Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,147)

Search Parameters:
Keywords = instrumental measurements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2779 KiB  
Article
Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator
by Martin Millicovsky, Luis Schierloh, Pablo Kler, Gabriel Muñoz, Juan Cerrudo, Albano Peñalva, Juan Reta and Martin Zalazar
Hardware 2025, 3(3), 9; https://doi.org/10.3390/hardware3030009 (registering DOI) - 7 Aug 2025
Abstract
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making [...] Read more.
Love wave surface acoustic wave (LSAW) sensors are crystal resonators known for their high potential for biosensing applications due to their high sensitivity, real-time detection, and compatibility with microfluidic systems. Commercial LSAW devices are costly, and manufacturing them is even more expensive, making accessibility a significant challenge. Additionally, their use requires specialized systems, and with only a few manufacturers dominating the market, most available solutions are proprietary, limiting customization and adaptability for specific research needs. In this work, a low-cost open-source LSAW biosensing system prototype was developed based on a commercially acquired resonator. The development integrates microfluidics through a polydimethylsiloxane (PDMS) chip, low-cost electronics, and both 3D printed ultraviolet (UV) resin and polylactic acid (PLA) parts. The instrument used for measurements was a vector network analyzer (VNA) that features open-source software. The code was customized for this study to enable real-time, label-free biosensing. Experimental validation consisted of evaluating the sensitivity and repeatability of the system, from the setup to its use with different fluids. Results demonstrated that the development is able to advance to more complex applications. Full article
Show Figures

Figure 1

10 pages, 466 KiB  
Article
Facial Proportions in Stunted and Non-Stunted Children Aged 7–72 Months: A Cross-Sectional Study in Bandung, Indonesia
by Najwa Anindita Hidayat, Deni Sumantri Latif and Arlette Suzy Setiawan
Children 2025, 12(8), 1037; https://doi.org/10.3390/children12081037 (registering DOI) - 7 Aug 2025
Abstract
Stunting is a chronic growth disorder that not only affects height but may also impair craniofacial development. Facial proportions, especially in the vertical dimension, may provide additional anthropometric insight into growth status among children. Objectives: To assess and compare the vertical and [...] Read more.
Stunting is a chronic growth disorder that not only affects height but may also impair craniofacial development. Facial proportions, especially in the vertical dimension, may provide additional anthropometric insight into growth status among children. Objectives: To assess and compare the vertical and horizontal facial proportions of stunted and non-stunted children, and to explore the potential of facial dimensions as supportive indicators for early-stunting detection in community-based settings. Methods: This cross-sectional analytical study involved 266 children aged 7–72 months (mean age 42.63 ± 13.82 months) from several community health centers in Bandung, Indonesia. Children were categorized as stunted or non-stunted based on WHO height-for-age Z-scores. Facial dimensions were measured directly by calibrated pediatric dentistry residents using manual instruments. The vertical dimensions included Nasion–Subnasale (N–SN) and Subnasale–Menton (SN–M), while horizontal dimensions included zygomatic width and intergonion width. Data were analyzed using the Mann–Whitney U test and Spearman correlation. Results: Significant differences were found in vertical facial dimensions between stunted and non-stunted children: median N–SN (32.4 mm vs. 33.6 mm; p = 0.003) and SN–M (42.5 mm vs. 45.1 mm; p < 0.001). No significant differences were observed in horizontal dimensions. All facial parameters showed a positive correlation with age (p < 0.001). No significant differences were found based on sex. Conclusions: Stunted children exhibited shorter vertical facial dimensions compared to their non-stunted peers, while horizontal dimensions remained stable across groups. Vertical facial proportions may serve as supportive indicators in the screening and monitoring of childhood stunting. This method has potential for integration into community-based growth monitoring using simple or digital anthropometric tools. Full article
(This article belongs to the Special Issue Multidisciplinary Approaches in Pediatric Orthodontics)
17 pages, 1000 KiB  
Review
Mindfulness-Based Art Interventions for Students: A Meta-Analysis Review of the Effect on Anxiety
by Zhihui Zhu, Lin Xiao, Nor Aniza Ahmad, Samsilah Roslan, Nur Aimi Nasuha Burhanuddin, Jianping Gao and Cuihua Huang
Behav. Sci. 2025, 15(8), 1078; https://doi.org/10.3390/bs15081078 (registering DOI) - 7 Aug 2025
Abstract
Anxiety has become an important issue affecting students’ mental health. There is some evidence that mindfulness-based art interventions (MBAIs) can reduce students’ anxiety symptoms. However, some studies have shown the opposite view. Therefore, it is necessary to explore whether MBAIs are effective in [...] Read more.
Anxiety has become an important issue affecting students’ mental health. There is some evidence that mindfulness-based art interventions (MBAIs) can reduce students’ anxiety symptoms. However, some studies have shown the opposite view. Therefore, it is necessary to explore whether MBAIs are effective in alleviating students’ anxiety. In this meta-analysis, we chose 17 articles that met the criteria for inclusion, involving a total of 1548 participants, to figure out how big an impact the interventions had on student anxiety as a whole. The results show that MBAIs can reduce students’ anxiety (g = −0.387, p = 0.000). The effect size varies based on different moderators, including learning stage, sample size, intervention type, research design, measuring instrument, and intervention duration. Intervention type, research design, and measuring instrument are significant moderators. Specifically, the mindfulness-based art intervention (MBAI) showed stronger effects than the mandala coloring activity. Single-group experimental designs showed significantly higher effect sizes than studies that included a control group, and studies that used other measurement instruments had significantly higher effect sizes than those that used the State–Trait Anxiety Inventory. On this basis, the researchers put forward specific suggestions based on MBAIs to alleviate the anxiety of students from different educational backgrounds. However, due to the nascent nature of this field, the number of included articles is relatively small. The effectiveness of the research needs further testing. Full article
Show Figures

Figure 1

21 pages, 610 KiB  
Article
The Effectiveness of Subsidizing Investments in Polish Agriculture: A Propensity Score Matching Approach
by Cezary Klimkowski
Agriculture 2025, 15(15), 1708; https://doi.org/10.3390/agriculture15151708 (registering DOI) - 7 Aug 2025
Abstract
Evaluation of the effectiveness of state policy instruments is a permanent element of economic science. This paper addresses the issue of investment support under the Common Agricultural Policy (CAP). Using data on Polish farms from 2015–2023, a Propensity Score Matching–Difference in Differences (PSM-DiD) [...] Read more.
Evaluation of the effectiveness of state policy instruments is a permanent element of economic science. This paper addresses the issue of investment support under the Common Agricultural Policy (CAP). Using data on Polish farms from 2015–2023, a Propensity Score Matching–Difference in Differences (PSM-DiD) analysis was conducted to assess changes in the economic results of agricultural producers that invest using this support. The comparison of the economic results achieved by supported investors with both non-investing agricultural producers and unsupported investors is a distinguishing element of this study. The relatively rarely used Competitivness Index (CI), which measures the ratio of earned income to the sum of the alternative use of the owned means of production, was used. The positive change in the CI during the analyzed period was 0.14 higher for supported investors than non-investors. No statistically significant change was found were compared to unsupported investors. A clear increase in income, total fixed assets, liabilities, and the level of production in the population of producers using support in relation to non-investors and investing without CAP support was also observed. However, in relationships with investors using their own funds, these differences were mainly due to the difference in the level of investments and were not statistically significant when introducing a correction regarding the scale of the investment. The obtained results remain in line with the results of research shown by a significant part of economists undertaking a similar issue. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

30 pages, 11384 KiB  
Article
An AI-Driven Multimodal Monitoring System for Early Mastitis Indicators in Italian Mediterranean Buffalo
by Maria Teresa Verde, Mattia Fonisto, Flora Amato, Annalisa Liccardo, Roberta Matera, Gianluca Neglia and Francesco Bonavolontà
Sensors 2025, 25(15), 4865; https://doi.org/10.3390/s25154865 - 7 Aug 2025
Abstract
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring [...] Read more.
Mastitis is a significant challenge in the buffalo industry, affecting both milk production and animal health and resulting in economic losses. This study presents the first fully automated AI-driven thermal imaging system integrated with robotic milking, specifically developed for the real-time, non-invasive monitoring of udder health in Italian Mediterranean buffalo. Unlike traditional approaches, the system leverages the synchronized acquisition of thermal images during milking and compensates for environmental variables through a calibrated weather station. A transformer-based neural network (SegFormer) segments the udder area, enabling the extraction of maximum udder skin surface temperature (USST), which is significantly correlated with somatic cell count (SCC). Initial trials demonstrate the feasibility of this approach in operational farm environments, paving the way for scalable, precision diagnostics of subclinical mastitis. This work represents a critical step toward intelligent, automated systems for early detection and intervention, improving animal welfare and reducing antibiotic use. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

27 pages, 1061 KiB  
Review
Instruments and Measurement Techniques to Assess Extremely Low-Frequency Electromagnetic Fields
by Phoka C. Rathebe and Mota Kholopo
Sensors 2025, 25(15), 4866; https://doi.org/10.3390/s25154866 - 7 Aug 2025
Abstract
This study presents a comprehensive evaluation and selection framework for extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. Recognizing the diversity of application environments and technical constraints, the framework addresses the challenges of selecting appropriate tools for specific scenarios. It integrates a structured, quantitative [...] Read more.
This study presents a comprehensive evaluation and selection framework for extremely low-frequency electromagnetic field (ELF-EMF) measurement instruments. Recognizing the diversity of application environments and technical constraints, the framework addresses the challenges of selecting appropriate tools for specific scenarios. It integrates a structured, quantitative approach through a weighted scoring matrix that evaluates instrumentation across six criteria: monitoring duration, sensitivity, environmental adaptability, biological/regulatory relevance, usability, and cost. Complementing this is a logic-based flowchart that visually guides decision-making based on user-defined operational needs. The framework is applied to a realistic occupational case study, demonstrating its effectiveness in producing evidence-based, scenario-sensitive instrument recommendations. This method provides stakeholders with a transparent and adaptable tool for ELF-EMF device selection. Full article
(This article belongs to the Special Issue Magnetic Field Sensing and Measurement Techniques)
Show Figures

Figure 1

11 pages, 810 KiB  
Article
Determination of Olive Maturity Stage and Optimal Harvest Interval of ‘Kalinjot’ Cultivar Using Destructive and Non-Destructive Methods
by Gjoke Vuksani, Angjelina Vuksani, Onejda Kyçyk, Florina Pazari and Tokli Thomaj
AgriEngineering 2025, 7(8), 253; https://doi.org/10.3390/agriengineering7080253 - 7 Aug 2025
Abstract
This study investigated the maturity and optimal harvest interval of the ‘Kalinjot’ olive cultivar in the Vlora region. Fruit samples were collected from six randomly selected trees over nine harvest dates at 10-day intervals from September to December 2024. Physical, chemical, [...] Read more.
This study investigated the maturity and optimal harvest interval of the ‘Kalinjot’ olive cultivar in the Vlora region. Fruit samples were collected from six randomly selected trees over nine harvest dates at 10-day intervals from September to December 2024. Physical, chemical, and instrumental analyses were conducted to evaluate parameters related to olive ripening and oil quality. Destructive methods measured the fruit diameter, fresh weight, maturity index, flesh firmness, and detachment index, while non-destructive techniques assessed the color and absorbance indices using portable Vis/NIR devices. Chemical analyses determined the fruit moisture, oil content, and total polyphenols. The results showed that the fruit diameter, fresh weight, and oil content increased with ripening, whereas the flesh firmness and detachment index decreased significantly. A negative correlation between the maturity index and color index was observed, along with strong positive correlations between the Kiwi-Meter’s IAD values, maturity index, and oil content. The optimal harvest interval was identified when olives reached up to 25.42% oil content and 1820.89 mg GAE/kg FW total polyphenols, ensuring both the technological and nutritional quality of the oil. Full article
(This article belongs to the Section Pre and Post-Harvest Engineering in Agriculture)
Show Figures

Figure 1

17 pages, 2763 KiB  
Article
Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol
by Fabiano Bini, Michela Franzò, Alessia Finti, Francesca Tiberi, Veronica Maria Teresa Grillo, Edoardo Covelli, Maurizio Barbara and Franco Marinozzi
Bioengineering 2025, 12(8), 850; https://doi.org/10.3390/bioengineering12080850 - 7 Aug 2025
Abstract
Background: Clinical assessment of balance and postural disorders is usually carried out through several common practices including tests such as the Subjective Visual Vertical (SVV) and Limit of Stability (LOS). Nowadays, several cutting-edge technologies have been proposed as supporting tools for stability evaluation. [...] Read more.
Background: Clinical assessment of balance and postural disorders is usually carried out through several common practices including tests such as the Subjective Visual Vertical (SVV) and Limit of Stability (LOS). Nowadays, several cutting-edge technologies have been proposed as supporting tools for stability evaluation. Extended Reality (XR) emerges as a powerful instrument. This proof-of-concept study aims to assess the feasibility and potential clinical utility of a novel MR-based framework integrating HoloLens 2, Wii Balance Board, and Azure Kinect for multimodal balance assessment. An innovative test is also introduced, the Innovative Dynamic Balance Assessment (IDBA), alongside an MR version of the SVV test and the evaluation of their performance in a cohort of healthy individuals. Results: All participants reported SVV deviations within the clinically accepted ±2° range. The IDBA results revealed consistent sway and angular profiles across participants, with statistically significant differences in posture control between opposing target directions. System outputs were consistent, with integrated parameters offering a comprehensive representation of postural strategies. Conclusions: The MR-based framework successfully delivers integrated, multimodal measurements of postural control in healthy individuals. These findings support its potential use in future clinical applications for balance disorder assessment and personalized rehabilitation. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

15 pages, 1477 KiB  
Article
Objectification of the Functional Myodiagnosis Muscle Test
by Josef Franz Mahlknecht, Eugen Burtscher, Ivan Ramšak, Christine Zürcher and Johannes Bernard
J. Clin. Med. 2025, 14(15), 5555; https://doi.org/10.3390/jcm14155555 - 6 Aug 2025
Abstract
Objective: This study aimed to investigate whether the subjective assessments of strong and weak muscles in the Functional Myodiagnosis muscle test (FMD-MT) can be objectively and reproducibly verified using physically measurable parameters. Additionally, we sought to evaluate the reliability of the manual muscle [...] Read more.
Objective: This study aimed to investigate whether the subjective assessments of strong and weak muscles in the Functional Myodiagnosis muscle test (FMD-MT) can be objectively and reproducibly verified using physically measurable parameters. Additionally, we sought to evaluate the reliability of the manual muscle test in order to reinforce the scientific evidence supporting this accepted, yet not widely adopted, complementary medicine method. Methods: In a crossover observational study, three experienced medical practitioners conducted the FMD-MT of the rectus femoris muscle on 24 healthy participants using a specially designed therapy bench, with all measurements recorded via an oscillogram. The study investigated the force–time integral, joint angle change, additional force load, mean force turning point 1, as well as the interrater reliability and validity of both examiner assessments and instrumental analyses for the two muscle reaction variants: strong and weak. Results: A significant difference between the response pattern of strong and weak muscles was identified for the force–time integral (p = 0.005), the change in joint angle (p < 0.001), and the additional force load (p = 0.001). No difference between strong and weak muscles could be detected regarding the force turning point 1 (p = 0.972). The examiners demonstrated 100% accuracy in identifying weak muscle reactions as weak, and 99.2% accuracy in identifying strong muscle reactions as strong (p = 0.316). The overall intra-class correlation coefficient was 0.984. The oscillogram correctly visualized weak muscle reactions in weak muscles with an accuracy of 81.7%, and strong muscle reactions in strong muscles with an accuracy of 86.7% (p = 0.289). Conclusions: The Functional Myodiagnosis muscle test (FMD-MT) enables a clear and objective differentiation between strong and weak muscles, with statistically significant differences observed in the force–time integral, additional force load, and joint angle changes. Under rigorously standardized testing conditions, the FMD-MT of the rectus femoris muscle demonstrates a validity rate of 99.6% and an excellent reliability (ICC 0.984). Consequently, the FMD muscle test proves to be a reliable, reproducible, and objective diagnostic method. Trial registration: German Register of Clinical Studies U1111-1212-6622. Full article
(This article belongs to the Section Sports Medicine)
Show Figures

Figure 1

34 pages, 710 KiB  
Article
Criteria for Consistent Broadband Pulse Compression and Narrowband Echo Integration Operation in Fisheries Echosounder Backscattering Measurements
by Per Lunde and Audun Oppedal Pedersen
Fishes 2025, 10(8), 389; https://doi.org/10.3390/fishes10080389 - 6 Aug 2025
Abstract
Generic and consistent formulations for measurement of the backscattering cross section (σbs) and the volume backscattering coefficient (sv) using broadband pulse compression and narrowband echo integration are derived, for small- and finite-amplitude sound propagation. The theory [...] Read more.
Generic and consistent formulations for measurement of the backscattering cross section (σbs) and the volume backscattering coefficient (sv) using broadband pulse compression and narrowband echo integration are derived, for small- and finite-amplitude sound propagation. The theory applies to backscattering operation of echosounders and sonars in general, with focus on fisheries acoustics. Formally consistent mathematical relationships for broadband and narrowband operation of such instruments are established that ensure consistency with the underlying power budget equations on average-power form, bridging a gap in prior literature. The formulations give full flexibility in choice of transmit signals and reference signals for pulse compression. Generic and general criteria for quantitative consistency between broadband and narrowband operation are derived, establishing new knowledge and analysis tools. These criteria become identical for small- and finite-amplitude sound propagation. In addition to general criteria, two special cases are considered, relevant for actual operation scenarios. The criteria serve to test and evaluate the extent to which the methods used in broadband pulse compression and narrowband echo integration operating modes are correct and consistent, and to identify and reduce experienced discrepancies between such methods. These are topics of major concern for quantitative acoustic stock assessment, underlying national and international fisheries quota regulations. Full article
(This article belongs to the Special Issue Applications of Acoustics in Marine Fisheries)
Show Figures

Figure 1

22 pages, 485 KiB  
Article
Development and Validation of a Self-Assessment Tool for Convergence Competencies in Humanities, Arts, and Social Sciences for Sustainable Futures in the South Korean Context
by Hyojung Jung, Inyoung Song and Younghee Noh
Sustainability 2025, 17(15), 7131; https://doi.org/10.3390/su17157131 - 6 Aug 2025
Abstract
Addressing global challenges such as climate change and inequality requires convergence competencies that enable learners to devise sustainable solutions. Such competencies have been emphasized in Science, Technology, Engineering, Mathematics (STEM) fields, but empirical research and assessment tools tailored to Humanities, Arts, and Social [...] Read more.
Addressing global challenges such as climate change and inequality requires convergence competencies that enable learners to devise sustainable solutions. Such competencies have been emphasized in Science, Technology, Engineering, Mathematics (STEM) fields, but empirical research and assessment tools tailored to Humanities, Arts, and Social Sciences (HASS) remain scarce. This study aimed to develop and validate a self-assessment tool to measure convergence competencies among HASS learners. A three-round Delphi survey with domain experts was conducted to evaluate and refine an initial pool of items. Items with insufficient content validity were revised or deleted, and all retained items achieved a Content Validity Ratio (CVR) of ≥0.800, with most scoring 1.000. The validated instrument was administered to 455 undergraduates participating in a convergence education program. Exploratory factor analysis identified five key dimensions: Convergent Commitment, Future Problem Awareness, Future Efficacy, Convergent Learning, and Multidisciplinary Inclusiveness, explaining 69.72% of the variance. Confirmatory factor analysis supported the model’s goodness-of-fit (χ2 (160) = 378.786, RMSEA = 0.054, CFI = 0.952), and the instrument demonstrated high internal consistency (Cronbach’s α = 0.919). The results confirm that the tool is both reliable and valid for diagnosing convergence competencies in HASS contexts, providing a practical framework for interdisciplinary learning and reflective engagement toward sustainable futures. Full article
(This article belongs to the Special Issue Sustainable Management for the Future of Education Systems)
Show Figures

Figure 1

33 pages, 1043 KiB  
Article
Uncovering the Psychometric Properties of Statistics Anxiety in Graduate Courses at a Minority-Serving Institution: Insights from Exploratory and Bayesian Structural Equation Modeling in a Small Sample Context
by Hyeri Hong, Ryan E. Ditchfield and Christian Wandeler
AppliedMath 2025, 5(3), 100; https://doi.org/10.3390/appliedmath5030100 - 6 Aug 2025
Abstract
The Statistics Anxiety Rating Scale (STARS) is a 51-item scale commonly used to measure college students’ anxiety regarding statistics. To date, however, limited empirical research exists that examines statistics anxiety among ethnically diverse or first-generation graduate students. We examined the factor structure and [...] Read more.
The Statistics Anxiety Rating Scale (STARS) is a 51-item scale commonly used to measure college students’ anxiety regarding statistics. To date, however, limited empirical research exists that examines statistics anxiety among ethnically diverse or first-generation graduate students. We examined the factor structure and reliability of STARS scores in a diverse sample of students enrolled in graduate courses at a Minority-Serving Institution (n = 194). To provide guidance on assessing dimensionality in small college samples, we compared the performance of best-practice factor analysis techniques: confirmatory factor analysis (CFA), exploratory structural equation modeling (ESEM), and Bayesian structural equation modeling (BSEM). We found modest support for the original six-factor structure using CFA, but ESEM and BSEM analyses suggested that a four-factor model best captures the dimensions of the STARS instrument within the context of graduate-level statistics courses. To enhance scale efficiency and reduce respondent fatigue, we also tested and found support for a reduced 25-item version of the four-factor STARS scale. The four-factor STARS scale produced constructs representing task and process anxiety, social support avoidance, perceived lack of utility, and mathematical self-efficacy. These findings extend the validity and reliability evidence of the STARS inventory to include diverse graduate student populations. Accordingly, our findings contribute to the advancement of data science education and provide recommendations for measuring statistics anxiety at the graduate level and for assessing construct validity of psychometric instruments in small or hard-to-survey populations. Full article
Show Figures

Figure 1

28 pages, 930 KiB  
Review
Financial Development and Energy Transition: A Literature Review
by Shunan Fan, Yuhuan Zhao and Sumin Zuo
Energies 2025, 18(15), 4166; https://doi.org/10.3390/en18154166 - 6 Aug 2025
Abstract
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive [...] Read more.
Under the global context of climate governance and sustainable development, low-carbon energy transition has become a strategic imperative. As a critical force in resource allocation, the financial system’s impact on energy transition has attracted extensive academic attention. This paper presents the first comprehensive literature review on energy transition research in the context of financial development. We develop a “Financial Functions-Energy Transition Dynamics” analytical framework to comprehensively examine the theoretical and empirical evidence regarding the relationship between financial development (covering both traditional finance and emerging finance) and energy transition. The understanding of financial development’s impact on energy transition has progressed from linear to nonlinear perspectives. Early research identified a simple linear promoting effect, whereas current studies reveal distinctly nonlinear and multidimensional effects, dynamically driven by three fundamental factors: economy, technology, and resources. Emerging finance has become a crucial driver of transition through technological innovation, risk diversification, and improved capital allocation efficiency. Notable disagreements persist in the existing literature on conceptual frameworks, measurement approaches, and empirical findings. By synthesizing cutting-edge empirical evidence, we identify three critical future research directions: (1) dynamic coupling mechanisms, (2) heterogeneity of financial instruments, and (3) stage-dependent evolutionary pathways. Our study provides a theoretical foundation for understanding the complex finance-energy transition relationship and informs policy-making and interdisciplinary research. Full article
Show Figures

Figure 1

13 pages, 1625 KiB  
Article
Difficulties of Eating and Masticating Solid Food in Children with Spinal Muscular Atrophy—Preliminary Study
by Ewa Winnicka, Adrianna Łabuz, Zbigniew Kułaga, Tomasz Grochowski and Piotr Socha
Nutrients 2025, 17(15), 2561; https://doi.org/10.3390/nu17152561 - 6 Aug 2025
Abstract
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: [...] Read more.
Background: Spinal muscular atrophy (SMA) is a neuromuscular disorder that frequently affects bulbar function, including feeding and swallowing. Although disease-modifying therapies have improved motor outcomes, little is known about the persistence of oromotor difficulties, particularly with regard to solid food intake. Objective: This study aimed to evaluate mastication and swallowing performance in children with SMA undergoing treatment, and to investigate the association between tongue strength and feeding efficiency. Methods: Twenty-two children with SMA types 1–3 were assessed using the Test of Masticating and Swallowing Solids in Children (TOMASS-C) and the Iowa Oral Performance Instrument (IOPI). Key TOMASS-C outcomes included the number of bites, chewing cycles, swallows, and total eating time. Tongue strength was measured in kilopascals. Results: Most participants showed deviations from age-specific normative values in at least one TOMASS-C parameter. Tongue strength was significantly lower than reference values in 86% of participants and correlated negatively with all TOMASS-C outcomes (p < 0.001). Children with weaker tongue pressure required more swallows, more chewing cycles, and longer eating times. Conclusions: Despite pharmacological treatment, children with SMA experience persistent difficulties in eating solid foods. Tongue strength may serve as a non-invasive biomarker for bulbar dysfunction and support dietary decision-making and therapeutic planning. Full article
Show Figures

Figure 1

14 pages, 1958 KiB  
Article
In Situ Response Time Measurement of RTD Based on LCSR Method
by Yanyong Song, Yi Liang, Zhenwen Zhang, Geyi Su and Mingxu Su
Sensors 2025, 25(15), 4826; https://doi.org/10.3390/s25154826 - 6 Aug 2025
Abstract
This study aims to overcome the limitations of conventional plunge tests for evaluating resistance temperature detector (RTD) response times under actual operating conditions, particularly in confined nuclear power plant piping. An in situ measurement device based on the loop current step response (LCSR) [...] Read more.
This study aims to overcome the limitations of conventional plunge tests for evaluating resistance temperature detector (RTD) response times under actual operating conditions, particularly in confined nuclear power plant piping. An in situ measurement device based on the loop current step response (LCSR) method was developed, with a conversion relationship to plunge test results established through numerical simulation and experimental validation. Investigations in a rotating water channel (over the flow velocity range of 0.2 to 0.6) confirmed excellent agreement in RTD response time, showing only 3.78% deviation between second-order-converted LCSR and plunge test measurements at 0.6 m/s. Both methods consistently revealed reduced RTD response times at higher flow velocities, with deviations consistently within ±10%, complying with nuclear instrumentation standards (NB/T 20069-2012). The LCSR method enables reliable in situ assessment while maintaining strong correlation with laboratory plunge tests. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop