveld, J.; Miinzel, T.; Daiber, A. Supporting and implementing the beneficial parts of the exposome: The environment can be the problem, but it can also be the solution. Int. J. Hyg. Environ. Health 2024, 255, 114290. [Google Scholar] [CrossRef]
 - De Abreu, E.; Koifman, S. Fatores prognósticos no câncer da mama feminine. Rev. Bras. Cancerol. 2020, 48, 113–131. [Google Scholar] [CrossRef]
 - Government of Canada. Asbestos. Available online: https://www.canada.ca/en/health-canada/services/chemical-substances/chemicals-management-plan/initiatives/asbestos.html (accessed on 24 September 2025).
 - Resolution Concerning Asbestos. 2006. Available online: https://www.ilo.org/resource/resolution-concerning-asbestos-2006 (accessed on 24 September 2025).
 - Asbestos Restrictions: The International Picture. Available online: https://publications.aiha.org/202310-asbestos-restrictions?utm_source=chatgpt.com (accessed on 24 September 2025).
 - McCulloch, J. Asbestos mining in Southern Africa, 1893-2002. Int. J. Occup. Environ. Health 2003, 9, 230–235. [Google Scholar] [CrossRef] [PubMed]
 



| AI | Utilization Period | Information Precision | Total Time of Utilization (Estimation of Effective Use) | Figure Creation | Advantages | Disadvantages | 
|---|---|---|---|---|---|---|
| Gemini (free version)  | In the beginning of the work | Quite precise, too much schematic | 2 h | N.A. | Good scheme creation, good information collection | Too much schematic | 
| ChatGPT (free version) | About 5 days | It gives good information, but it needs a careful revision of the contents | 8 h | Yes, but it needs a careful check; it is often less precise | Good writing text, quick information collection | Need a careful check for the information; image creation sometimes does not work well | 
| Country | Year | Country | Year | Country | Year | Country | Year | 
|---|---|---|---|---|---|---|---|
| Algeria | 2009 | Chile | 2001 | Finland | 1994 | Iran | 2012 | 
| Argentina | 2003 | Colombia | 2021 | France | 1997 | Iraq | 2016 | 
| Australia | 2003 | Croatia | 2006 | Gabon | 2004 | Ireland | 1999 | 
| Austria | 1990 | Cuba | 2001 | Germany | 1993 | Israel | 2003 | 
| Bahrain | 1996 | Cyprus | 2005 | Gibraltar | 2005 | Italy | 1992 | 
| Belgium | 2001 | Czech Republic | 1999 | Greece | 2005 | Ivory Coast | 1996 | 
| Brazil | 2017 | Denmark | 1986 | Greenland | 2010 | Japan | 2006 | 
| Brunei | 1994 | Djibouti | 1999 | Honduras | 2004 | Jordan | 2006 | 
| Bulgaria | 2005 | Egypt | 2005 | Hungary | 2005 | Kuwait | 1995 | 
| Canada | 2018 | Estonia | 2001 | Iceland | 1983 | Latvia | 2001 | 
| Liechtenstein | 2005 | New Caledonia | 2007 | Saudi Arabia | 1998 | Switzerland | 1990 | 
| Lithuania | 2005 | New Zealand | 2016 | Serbia | 2015 | Taiwan (PRC) | 2018 | 
| Luxembourg | 2001 | Nicaragua | 2001 | Seychelles | 2009 | Turkey | 2010 | 
| Macedonia | 2014 | Norway | 1984 | Slovakia | 2005 | United Kingdom | 1999 | 
| Malta | 2005 | Oman | 2017 | Slovenia | 1996 | United States | 2024 | 
| Mauritius | 2004 | Poland | 1997 | South Africa | 2008 | Uruguay | 2003 | 
| Monaco | 2005 | Portugal | 2005 | South Korea | 2009 | ||
| Mozambique | 2010 | Qatar | 2010 | Spain | 2002 | ||
| Netherlands | 1993 | Romania | 2007 | Sweden | 1982 | 
| Category | Number of Countries (AI) | Number of Countries (Human) | Notes | 
|---|---|---|---|
| Banned | 69 | 73 | Full, legal prohibition of asbestos use | 
| No ban/Partial ban/No formal ban | 126 | 122 | No national ban, partial ban, or just follows external rules | 
| Analyzed Aspects | Free Version | Premium Version | 
|---|---|---|
| Amount and format of information | Fewer details, but presented in a more discursive and narrative style | Larger amount of information, often presented in bullet-point format | 
| Integration with SCISPACE | Suggested and integrated | Not suggested | 
| Initial setup | Same basic structure as Premium | Same basic structure as Free | 
| Draft options | No choice available | Possibility to choose between a concise or extended draft | 
| Identification of countries | Immediately provides 19 countries | Initially fewer countries, expandable up to 14 or put in groups | 
| Content details | Split into two main areas (health case studies and environmental contamination) via SCISPACE | More detailed, but obtainable only through multiple targeted prompts | 
| Single document (word count) | No choice available | Two options: 3000 or 7000 words | 
| Single document generation (loss of information) | Loss of many countries and more synthetic content | Loss of some information, but preserved when generated step by step | 
| Materials and methods | Approximate, requiring revisions | Approximate, requiring revisions | 
| Comparative data analysis | Similar to Premium | Similar to Free | 
| Bibliography | Reduced from over 100 references to ~30; includes non-existent articles or mismatched journal attributions | Same reduction, but with fewer errors compared to Free | 
| Image generation | Same as Premium | Same as Free | 
| Accuracy of consumption data | Errors for Spain and South Korea; Japan is also inaccurate | Correct for Spain and South Korea; Japan is still inaccurate | 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.  | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Croce, A.; Ugo, F.; Roveta, A.; Bertolina, C.; Rinaudo, C.; Maconi, A.; Bertolotti, M. Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries. Geosciences 2025, 15, 395. https://doi.org/10.3390/geosciences15100395
Croce A, Ugo F, Roveta A, Bertolina C, Rinaudo C, Maconi A, Bertolotti M. Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries. Geosciences. 2025; 15(10):395. https://doi.org/10.3390/geosciences15100395
Chicago/Turabian StyleCroce, Alessandro, Francesca Ugo, Annalisa Roveta, Carlotta Bertolina, Caterina Rinaudo, Antonio Maconi, and Marinella Bertolotti. 2025. "Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries" Geosciences 15, no. 10: 395. https://doi.org/10.3390/geosciences15100395
APA StyleCroce, A., Ugo, F., Roveta, A., Bertolina, C., Rinaudo, C., Maconi, A., & Bertolotti, M. (2025). Strengths and Weaknesses of Artificial Intelligence in Exploring Asbestos History and Regulations Across Countries. Geosciences, 15(10), 395. https://doi.org/10.3390/geosciences15100395
        
