Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator
Abstract
1. Introduction
2. Design
2.1. Sensing System
2.2. Module and PDMS Chip
2.3. Housings and Mounting Base
2.4. Custom NanoVNA Software
3. Build Instructions
3.1. Bill of Materials
3.2. Module and NanoVNA Software
3.3. PDMS Chip
3.4. Housings and Mounting Base
4. Operating Instructions
4.1. Sensor Cleaning and System Setup
- Soak for 10 min in a 2% SDS and distilled water solution.
- Rinse with distilled water.
- Dry with nitrogen gas.
- Attach the module to the system.
- Place the LSAW sensor on the module base.
- Mount the PDMS chip (with its hoses inserted) using module base guides.
- Place the lower part of housing A and housing B.
- Close the module, securing it with four screws.
- Connect the VNA to the SMA connectors on the top module.
- Close both housings with their upper parts and position the drain hose.
- Connect the inlet hose and the syringe to the 3-way stopcock.
- Place the syringe in the infusion pump and select the desired flow rate.
4.2. Custom Software
- Press the Connect button to automatically perform a simple sweep.
- While performing simple sweeps, adjust the sweep parameters until achieving the desired resolution and time characteristics.
- In the sweep configuration, click Find Resonance to set a working frequency and perform a simple sweep.
- Select the Continuous Sweep function and, based on the time required for a single sweep, choose the number of sweeps to perform (integer value).
- The Touchstone files will be stored in the selected directory.
- Once completed, data can be exported in Excel format by clicking Save Data.
5. Validation
5.1. PDMS Chip Effect and Fluid Leakage
5.2. System Stabilization
5.3. Sensitivity and Repeatability
5.4. Sensor Reutilization and Measurement Technique
5.5. System Comparative Overview
6. Conclusions
Supplementary Materials
Name | Type | Description |
S1 | Compressed archive (rar) | Python Software |
P1 | Compressed archive (rar) | 3D model printable parts |
F1 | Compressed archive (rar) | Article figures |
Author Contributions
Funding
Institutional Review Board Statement
Institutional Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J.; Zhang, X.; Wei, X.; Xue, Y.; Wan, H.; Wang, P. Recent Advances in Acoustic Wave Biosensors for the Detection of Disease-Related Biomarkers: A Review. Anal. Chim. Acta 2021, 1164, 338321. [Google Scholar] [CrossRef]
- Zida, S.I.; Lin, Y.; Khung, Y.L. Current Trends on Surface Acoustic Wave Biosensors. Adv. Mater. Technol. 2021, 6, 2001018. [Google Scholar] [CrossRef]
- Morales, M.A.; Halpern, J.M. Guide to Selecting a Biorecognition Element for Biosensors. Bioconjug. Chem. 2018, 29, 3231–3239. [Google Scholar] [CrossRef] [PubMed]
- Mandal, D.; Banerjee, S. Surface Acoustic Wave (SAW) Sensors: Physics, Materials, and Applications. Sensors 2022, 22, 820. [Google Scholar] [CrossRef] [PubMed]
- Hohmann, S.; Kögel, S.; Brunner, Y.; Schmieg, B.; Ewald, C.; Kirschhöfer, F.; Brenner-Weiß, G.; Länge, K. Surface Acoustic Wave (SAW) Resonators for Monitoring Conditioning Film Formation. Sensors 2015, 15, 11873–11888. [Google Scholar] [CrossRef]
- Durdaut, P.; Müller, C.; Kittmann, A.; Schell, V.; Bahr, A.; Quandt, E.; Knöchel, R.; Höft, M.; McCord, J. Phase Noise of SAW Delay Line Magnetic Field Sensors. Sensors 2021, 21, 5631. [Google Scholar] [CrossRef] [PubMed]
- Kim, G.; Cho, B.-K.; Oh, S.H.; Kim, K.-B. Feasibility Study for the Evaluation of Chicken Meat Storage Time Using Surface Acoustic Wave Sensor. J. Biosyst. Eng. 2020, 45, 261–271. [Google Scholar] [CrossRef]
- Rocha-Gaso, M.-I.; García, J.-V.; García, P.; March-Iborra, C.; Jiménez, Y.; Francis, L.-A.; Montoya, Á.; Arnau, A. Love Wave Immunosensor for the Detection of Carbaryl Pesticide. Sensors 2014, 14, 16434–16453. [Google Scholar] [CrossRef]
- Ramshani, Z.; Reddy, A.S.G.; Narakathu, B.B.; Wabeke, J.T.; Obare, S.O.; Atashbar, M.Z. SH-SAW Sensor Based Microfluidic System for the Detection of Heavy Metal Compounds in Liquid Environments. Sens. Actuators B Chem. 2015, 217, 72–77. [Google Scholar] [CrossRef]
- Matatagui, D.; Kolokoltsev, O.; Saniger, J.M.; Gràcia, I.; Fernández, M.J.; Fontecha, J.L.; Horrillo, M.D.C. Acoustic Sensors Based on Amino-Functionalized Nanoparticles to Detect Volatile Organic Solvents. Sensors 2017, 17, 2624. [Google Scholar] [CrossRef]
- Zhang, F.; Li, S.; Cao, K.; Wang, P.; Su, Y.; Zhu, X.; Wan, Y. A Microfluidic Love-Wave Biosensing Device for PSA Detection Based on an Aptamer Beacon Probe. Sensors 2015, 15, 13839–13850. [Google Scholar] [CrossRef]
- Mitsakakis, K.; Tserepi, A.; Gizeli, E. Integration of Microfluidics With a Love Wave Sensor for the Fabrication of a Multisample Analytical Microdevice. J. Microelectromech. Syst. 2008, 17, 1010–1019. [Google Scholar] [CrossRef]
- Amorim, D.; Sousa, P.C.; Abreu, C.; Catarino, S.O. A Review of SAW-Based Micro- and Nanoparticle Manipulation in Microfluidics. Sensors 2025, 25, 1577. [Google Scholar] [CrossRef] [PubMed]
- Qureshi, S.; Hanif, M.; Jeoti, V.; Stojanović, G.M.; Khan, M.T. Review of Fabrication of SAW Sensors on Flexible Substrates: Challenges and Future. Results Eng. 2024, 22, 102323. [Google Scholar] [CrossRef]
- Roudini, M.; Patel, B.; Winkler, A. Developments for SAW-Based Aerosol Generation: Miniaturized, Cost-Efficient, Mass-Producible, and Reproducible Systems. Aerosol Sci. Technol. 2024, 58, 752–763. [Google Scholar] [CrossRef]
- Vernon, J.; Canyelles-Pericas, P.; Torun, H.; Dai, X.; Ng, W.P.; Binns, R.; Busawon, K.; Fu, Y.-Q. Acousto-Pi: An Opto-Acoustofluidic System Using Surface Acoustic Waves Controlled with Open-Source Electronics for Integrated In-Field Diagnostics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2022, 69, 411–422. [Google Scholar] [CrossRef]
- Stoukatch, S.; Francis, L.A.; Dupont, F.; Kraft, M. Low-Cost Microfluidic Device Micromachining and Sequential Integration with SAW Sensor Intended for Biomedical Applications. Sens. Actuators Phys. 2021, 319, 112526. [Google Scholar] [CrossRef]
- Tarbague, H.; Lachaud, J.-L.; Destor, S.; Velutini, L.; Pillot, J.-P.; Bennetau, B.; Moynet, D.; Rebière, D.; Pistre, J.; Dejous, C. PDMS (Polydimethylsiloxane) Microfluidic Chip Molding for Love Wave Biosensor. ECS Trans. 2009, 23, 319–325. [Google Scholar] [CrossRef]
- Matatagui, D.; Fernandez, M.J.; Fontecha, J.; Santos, J.P.; Sayago, I.; Horrillo, M.C.; Gracia, I.; Cane, C. Liquid Characterization by Means of Love-Wave Device Combined with Microfluidic Platform. In Proceedings of the 2015 10th Spanish Conference on Electron Devices (CDE), Aranjuez, Spain, 11–13 February 2015; IEEE: Aranjuez, Spain, 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Rocha Gaso, M.I. Analysis, Implementation and Validation of a Love Mode Surface Acoustic Wave Device for Its Application as Sensor of Biological Processes in Liquid Media. Ph.D. Thesis, Editorial Universitat Politècnica de València, Valencia, Spain, 2013. [Google Scholar]
- Samarentsis, A.G.; Pantazis, A.K.; Tsortos, A.; Friedt, J.-M.; Gizeli, E. Hybrid Sensor Device for Simultaneous Surface Plasmon Resonance and Surface Acoustic Wave Measurements. Sensors 2020, 20, 6177. [Google Scholar] [CrossRef]
- Grabka, M.; Jasek, K.; Witkiewicz, Z. Surface Acoustic Wave Immunosensor for Detection of Botulinum Neurotoxin. Sensors 2023, 23, 7688. [Google Scholar] [CrossRef]
- Suder, J.; Bobovsky, Z.; Mlotek, J.; Vocetka, M.; Zeman, Z.; Safar, M. Experimental analysis of temperature resistance of 3d printed pla components. MM Sci. J. 2021, 2021, 4322–4327. [Google Scholar] [CrossRef]
- Ntimtsas, A.; Gizeli, E. Portable Surface Acoustic Wave Device Platform Coupled with a Paper-Based Capillary Fluidics for Real-Time Biosensing Applications. Sens. Actuators Phys. 2024, 378, 115814. [Google Scholar] [CrossRef]
- Viespe, C.; Grigoriu, C. Surface Acoustic Wave Sensors with Carbon Nanotubes and SiO2/Si Nanoparticles Based Nanocomposites for VOC Detection. Sens. Actuators B Chem. 2010, 147, 43–47. [Google Scholar] [CrossRef]
- Schlensog, M.D.; Gronewold, T.M.A.; Tewes, M.; Famulok, M.; Quandt, E. A Love-Wave Biosensor Using Nucleic Acids as Ligands. Sens. Actuators B Chem. 2004, 101, 308–315. [Google Scholar] [CrossRef]
- Veras, C.; Perreau, P.; Delprato, J.; Rolland, D.; Soulat, E.; Bousquet, M.; Mailley, P.; Alava, T.; Reinhardt, A.; Queste, S.; et al. Thin LiNbO 3 Shear Horizontal Acoustic Plate Mode Biosensor. In Proceedings of the 2024 IEEE Ultrasonics, Ferroelectrics, and Frequency Control Joint Symposium (UFFC-JS), Taipei, Taiwan, 22–26 September 2024; IEEE: New York City, NY, USA, 2024; pp. 1–3. [Google Scholar]
- El Fissi, L.; Friedt, J.-M.; Luzet, V.; Chérioux, F.; Martin, G.; Ballandras, S. A Love-Wave Sensor for Direct Detection of Biofunctionalized Nanoparticles. In Proceedings of the 2009 IEEE International Frequency Control Symposium Joint with the 22nd European Frequency and Time Forum, Besancon, France, 20–24 April 2009; IEEE: New York City, NY, USA, 2009; pp. 861–865. [Google Scholar]
- Josse, F.; Bender, F.; Cernosek, R.W. Guided Shear Horizontal Surface Acoustic Wave Sensors for Chemical and Biochemical Detection in Liquids. Anal. Chem. 2001, 73, 5937–5944. [Google Scholar] [CrossRef] [PubMed]
- Tamarin, O.; Rube, M.; Lachaud, J.L.; Raimbault, V.; Rebière, D.; Dejous, C. Mobile Acoustic Wave Platform Deployment in the Amazon River: Impact of the Water Sample on the Love Wave Sensor Response. Sensors 2019, 20, 72. [Google Scholar] [CrossRef]
- Agostini, M.; Cecchini, M. Ultra-High-Frequency (UHF) Surface-Acoustic-Wave (SAW) Microfluidics and Biosensors. Nanotechnology 2021, 32, 312001. [Google Scholar] [CrossRef] [PubMed]
- Go, D.B.; Atashbar, M.Z.; Ramshani, Z.; Chang, H.-C. Surface Acoustic Wave Devices for Chemical Sensing and Microfluidics: A Review and Perspective. Anal. Methods 2017, 9, 4112–4134. [Google Scholar] [CrossRef]
- Greco, G.; Agostini, M.; Cecchini, M. Ultra-High-Frequency Love Surface Acoustic Wave Device for Real-Time Sensing Applications. IEEE Access 2020, 8, 112507–112514. [Google Scholar] [CrossRef]
- Moretti, R.; Landi, E.; Macolic, S.; Fort, A.; Mugnaini, M.; Vignoli, V. Development of a Low-Cost Portable QCM Biosensing System for On-Site Diagnostics. In Proceedings of the 2024 IEEE International Symposium on Systems Engineering (ISSE), Perugia, Italy, 16–19 October 2024; IEEE: Perugia, Italy, 2024; pp. 1–8. [Google Scholar]
- Muñoz, G.; Millicovsky, M.; Cerrudo, J.; Peñalva, A.; Machtey, M.; Reta, J.; Torres, R.; Campana, D.; Zalazar, M. Exploring Tear Viscosity with Quartz Crystal Microbalance Technology. Rev. Sci. Instrum. 2024, 95, 075107. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yatsuda, H.; Goto, M.; Kondoh, J.; Liu, S.-H.; Wang, R. Application of Shear Horizontal Surface Acoustic Wave (SH-SAW) Immunosensor in Point-of-Care Diagnosis. Biosensors 2023, 13, 605. [Google Scholar] [CrossRef]
- Tang, Z.; Wu, W.; Yang, P.; Luo, J.; Fu, C.; Han, J.-C.; Zhou, Y.; Wang, L.; Wu, Y.; Huang, Y. A Review of Surface Acoustic Wave Sensors: Mechanisms, Stability and Future Prospects. Sens. Rev. 2024, 44, 249–266. [Google Scholar] [CrossRef]
Item | Brand/Model | Source | Cost [US$] | Quantity | Total [US$] |
---|---|---|---|---|---|
Insert | M3 | Amazon | 0.06 | 7 | 0.4 |
Nut | M3 | Amazon | 0.04 | 6 | 0.24 |
Screw | M3 × 12 | Amazon | 0.14 | 6 | 0.84 |
Screw | M4 × 25 | Amazon | 0.34 | 4 | 1.36 |
Screw | M3 × 20 | Amazon | 0.4 | 2 | 0.80 |
Screw | M3 × 15 | Amazon | 0.4 | 4 | 1.60 |
Pogo Pin | Mill-Max 0913 | DigiKey | 0.86 | 4 | 3.44 |
Shipping Estimation | - | JLC3DP | 39.11 | 1 | 39.11 |
UV Resin Base Module | - | JLC3DP | 0.66 | 1 | 0.66 |
UV Resin Top Module | - | JLC3DP | 0.55 | 1 | 0.55 |
PLA PDMS Mold | - | JLC3DP | 1.00 | 1 | 1.00 |
PLA Pressure Accessory | - | JLC3DP | 1.00 | 1 | 1.00 |
PLA Housing A Part 1 | - | JLC3DP | 1.00 | 1 | 1.00 |
PLA Housing A Part 2 | - | JLC3DP | 1.64 | 1 | 1.64 |
PLA Housing B Part 1 | - | JLC3DP | 3.58 | 1 | 3.58 |
PLA Housing B Part 2 | - | JLC3DP | 3.53 | 1 | 3.53 |
PLA Mounting Base Part 1 | - | JLC3DP | 26.72 | 1 | 26.72 |
PLA Mounting Base Part 2 | - | JLC3DP | 19.95 | 1 | 19.95 |
PLA Mounting Base Part 3 | - | JLC3DP | 11.73 | 1 | 11.73 |
PDMS Kit | Sylgard 184™ | Amazon | 180.00 | 1 | 180.00 |
Microfluidic Hose | 0.51 × 1.52 mm × 1 m | Amazon | 34.44 | 1 | 34.44 |
Three-way Stopcock | QWORK | Amazon | 0.85 | 1 | 0.85 |
NanoVNA | Type H | Amazon | 60.00 | 1 | 60.00 |
LSAW Sensor × 10 | AWS SNS000069A | AWSensors | 275.00 | 1 | 275 |
SMA Connector | Female 90° Solder PCB | Amazon | 2.00 | 2 | 4.00 |
- | - | - | - | Total | 673.44 |
Fluid (Stage) | Phase (Degree) | Syringe Change (Minute) | Stabilization (Minute) |
---|---|---|---|
Water [1] | −40.293 +/−0.016 | 20.872 | 0.000 |
PBS [1] | −41.076 +/−0.028 | 48.963 | 27.385 |
Water [2] | −40.334 +/−0.028 | 89.978 | 73.612 |
PBS [2] | −40.865 +/−0.031 | 120.129 | 99.006 |
Water [3] | −40.366 +/−0.030 | 155.847 | 131.396 |
PBS [3] | −40.951 +/−0.029 | 186.222 | 168.949 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Millicovsky, M.; Schierloh, L.; Kler, P.; Muñoz, G.; Cerrudo, J.; Peñalva, A.; Reta, J.; Zalazar, M. Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator. Hardware 2025, 3, 9. https://doi.org/10.3390/hardware3030009
Millicovsky M, Schierloh L, Kler P, Muñoz G, Cerrudo J, Peñalva A, Reta J, Zalazar M. Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator. Hardware. 2025; 3(3):9. https://doi.org/10.3390/hardware3030009
Chicago/Turabian StyleMillicovsky, Martin, Luis Schierloh, Pablo Kler, Gabriel Muñoz, Juan Cerrudo, Albano Peñalva, Juan Reta, and Martin Zalazar. 2025. "Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator" Hardware 3, no. 3: 9. https://doi.org/10.3390/hardware3030009
APA StyleMillicovsky, M., Schierloh, L., Kler, P., Muñoz, G., Cerrudo, J., Peñalva, A., Reta, J., & Zalazar, M. (2025). Low-Cost Open-Source Biosensing System Prototype Based on a Love Wave Surface Acoustic Wave Resonator. Hardware, 3(3), 9. https://doi.org/10.3390/hardware3030009