Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (456)

Search Parameters:
Keywords = insulation thickness and materials

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6882 KiB  
Article
Development and Evaluation of a Solar Milk Pasteurizer for the Savanna Ecological Zones of West Africa
by Iddrisu Ibrahim, Paul Tengey, Kelci Mikayla Lawrence, Joseph Atia Ayariga, Fortune Akabanda, Grace Yawa Aduve, Junhuan Xu, Robertson K. Boakai, Olufemi S. Ajayi and James Owusu-Kwarteng
Solar 2025, 5(3), 38; https://doi.org/10.3390/solar5030038 - 4 Aug 2025
Abstract
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of [...] Read more.
In many developing African countries, milk safety is often managed through traditional methods such as fermentation or boiling over firewood. While these approaches reduce some microbial risks, they present critical limitations. Firewood dependency contributes to deforestation, depletion of agricultural residues, and loss of soil fertility, which, in turn, compromise environmental health and food security. Solar pasteurization provides a reliable and sustainable method for thermally inactivating pathogenic microorganisms in milk and other perishable foods at sub-boiling temperatures, preserving its nutritional quality. This study aimed to evaluate the thermal and microbial performance of a low-cost solar milk pasteurization system, hypothesized to effectively reduce microbial contaminants and retain milk quality under natural sunlight. The system was constructed using locally available materials and tailored to the climatic conditions of the Savanna ecological zone in West Africa. A flat-plate glass solar collector was integrated with a 0.15 cm thick stainless steel cylindrical milk vat, featuring a 2.2 cm hot water jacket and 0.5 cm thick aluminum foil insulation. The system was tested in Navrongo, Ghana, under ambient temperatures ranging from 30 °C to 43 °C. The pasteurizer successfully processed up to 8 L of milk per batch, achieving a maximum milk temperature of 74 °C by 14:00 GMT. Microbial analysis revealed a significant reduction in bacterial load, from 6.6 × 106 CFU/mL to 1.0 × 102 CFU/mL, with complete elimination of coliforms. These results confirmed the device’s effectiveness in achieving safe pasteurization levels. The findings demonstrate that this locally built solar pasteurization system is a viable and cost-effective solution for improving milk safety in arid, electricity-limited regions. Its potential scalability also opens avenues for rural entrepreneurship in solar-powered food and water treatment technologies. Full article
Show Figures

Figure 1

13 pages, 2055 KiB  
Article
Design and Characterization of Ring-Curve Fractal-Maze Acoustic Metamaterials for Deep-Subwavelength Broadband Sound Insulation
by Jing Wang, Yumeng Sun, Yongfu Wang, Ying Li and Xiaojiao Gu
Materials 2025, 18(15), 3616; https://doi.org/10.3390/ma18153616 - 31 Jul 2025
Viewed by 197
Abstract
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, [...] Read more.
Addressing the challenges of bulky, low-efficiency sound-insulation materials at low frequencies, this work proposes an acoustic metamaterial based on curve fractal channels. Each unit cell comprises a concentric circular-ring channel recursively iterated: as the fractal order increases, the channel path length grows exponentially, enabling outstanding sound-insulation performance within a deep-subwavelength thickness. Finite-element and transfer-matrix analyses show that increasing the fractal order from one to three raises the number of bandgaps from three to five and expands total stop-band coverage from 17% to over 40% within a deep-subwavelength thickness. Four-microphone impedance-tube measurements on the third-order sample validate a peak transmission loss of 75 dB at 495 Hz, in excellent agreement with simulations. Compared to conventional zigzag and Hilbert-maze designs, this curve fractal architecture delivers enhanced low-frequency broadband insulation, structural lightweighting, and ease of fabrication, making it a promising solution for noise control in machine rooms, ducting systems, and traffic environments. The method proposed in this paper can be applied to noise reduction of transmission parts for ceramic automation production. Full article
Show Figures

Figure 1

19 pages, 4862 KiB  
Article
Fire Resistance of Steel Beams with Intumescent Coating Exposed to Fire Using ANSYS and Machine Learning
by Igor Džolev, Sofija Kekez-Baran and Andrija Rašeta
Buildings 2025, 15(13), 2334; https://doi.org/10.3390/buildings15132334 - 3 Jul 2025
Viewed by 411
Abstract
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. [...] Read more.
The thermal conductivity of steel is high compared to other materials such as concrete or timber. Therefore, fire protection measures are applied to prolong the duration between the onset of fire exposure and the final loss of load-bearing function of a steel structure. The most common passive fire protection measure is the application of intumescent coating (IC), a thin film that expands at elevated temperatures and forms an insulating char layer of lower thermal conductivity. This paper focuses on structural steel beams with IPE open-section profiles protected by a water-based IC and subjected to static and standard fire loading. ANSYS 16.0 is used to simulate heat transfer, with thermal conductivity function described by standard multivariate linear regression analysis, followed by mechanical analysis considering degradation of material mechanical properties at elevated temperatures. Simulations are conducted for all IPE profile sizes, with varying initial degrees of utilisation, beam lengths, and coating thicknesses. Results indicated fire resistance times ranging from 24 to 53.5 min, demonstrating a relatively good level of fire resistance even with the minimal IC thickness. Furthermore, artificial neural networks were developed to predict the fire resistance time of steel members with IC using varying numbers of hidden neurons and subset ratios. The model achieved a predictability level of 99.9% upon evaluation. Full article
(This article belongs to the Special Issue Advanced Analysis and Design for Steel Structure Stability)
Show Figures

Figure 1

30 pages, 3586 KiB  
Article
Acoustic Analysis of Soundproofing Materials Using Recycled Rubber from Automobiles
by Miroslav Badida, Miriam Andrejiova, Miriama Pinosova and Marek Moravec
Materials 2025, 18(13), 3144; https://doi.org/10.3390/ma18133144 - 2 Jul 2025
Viewed by 289
Abstract
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and [...] Read more.
This article provides a comprehensive analysis of the acoustic properties of recycled rubber crumb, examined in two forms—loose granular and compacted specimens. The aim was to compare their acoustic properties depending on the size of the fraction, the thickness of the sample, and the degree of compaction, with measurements performed using a model BSWA SW433 impedance tube in the frequency band 100–2500 Hz. Experimental samples of recycled rubber crumb were prepared with various thicknesses (2, 4.5, and 7 cm) and of various fractions (0–4 mm), and the granular samples were compacted under a pressure of 250–750 kPa. The results showed that the highest transmission loss (TL) is achieved by fine fractions at higher pressure and with greater sample thickness; Fraction 1 (below 1 mm) at a pressure of 750 kPa and a thickness of 7 cm had the best acoustic properties. Through regression analysis, mathematical models of the dependence of transmission loss on the monitored parameters for all types of samples (granular/compacted) were created. The regression analysis confirmed that the thickness, pressure, and size of the fraction significantly affect the acoustic properties of the material. Recycled rubber crumb therefore represents an efficient and environmentally sustainable alternative to traditional insulation materials, and optimizing its parameters enables a wide range of practical acoustic applications in construction, transport infrastructure, and manufacturing industries. Full article
(This article belongs to the Special Issue Novel Materials for Sound-Absorbing Applications)
Show Figures

Figure 1

29 pages, 5956 KiB  
Article
Energy Sustainability, Resilience, and Climate Adaptability of Modular and Panelized Buildings with a Lightweight Envelope Integrating Active Thermal Protection. Part 1—Parametric Study and Computer Simulation
by Veronika Mučková, Daniel Kalús, Simon Muhič, Zuzana Straková, Martina Mudrá, Anna Predajnianska, Mária Füri and Martin Bolček
Coatings 2025, 15(7), 756; https://doi.org/10.3390/coatings15070756 - 25 Jun 2025
Viewed by 520
Abstract
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have [...] Read more.
Modular and prefabricated buildings are advantageous in terms of construction, transport, energy efficiency, fixed costs, and the use of environmentally friendly materials. Our research aims to analyze, evaluate, and optimize a lightweight perimeter structure with an integrated active thermal protection (ATP). We have developed a mathematical–physical model of a wall fragment, in which we have analyzed several variants through a parametric study. ATP in the energy function of a thermal barrier (TB) represents a high potential for energy savings. Cold tap water (an average temperature of +6 °C, thermal untreated) in the ATP layer of the investigated building structure increases its thermal resistance by up to 27.24%. The TB’s mean temperature can be thermally adjusted to a level comparable to the heated space (e.g., +20 °C). For the fragment under consideration, optimizing the axial distance between the pipes (in the ATP layer) and the insulation thickness (using computer simulation) reveals that a pipe distance of 150 mm and an insulation thickness of 100 mm are the most suitable. ATP has significant potential in the design of sustainable, resilient, and climate-adaptive buildings, thereby meeting the UN SDGs, in particular the Sustainable Development Goal 7 ‘Affordable and Clean Energy’ and the Goal 13 ‘Climate Action’. Full article
Show Figures

Figure 1

11 pages, 6486 KiB  
Article
Surface Charging on Insulating Films with Different Thicknesses in UPS
by Lei Zhu and Xuefeng Xu
Appl. Sci. 2025, 15(12), 6846; https://doi.org/10.3390/app15126846 - 18 Jun 2025
Viewed by 290
Abstract
The conventional view holds that ultraviolet photoelectron spectroscopy (UPS) measurements are not applicable to insulating materials due to interference from charging effects. To avoid surface charging, researchers typically restrict valence band structure investigations to ultra-thin films. However, the UPS spectral performance of ultra-thin [...] Read more.
The conventional view holds that ultraviolet photoelectron spectroscopy (UPS) measurements are not applicable to insulating materials due to interference from charging effects. To avoid surface charging, researchers typically restrict valence band structure investigations to ultra-thin films. However, the UPS spectral performance of ultra-thin films tends to correlate with the substrate characteristics and film thickness, while charging effects, which still unavoidably occur, can also affect the realism of the results. This study systematically investigates the charging effects and valence band structural evolution in SiO2 insulating films with controlled thickness variations through XPS and UPS depth profiling. By analyzing spectral shifts, surface potential dynamics, and work function variations, three continuous regimes are identified. The results demonstrate that the surface potential undergoes abrupt intensification when exceeding critical thickness thresholds (about 8 nm), a phenomenon governed by substrate resistivity and charge compensation pathways. Conventional work function determination methods remain valid only when the actual effect of the applied bias exceeds the surface potential values. For thicker films, the limited efficacy of negative bias fails to compensate for the spectral shifts caused by surface charging, consequently rendering work function measurements unreliable. These findings provide critical guidance for optimizing UPS measurements and spectral interpretation in insulating films. Full article
Show Figures

Figure 1

16 pages, 4026 KiB  
Article
Analyzing the Effects of Sewing Compression on Thermal Efficiency in Baffled Jackets with an Advanced Walking Thermal Manikin
by Hassan Saeed, Adnan Ahmed Mazari and Md Tanzir Hasan
Textiles 2025, 5(2), 23; https://doi.org/10.3390/textiles5020023 - 16 Jun 2025
Viewed by 337
Abstract
Sewing is the major contributor to the manufacturing of protection wear for the survival of early human civilization against extreme weather conditions. Mechanized sewing witnessed developments during the middle of the 19th century, and tedious handwork was replaced by sewing machines. Despite the [...] Read more.
Sewing is the major contributor to the manufacturing of protection wear for the survival of early human civilization against extreme weather conditions. Mechanized sewing witnessed developments during the middle of the 19th century, and tedious handwork was replaced by sewing machines. Despite the modernization of sewing machine technologies, speed, material thicknesses, automation, and the introduction of AI in sewing, there is a longstanding problem of heat loss along stitch lines. The sewing material is compressed by the sewing thread, and this compression results in a bridge between the human body and the external cold environment. Garment technologists identify this problem and due to the lack of any technological solution, the problem is solved through complex material handling methods. A new sewing technological solution has been developed to solve this problem, called spacer stitching, which addresses the problem of compression along stitch lines. Two baffled jackets with sewn-through methods are prepared, one with the spacer stitching technology and the other with conventional sewing. Thermal resistance and insulation efficiency are evaluated using the Thermetrics thermal manikin “Sonny” under dynamic (walking) conditions to analyze the thermal resistance difference between the two types of sewing methods as well as the effects of motion on insulation. The results reveal that the jacket made with spacer stitching demonstrates significantly higher thermal resistance and enhanced wearer comfort compared to that produced using conventional methods. Additionally, variations in thermal resistance are observed across different zones of the thermal manikin. These findings highlight the potential of spacer stitching to improve thermal insulation and revolutionize high-performance outerwear design. Full article
Show Figures

Figure 1

25 pages, 1874 KiB  
Article
Performance Optimization of Building Envelope Through BIM and Multi-Criteria Analysis
by Stefano Cascone, Valeria Anastasi and Rosa Caponetto
Sustainability 2025, 17(12), 5294; https://doi.org/10.3390/su17125294 - 8 Jun 2025
Viewed by 620
Abstract
In response to the growing demand for sustainable and performance-driven building design, this study proposes an integrated digital methodology that combines Building Information Modeling (BIM), parametric scripting, and multi-criteria decision-making (MCDM) to optimize external wall assemblies. The approach leverages Autodesk Revit and Dynamo [...] Read more.
In response to the growing demand for sustainable and performance-driven building design, this study proposes an integrated digital methodology that combines Building Information Modeling (BIM), parametric scripting, and multi-criteria decision-making (MCDM) to optimize external wall assemblies. The approach leverages Autodesk Revit and Dynamo to automate the parametrization of insulation thickness while ensuring compliance with regulatory thresholds for thermal transmittance and surface mass. Acoustic performance is estimated using ECHO software, and a Weighted Sum Model (WSM) is applied to evaluate and rank configurations based on four criteria: economic cost, Global Warming Potential (GWP), embodied energy, and acoustic insulation. A case study involving 24 wall assemblies—generated from eight base stratigraphies and three insulation materials—demonstrates the method’s ability to balance environmental impact, occupant comfort, and construction feasibility. The results indicate that natural and bio-based materials, such as rammed earth and cork, offer the best overall performance, while conventional systems remain competitive in terms of cost. The proposed workflow reduces design time, increases transparency, and supports informed decision-making during early design stages. This research contributes to the digitalization of sustainability assessment in architecture by promoting integrative, replicable, and regulation-aligned practices for low-impact building envelopes. Full article
Show Figures

Figure 1

21 pages, 3347 KiB  
Article
Sustainable Building Materials: Optimization and Performance Analysis of Plaster/Wood Shavings Composites for Thermal Insulation
by Rachidi Mohammed Badr, Ennawaoui Amine, Bouyahia Fatima, Remaidi Mohammed, Derraz Meryiem, Mastouri Hicham, El Khoudri Mouad, Chhiti Younes and Ennawaoui Chouaib
J. Compos. Sci. 2025, 9(6), 289; https://doi.org/10.3390/jcs9060289 - 5 Jun 2025
Viewed by 555
Abstract
The development of sustainable insulation materials plays a crucial role in creating energy-efficient and environmentally responsible buildings. This study investigates eco-friendly composite materials based on plaster and wood shavings for insulation purposes. Incorporating wood shavings into plaster improves thermal insulation and mechanical behavior [...] Read more.
The development of sustainable insulation materials plays a crucial role in creating energy-efficient and environmentally responsible buildings. This study investigates eco-friendly composite materials based on plaster and wood shavings for insulation purposes. Incorporating wood shavings into plaster improves thermal insulation and mechanical behavior by enhancing porosity, reducing density, and improving bonding. As the wood shaving content increases from 5% to 15%, the thermal conductivity decreases from 0.252 W/mK to 0.099 W/mK, reflecting superior insulating performance. Concurrently, thermal resistance rises, showcasing enhanced insulation. The material also demonstrates increased flexibility, with the Young’s modulus decreasing at higher wood shaving proportions. Numerical simulations confirm these observations, indicating a 12 K temperature drop for composites with 15% wood shavings compared to a 6 K drop for pure plaster. This study suggests that an insulation thickness of 6–7 cm for the 15% composite strikes the optimal balance between performance and cost-efficiency. The findings underscore the potential of wood shavings to significantly enhance the thermal efficiency and mechanical adaptability of plaster composites, promoting sustainable and effective building insulation solutions. Full article
(This article belongs to the Special Issue Novel Cement and Concrete Materials)
Show Figures

Figure 1

50 pages, 4165 KiB  
Review
Sustainable Insulation Technologies for Low-Carbon Buildings: From Past to Present
by Pinar Mert Cuce
Sustainability 2025, 17(11), 5176; https://doi.org/10.3390/su17115176 - 4 Jun 2025
Viewed by 1088
Abstract
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. [...] Read more.
Building facade insulation technologies have evolved from primitive thermal barriers to high-performance, multifunctional systems that enhance energy efficiency and indoor comfort. Historical insulation methods, such as thick masonry walls and timber-based construction, have gradually been replaced by advanced materials and innovative facade designs. Studies indicate that a significant proportion of a building’s heat loss occurs through its external walls and windows, highlighting the need for effective insulation strategies. The development of double-skin facades (D-SFSs), adaptive facades (AFs), and green facades has enabled substantial reductions in heating and cooling energy demands. Materials such as vacuum insulation panels (VIPs), aerogels, and phase change materials (PCMs) have demonstrated superior thermal resistance, contributing to improved thermal regulation and reduced carbon emissions. Green facades offer additional benefits by lowering surface temperatures and mitigating urban heat island effects, while D-SF configurations can reduce cooling loads by over 20% in warm climates. Despite these advancements, challenges remain regarding the initial investment costs, durability, and material sustainability. The future of facade insulation technologies is expected to focus on bio-based and recyclable insulation materials, enhanced thermal performance, and climate-responsive facade designs. This study provides a comprehensive review of historical and modern facade insulation technologies, examining their impact on energy efficiency, sustainability, and future trends in architectural design. Full article
Show Figures

Figure 1

19 pages, 3010 KiB  
Article
Heat Transmittance and Weathering Performance of Thermally Modified Fir Wood Exposed Outdoors
by Anastasia Ioakeimidou, Vasiliki Kamperidou and Ioannis Barboutis
Forests 2025, 16(6), 945; https://doi.org/10.3390/f16060945 - 4 Jun 2025
Viewed by 425
Abstract
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have [...] Read more.
In order to rationally utilize wood materials, increase wood quality, and mitigate drawbacks, research on industrial techniques for timber protection and preservation is essential on a European and global scale. When high-quality timber enters the market, it offers structures and objects that have considerable added value. This study examines the performance of thermally treated (6 h at 170 °C and 200 °C) softwood species (fir wood) when exposed outdoors and applied on wooden building structures as cladding timber, among other structures. International standards were applied for the characterization of the untreated and thermally treated wooden boards after the treatments in terms of physical, hygroscopic, and surface properties. In contrast, all the boards (of dimensions 390 × 75 × 20 mm in length, width, thickness respectively) were exposed outdoors to direct sunlight and a combination of biotic and abiotic factors for a six-month period to mainly investigate the thermal properties (heat transfer analysis/insulation properties) using a real-time test in situ, as well as to investigate their potential resistance to natural weathering (color, surface roughness, visual inspection, etc.). Heat transfer in the thermally treated wood specimens was found to be much slower than that in the untreated specimens, which, combined with lower hygroscopicity and higher dimensional stability, reveals the high potential of thermally treated wood utilization in outdoor applications, such as cladding, facades, frames, and other outdoor elements. Full article
Show Figures

Figure 1

14 pages, 3834 KiB  
Article
Comparative Study of Thermal Runaway Propagation and Material Barrier Effect of Lithium-Ion Batteries
by Yikai Mao, Yaoyu Chen, Yanglin Ye, Yin Chen and Mingyi Chen
Batteries 2025, 11(6), 214; https://doi.org/10.3390/batteries11060214 - 29 May 2025
Viewed by 626
Abstract
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of [...] Read more.
Battery thermal runaway (TR) is usually accompanied by a large amount of heat release, as well as a jet of flame. This not only causes harm to the surrounding environment but even exacerbates thermal runaway propagation (TRP). At this stage, many types of materials are used to suppress TRP, and people tend to focus on improving one characteristic of the material while ignoring other properties of the material. This may leave potential pitfalls for TRP suppression, suggesting the need to study multiple properties of multiple materials. In order to better weigh the advantages and disadvantages of different types of materials when suppressing TRP, we compared three typical materials for suppressing TRP behavior in lithium-ion batteries (LIBs). These materials are phase change materials (PCM), ceramic fibers, and glass fibers. They are all available in two different thicknesses, 2 mm and 3 mm. The experiments started with a comparative analysis of the TR experimental phenomena in the presence of the different materials. Then, the temperature and mass loss of the battery module during TR were analyzed separately and comparatively. The 3 mm glass fiber showed the best inhibition effect, which extended the TR interval between cells 1 and 2 to 894 s and successfully inhibited the TR of cell 3. Compared with the blank group, the total mass loss decreased from 194.3 g to 182.2 g, which is a 6.2% reduction. Subsequently, we comprehensively analyzed the performance of the three materials in suppressing TRP by combining their suppressing mechanisms. The experimental results show that glass fiber has the best effect in suppressing TRP due to its excellent thermal insulation and mechanical properties. This study may provide new insights into how to trade-off material properties for TRP suppression in the future. Full article
(This article belongs to the Special Issue Advances in Lithium-Ion Battery Safety and Fire)
Show Figures

Graphical abstract

14 pages, 3791 KiB  
Article
Deposition of HfO2 by Remote Plasma ALD for High-Aspect-Ratio Trench Capacitors in DRAM
by Jiwon Kim, Inkook Hwang, Byungwook Kim, Wookyung Lee, Juha Song, Yeonwoong Jung and Changbun Yoon
Nanomaterials 2025, 15(11), 783; https://doi.org/10.3390/nano15110783 - 23 May 2025
Viewed by 1039
Abstract
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that [...] Read more.
Dynamic random-access memory (DRAM) is a vital component in modern computing systems. Enhancing memory performance requires maximizing capacitor capacitance within DRAM cells, which is achieved using high-k dielectric materials deposited as thin, uniform films via atomic layer deposition (ALD). Precise film deposition that minimizes electronic defects caused by charged vacancies is essential for reducing leakage current and ensuring high dielectric strength. In this study, we fabricated metal–insulator–metal (MIM) capacitors in high-aspect-ratio trench structures using remote plasma ALD (RP-ALD) and direct plasma ALD (DP-ALD). The trenches, etched into silicon, featured a 7:1 aspect ratio, 76 nm pitch, and 38 nm critical dimension. We evaluated the electrical characteristics of HfO2-based capacitors with TiN top and bottom electrodes, focusing on leakage current density and equivalent oxide thickness. Capacitance–voltage analysis and X-ray photoelectron spectroscopy (XPS) revealed that RP-ALD effectively suppressed plasma-induced damage, reducing defect density and leakage current. While DP-ALD offered excellent film properties, it suffered from degraded lateral uniformity due to direct plasma exposure. Given its superior lateral uniformity, lower leakage, and defect suppression, RP-ALD shows strong potential for improving DRAM capacitor performance and serves as a promising alternative to the currently adopted thermal ALD process. Full article
Show Figures

Graphical abstract

35 pages, 16910 KiB  
Article
A Simplified Model Validation for the Energy Assessment of Opaque Adaptive Façades with Variable Thermal Resistance
by Ismael Palacios Mackay, Laura Marín-Restrepo and Alexis Pérez-Fargallo
Energies 2025, 18(11), 2682; https://doi.org/10.3390/en18112682 - 22 May 2025
Viewed by 670
Abstract
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The [...] Read more.
Adaptive façades, also known as climate-adaptive building shells (CABSs), could make a significant contribution towards reducing the energy consumption of buildings and their environmental impacts. There is extensive research on glazed adaptive façades, mainly due to the available technology for glass materials. The technological development of opaque adaptive façades has focused on variable-thermal-resistance envelopes, and the simulation of this type of façade is a challenging task that has not been thoroughly studied. The aim of this study was to configure and validate a simplified office model that could be used for simulating an adaptive façade with variable thermal resistance via adaptive insulation thickness in its opaque part. Software-to-software model comparison based on the results of an EnergyPlus Building Energy Simulation Test 900 (BesTest 900)-validated model was used. Cooling and heating annual energy demand (kWh), peak cooling and heating (kW), and maximum, minimum, and average annual hourly zone temperature variables were compared for both the Adaptive and non-adaptive validated model. An Adaptive EnergyPlus model based on the BesTest 900 model, which uses the EnergyPlus SurfaceControl:MovableInsulation class list, was successfully validated and could be used for studying office buildings with a variable-thermal-resistance adaptive façade wall configuration, equivalent to a heavyweight mass wall construction with an External Insulation Finishing System (EIFS). An example of the Adaptive model in the Denver location is included in this paper. Annual savings of up to 26% in total energy demand (heating + cooling) was achieved and could reach up to 54% when electro-chromic (EC) glass commanded by a rule-based algorithm was added to the glazed part of the variable-thermal-resistance adaptive façade. Full article
(This article belongs to the Special Issue Advanced Building Materials for Energy Saving—2nd Edition)
Show Figures

Figure 1

18 pages, 5282 KiB  
Article
Climate Adaptability Analysis of Traditional Dwellings in Mountain Terraced Areas: A Case Study of ‘Mushroom Houses’ in the Hani Terraces of Yunnan, China
by Luyao Hu, Yinong Liu, Xinkai Li and Pengbo Yan
Atmosphere 2025, 16(5), 608; https://doi.org/10.3390/atmos16050608 - 16 May 2025
Viewed by 490
Abstract
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, [...] Read more.
This study examines the climate adaptability of traditional Hani ‘Mushroom Houses’ located in the rice terrace region of Honghe Hani Autonomous Prefecture, Yunnan, China. By analyzing 30 years of meteorological data, the study identifies the local climatic characteristics of high temperatures, high humidity, and significant diurnal temperature variations. The thermal comfort voting method was used to establish a quantitative relationship between the Physiological Equivalent Temperature (PET) index and residents’ subjective thermal perceptions, thereby assessing seasonal variations in thermal comfort. Field measurements of indoor and outdoor temperature, humidity, and wind speed were conducted in May and December 2023 to evaluate thermal interactions between rooms. This study demonstrated: (1) the critical roles of building orientation (e.g., northwest-facing design), functional layout (e.g., multi-story zoning), and structural forms (e.g., thick walls, thatched roofs) in regulating temperature and humidity. (2) Confirmed that Hani ‘Mushroom Houses’ stabilize indoor environments through passive strategies, including material selection (wood, rammed earth), natural ventilation (cross-draft design), and spatial organization (climate-buffering storage layers). (3) Provided empirical evidence for optimizing traditional dwellings (e.g., enhanced insulation, ventilation improvements) and advancing sustainable practices in similar climatic regions. Full article
(This article belongs to the Section Biometeorology and Bioclimatology)
Show Figures

Figure 1

Back to TopTop