Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol
Abstract
1. Introduction
2. Materials and Methods
2.1. Hardware and Software
2.2. Description of Balance Assessment Exercises in MR
2.2.1. Innovative Dynamic Balance Assessment
2.2.2. Subjective Visual Vertical
2.3. Data Analysis on a Control Group of Healthy Participants
2.3.1. Experimental Setup and Protocol
2.3.2. Data Processing and Statistical Analysis
3. Results
3.1. SVV
3.2. IDBA
4. Discussion
4.1. SVV
4.2. IDBA
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hanim, N.; Khor, Y.Y.W.; Khor, K.X.; Abdullah, M.N.; Yeong, C.F.; Su, E.L.M. Review on conventional approaches to balance assessment. J. Hum. Centered Technol. 2023, 2, 50–59. [Google Scholar] [CrossRef]
- Pollock, A.S.; Durward, B.R.; Rowe, P.J.; Paul, J.P. What is balance? Clin Rehabil. 2000, 14, 402–406. [Google Scholar] [CrossRef]
- Nnodim, J.O.; Yung, R.L. Balance and its clinical assessment in older adults—A review. J. Geriatr. Med. Gerontol. 2015, 1, 003. [Google Scholar] [CrossRef]
- Wang, J.; Li, Y.; Yang, G.-Y.; Jin, K. Age-related dysfunction in balance: A comprehensive review of causes, consequences, and interventions. Aging Dis. 2024, 16, 714–737. [Google Scholar] [CrossRef]
- Horak, F.B. Clinical assessment of balance disorders. Gait Posture 1997, 6, 76–84. [Google Scholar] [CrossRef]
- McCollum, G.; Leen, T.K. Form and exploration of mechanical stability limits in erect stance. J. Mot. Behav. 1989, 21, 225–244. [Google Scholar] [CrossRef] [PubMed]
- Haworth, J.; Goble, D.; Pile, M.; Kendall, B. BTrackS limits of stability test is a reliable assessment of volitional dynamic postural control. Gait Posture 2020, 80, 298–301. [Google Scholar] [CrossRef] [PubMed]
- Heidary, Z.; Pirayeh, N.; Mehravar, M.; Shaterzadeh Yazdi, M.J. Evaluating the stability limits between individuals with mild and moderate-to-severe grades of forward head posture. Middle East J. Rehabil. Health Stud. 2024, 11, e144970. [Google Scholar] [CrossRef]
- Pickerill, M.L.; Harter, R.A. Validity and reliability of limits-of-stability testing: A comparison of two postural stability evaluation devices. J. Athl. Train. 2011, 46, 600–606. [Google Scholar] [CrossRef]
- Chetana, N.; Jayesh, R. Subjective visual vertical in various vestibular disorders by using a simple bucket test. Indian J. Otolaryngol. Head Neck Surg. 2015, 67, 180–184. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sakai, Y.; Funabora, Y.; Yokoe, K.; Aoyama, T.; Doki, S. Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm. IEEE Robot. Autom. Lett. 2025, 10, 1944–1951. [Google Scholar] [CrossRef]
- Zampogna, A.; Mileti, I.; Palermo, E.; Celletti, C.; Paoloni, M.; Manoni, A.; Mazzetta, I.; Costa, G.D.; Pérez-López, C.; Camerota, F.; et al. Fifteen years of wireless sensors for balance assessment in neurological disorders. Sensors 2020, 20, 3247. [Google Scholar] [CrossRef]
- Lesch, K.J.; Tuomisto, S.; Tikkanen, H.O.; Venojärvi, M. Validity and reliability of dynamic and functional balance tests in people aged 19–54: A systematic review. Int. J. Sports Phys. Ther. 2024, 19, 381–393. [Google Scholar] [CrossRef] [PubMed]
- Bertram, J.; Krüger, T.; Röhling, H.M.; Jelusic, A.; Mansow-Model, S.; Schniepp, R.; Wuehr, M.; Otte, K.; Bampouras, T.M. Accuracy and repeatability of the Microsoft Azure Kinect for clinical measurement of motor function. PLoS ONE 2023, 18, e0279697. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, M.; Lortie, C.; Guitton, M. Use of virtual reality tools for vestibular disorders rehabilitation: A comprehensive analysis. Adv. Med. 2015, 2015, 916735. [Google Scholar] [CrossRef] [PubMed]
- Rosiak, O.; Pietrzak, N.; Szczęsna, A.; Kulczak, I.; Zwoliński, G.; Kamińska, D.; Konopka, W.; Jozefowicz-Korczynska, M. The effect of immersive virtual reality on balance: An exploratory study on the feasibility of head-mounted displays for balance evaluation. Sci. Rep. 2024, 14, 3481. [Google Scholar] [CrossRef] [PubMed]
- Karnadipa, T.; Santoso, I.; Pratama, A.D.; Aulia, N.N. The effectiveness of virtual reality exercise to reduce risks of fall in elderly with balance disorders: A literature review. Proceedings 2022, 83, 2. [Google Scholar] [CrossRef]
- Blomqvist, S.; Seipel, S.; Engström, M. Using augmented reality technology for balance training in the older adults: A feasibility pilot study. BMC Geriatr. 2021, 21, 144. [Google Scholar] [CrossRef]
- Cunha, C.R.; Moreira, A.; Pires, L.; Fernandes, P.O. Using mixed reality and machine learning to assist caregivers in nursing homes and promote well-being. Procedia Comput. Sci. 2023, 219, 1081–1088. [Google Scholar] [CrossRef]
- Franzò, M.; Pica, A.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. A proof of concept combined using mixed reality for personalized neurorehabilitation of cerebellar ataxic patients. Sensors 2023, 23, 1680. [Google Scholar] [CrossRef]
- Franzò, M.; Pica, A.; Pascucci, S.; Marinozzi, F.; Bini, F. Hybrid system mixed reality and marker-less motion tracking for sports rehabilitation of martial arts athletes. Appl. Sci. 2023, 13, 2587. [Google Scholar] [CrossRef]
- Bini, F.; Franzò, M.; Finti, A.; Marinozzi, F. Feasibility study of wearable mixed reality platform to the vital signs remote monitoring. In 9th European Medical and Biological Engineering Conference: EMBEC 2024; Jarm, T., Šmerc, R., Mahnič-Kalamiza, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; pp. 256–265. [Google Scholar] [CrossRef]
- Franzò, M.; Pascucci, S.; Serrao, M.; Marinozzi, F.; Bini, F. Breakthrough in occupational therapy with mixed-reality exergaming for cerebellar ataxia patients. In Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea, 14–16 June 2023; pp. 1–4. [Google Scholar] [CrossRef]
- Franzò, M.; Bini, F.; Finti, A.; Di Lucchio, L.; Marinozzi, F. Feasibility study of wearable mixed reality platform to the vital signs remote monitoring. In Proceedings of the 2024 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Eindhoven, The Netherlands, 26–28 June 2024; pp. 1–6. [Google Scholar] [CrossRef]
- Margani, V.; Pascucci, S.; Talamonti, R.; Serani, E.; Bini, F.; Marinozzi, F.; Volpini, L.; Elfarargy, H.H.; Covelli, E.; Barbara, M. Augmented virtual reality in vestibular assessment: A dynamic gait application. Audiol. Neurotol. 2023, 28, 308–316. [Google Scholar] [CrossRef]
- Zhang, L.; Ouyang, S.; Chen, L.; Huang, H.; Ou, Y.; Tang, X. Evaluation of subjective visual vertical and horizontal in patients with acoustic neuroma based on virtual reality. Front. Neurosci. 2023, 17, 1264585. [Google Scholar] [CrossRef]
- Negrillo-Cárdenas, J.; Damas, M.; Martinez-Zarzuela, M.; Jiménez-Rejano, J.J.; Sancha-Ros, S.; Gil-Martínez, M. Towards the development of a balance assessment platform using immersive virtual reality and inertial sensors. Sensors 2021, 21, 235. [Google Scholar] [CrossRef]
- Ulozienė, I.; Totilienė, M.; Paulauskas, A.; Blažauskas, T.; Marozas, V.; Kaski, D.; Ulozas, V. Subjective visual vertical assessment with mobile virtual reality system. Medicina 2017, 53, 394–402. [Google Scholar] [CrossRef] [PubMed]
- Bonnet, C.T.; Kechabia, Y.R.; Magnani, I.; Polastri, P.F.; Rodrigues, S.T. Benefits of postural sway to succeed in goal-directed visual tasks. Hum. Mov. Sci. 2024, 97, 103277. [Google Scholar] [CrossRef] [PubMed]
- Albalwi, A.A.; Johnson, E.G.; Alharbi, A.A.; Daher, N.S.; Cordett, T.K.; Ambode, O.I.; Alshehri, F.H. Effects of head motion on postural stability in healthy young adults with chronic motion sensitivity. Arch Physiother. 2020, 10, 6. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.W.; Lee, J.W.; Cho, W.S.; Kim, A.N.; Lee, K.H. Analysis of balance ability dependent on the angle of the knee joint in females in their 20s. J. Phys. Ther. Sci. 2013, 25, 997–1000. [Google Scholar] [CrossRef]
- Sugama, A.; Tonoike, Y.; Seo, A. Investigation of the functional stability limits while squatting. Hum. Factors Erg. Manuf. 2020, 30, 195–203. [Google Scholar] [CrossRef]
Parameter Name | Measurement | Device | Formula |
---|---|---|---|
Movement velocity in plane for CoP and Head (m/s) | Distance from the center covered by the CoP in the attempt toward the single target | WBB; HL2 | |
Sway area for CoP and Head ( | Area of the ellipse fitted over the CoP or Head trajectory so that it contains 90% of all the data points | WBB; HL2 | |
Angles of knee flexion (°) | Means and standard deviations of flexion angles of each knee | Azure Kinect | |
Angles of trunk flexion and oscillation (°) | Means and standard deviations of flexion and oscillation angles of the trunk | Azure Kinect | Oscillation on Frontal Plane = |
Number of Participants | Angular Deviation (Degrees) |
---|---|
10 | 0 |
5 | 1 |
Angle | p-Value |
---|---|
Trunk frontal oscillation | 0.0100 |
Trunk lateral oscillation | 0.6117 |
Hip frontal oscillation | |
Knee flexion Dx | 0.9564 |
Knee flexion Sx | 0.6656 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bini, F.; Franzò, M.; Finti, A.; Tiberi, F.; Grillo, V.M.T.; Covelli, E.; Barbara, M.; Marinozzi, F. Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol. Bioengineering 2025, 12, 850. https://doi.org/10.3390/bioengineering12080850
Bini F, Franzò M, Finti A, Tiberi F, Grillo VMT, Covelli E, Barbara M, Marinozzi F. Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol. Bioengineering. 2025; 12(8):850. https://doi.org/10.3390/bioengineering12080850
Chicago/Turabian StyleBini, Fabiano, Michela Franzò, Alessia Finti, Francesca Tiberi, Veronica Maria Teresa Grillo, Edoardo Covelli, Maurizio Barbara, and Franco Marinozzi. 2025. "Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol" Bioengineering 12, no. 8: 850. https://doi.org/10.3390/bioengineering12080850
APA StyleBini, F., Franzò, M., Finti, A., Tiberi, F., Grillo, V. M. T., Covelli, E., Barbara, M., & Marinozzi, F. (2025). Extended Reality-Based Proof-of-Concept for Clinical Assessment Balance and Postural Disorders for Personalized Innovative Protocol. Bioengineering, 12(8), 850. https://doi.org/10.3390/bioengineering12080850