Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (258)

Search Parameters:
Keywords = innovative binders

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6187 KB  
Review
Sustainable Utilization of Coal Gangue in Asphalt Pavement: A Review on Design, Mechanism, and Performance
by Yanshun Jia, Mingyang Lan, Si Peng, Wang Zhang, Chundi Si, Jie Yu, Jiupeng Zhang, Yi Zhang and Zeqi Chen
Materials 2025, 18(24), 5666; https://doi.org/10.3390/ma18245666 - 17 Dec 2025
Viewed by 121
Abstract
Coal gangue, a solid waste from coal mining, has long been underutilized while posing environmental and safety risks. This study reviews the current research progress and future prospects of coal gangue as a resource in asphalt pavement. The physical and chemical properties of [...] Read more.
Coal gangue, a solid waste from coal mining, has long been underutilized while posing environmental and safety risks. This study reviews the current research progress and future prospects of coal gangue as a resource in asphalt pavement. The physical and chemical properties of coal gangue were summarized, and the environmental issues caused by its accumulation were highlighted. The effects of using coal gangue as aggregates or fillers in asphalt mixture were reviewed, along with its activation methods. The research progress on using coal gangue as an aggregate or a cementitious material in mixtures stabilized with inorganic binders was also examined, emphasizing the effects of binder content and coal gangue properties on mechanical and durability performance. The findings indicate that despite its inferior physical properties, coal gangue demonstrates practical feasibility as a pavement material when appropriately incorporated and activated. Proper content enabled coal gangue to meet asphalt mixture or base material requirements, while excessive content reduced low-temperature resistance and caused structural defects. Activated or modified methods can effectively enhance interfacial interaction, high-temperature stability, or structural densification of coal gangue. Recent studies have expressed enthusiasm for innovative activation or modification methods and AI-based performance optimization, while key challenges remain regarding high activation-energy demand, limited aggregate-related research, and an incomplete understanding of interfacial mechanisms. Full article
Show Figures

Figure 1

44 pages, 16029 KB  
Review
Research Progress on the Preparation and Performance of Recycled Mortars Using Solid Waste-Based Cementitious Materials
by Yanjiao Gao, Jiale Chen, Qing Li, Tian Su, Meng Li, Bangxiang Li and Xuefeng Mei
Coatings 2025, 15(12), 1483; https://doi.org/10.3390/coatings15121483 - 16 Dec 2025
Viewed by 241
Abstract
Solid waste-based cementitious materials (SWCMs) represent an innovative class of binders derived mainly from construction and demolition waste as well as industrial byproducts. Their application in recycled mortar offers a promising pathway to partially replace conventional cement, thereby advancing resource recycling and facilitating [...] Read more.
Solid waste-based cementitious materials (SWCMs) represent an innovative class of binders derived mainly from construction and demolition waste as well as industrial byproducts. Their application in recycled mortar offers a promising pathway to partially replace conventional cement, thereby advancing resource recycling and facilitating a low-carbon transition in the cement industry. This review systematically examines the properties, activation techniques, strength development, and corrosion resistance of recycled mortar prepared with SWCMs. Recycled powder (RP) and industrial solid waste have gelation potential, but their low reactivity requires activation treatment to enhance utilization efficiency. Activation methods, including thermal activation, carbonation, and alkali activation, effectively enhance reactivity and promote the formation of dense gel structures (e.g., C-(A)-S-H, N-A-S-H). While low replacement ratios optimize pore structure via the microfiller effect, higher ratios introduce excessive inert components, impairing mechanical properties. SWCMs demonstrate superior resistance to sulfate and chloride attacks, but their acid resistance is relatively limited. They also have excellent freeze–thaw resistance. SWCMs represent a viable and sustainable alternative to conventional cement, exhibiting commendable mechanical and durability properties when properly activated and formulated, thereby contributing to resource recycling and environmental sustainability in the cement industry. Full article
Show Figures

Figure 1

19 pages, 4580 KB  
Article
Synergistic Influence of Multi-Walled Carbon Nanotubes and Nanosilica Powder on Mechanical Performance of Mortar with Demolished Concrete Waste Aggregate and Polypropylene Fibers Addition Using Taguchi Design of Experiment
by Daniel Lepadatu, Loredana Emanuela Judele, Dana Roxana Bucur, Isabela Maria Simion, Ioana Sorina Entuc, Eduard Proaspat, Razvan Ionut Teodorescu, Abdessamad Kobi and Santiago Garcia-Granda
Materials 2025, 18(24), 5485; https://doi.org/10.3390/ma18245485 - 5 Dec 2025
Viewed by 358
Abstract
This study investigates the synergistic influence of multi-walled carbon nanotubes (MWC-NTs), nanosilica powder (NSP), and polypropylene fiber waste (PFW) on the mechanical performance of mortar incorporating demolished concrete waste aggregates (DCWA). The replacement of natural aggregates with DCWA typically results in strength reductions [...] Read more.
This study investigates the synergistic influence of multi-walled carbon nanotubes (MWC-NTs), nanosilica powder (NSP), and polypropylene fiber waste (PFW) on the mechanical performance of mortar incorporating demolished concrete waste aggregates (DCWA). The replacement of natural aggregates with DCWA typically results in strength reductions and weak interfacial transition zones; therefore, the combined use of nanomaterials and microfibers is proposed as a mitigation strategy. A Taguchi Design of Experiments (DOE) approach was employed to optimize mix parameters, including MWCNT dosage, NSP content, PFW volume fraction, and DCWA replacement level. Mortar mixtures were prepared with MWCNTs (0–0.1% by binder weight), NSP (0–2% by binder weight), PFW (0–0.3% by volume), and DCWA (0–20% replacement of fine sand). Mechanical performance was assessed through compressive and flexural strength tests. A combined statistical approach using the Pareto chart and ANOVA identified the most influential parameters and their respective contributions to the response variable. The innovative aspect of this research lies in the synergistic integration of MWCNTs, NSP, demolished concrete waste, and polypropylene fiber waste within the mortar matrix, with the incorporation of nanomaterials specifically intended to compensate for the strength reduction typically induced by the use of demolition concrete waste aggregates. Although a potential nano-scale synergy between MWCNTs and NSP was initially considered, the experimental results indicated that the most relevant synergistic effects occurred among broader mix parameters rather than specifically between the two nanomaterials. Even so, when assessed individually, both nanomaterials contributed to improving the mechanical characteristics of the mortar—particularly nanosilica, which demonstrated a more pronounced effect—yet these individual enhancements did not translate into a distinct synergistic interaction between MWCNTs and NSP. The Taguchi DOE proved to be an efficient tool for multiple factor analysis, enabling reliable identification of the most influential parameters with a minimum number of tests. Its application facilitated the development of mortar mixtures that effectively integrate demolition waste while achieving enhanced mechanical performance through nano- and micro-scale reinforcement. Full article
Show Figures

Figure 1

44 pages, 5249 KB  
Review
Sustainable Cold Mix Asphalt: A Comprehensive Review of Mechanical Innovations, Circular Economy Integration, Field Performance, and Decarbonization Pathways
by Muhammad Danyal Malik, Yongsheng Chen, Jian Mu and Ruikun Dong
Materials 2025, 18(23), 5452; https://doi.org/10.3390/ma18235452 - 3 Dec 2025
Viewed by 419
Abstract
Climate change presents a major challenge of the Anthropocene, with construction activities contributing about 23% of global CO2 emissions. Pavement engineering, particularly hot mix asphalt (HMA) production, generates roughly 350 million tons of CO2 annually due to high-temperature processes. Cold mix [...] Read more.
Climate change presents a major challenge of the Anthropocene, with construction activities contributing about 23% of global CO2 emissions. Pavement engineering, particularly hot mix asphalt (HMA) production, generates roughly 350 million tons of CO2 annually due to high-temperature processes. Cold mix asphalt (CMA) has emerged as a sustainable alternative, reducing energy use by 35–50% and emissions by 40–60% through ambient-temperature production with emulsified or cutback binders. Although early CMA formulations suffered from low mechanical strength, long curing times, and poor moisture resistance, recent innovations such as nano-modified binders, polymer and rubber additives, and optimized RAP utilization have greatly improved performance. Modern CMA now achieves enhanced rutting resistance (>4000 cycles/mm), moisture resistance (TSR > 85%), and rapid strength gain (24 h). This review synthesizes findings from over 160 studies to examine composition, property relationships, performance evaluation methods, life-cycle comparisons, and global field validations. Furthermore, it highlights gaps in predictive modeling, mix-design standardization, and circular economy integration to support the evolution of next-generation CMA technologies aligned with UN Sustainable Development Goals 9, 11, and 13. Full article
Show Figures

Graphical abstract

8 pages, 207 KB  
Editorial
Advanced Production, Processing and Characterization of Industrial Materials
by Jozef Mascenik and Tibor Krenicky
Materials 2025, 18(23), 5366; https://doi.org/10.3390/ma18235366 - 28 Nov 2025
Viewed by 279
Abstract
This Special Issue presents recent advances in the production, modelling, processing, and characterization of advanced industrial materials, highlighting the diversity and sophistication of contemporary research discussing metallic, polymeric, composite, and nano-structured systems. The collected contributions address key challenges in materials science, ranging from [...] Read more.
This Special Issue presents recent advances in the production, modelling, processing, and characterization of advanced industrial materials, highlighting the diversity and sophistication of contemporary research discussing metallic, polymeric, composite, and nano-structured systems. The collected contributions address key challenges in materials science, ranging from surface quality control, the development of novel machining and fabrication tools, and optimization of thermoplastic composite consolidation, to provide fundamental insights into additive manufacturing, rheology, and constitutive modelling. The showcased studies introduce innovative approaches to metrology, including advanced optical, fluorescence, and X-ray scattering techniques for characterizing nano-particles, microstructures, and thermal properties. The presented research also features investigations into the welding of dissimilar steels, binder jetting of stainless steel, and the influence of heat treatment on functional steel performance, alongside environmentally oriented research on natural-fibre energy devices and bio-based polymer composites. Further research topics include defect structures in doped crystals, low-temperature synthesis of oxide films, and mechanical behaviour of steels under extreme conditions. Collectively, these articles demonstrate the strong synergy between experimental methods, computational modelling, and industrial applications, underscoring the continued progress in materials reliability, surface engineering, and advanced manufacturing technologies. This Special Issue therefore provides a comprehensive overview of current trends and emerging directions, offering valuable methodological and conceptual insights in the field. Full article
26 pages, 7908 KB  
Article
Experimental Investigation of Polymer-Modified Bituminous Stone Mastic Asphalt Mixtures Containing Cellulose Acetate Recycled from Cigarette Butts
by Hande Varol Morova and Cengiz Özel
Materials 2025, 18(23), 5340; https://doi.org/10.3390/ma18235340 - 27 Nov 2025
Viewed by 443
Abstract
Stone Mastic Asphalt (SMA) mixtures exhibit superior performance under traffic loads due to the high content of coarse aggregates; however, the high bitumen content also leads to the problem of bitumen drainage from the mixture. Several studies have been conducted on the use [...] Read more.
Stone Mastic Asphalt (SMA) mixtures exhibit superior performance under traffic loads due to the high content of coarse aggregates; however, the high bitumen content also leads to the problem of bitumen drainage from the mixture. Several studies have been conducted on the use of stabilizing additives such as fibers, polymers, or mineral fillers to reduce binder drainage in SMA mixtures. In this study, however, an innovative and sustainable solution was developed to address the bitumen drainage problem encountered in SMA pavements and to improve the long-term performance of the mixture. In this context, the feasibility of using cellulose acetate (SG) material recycled from cigarette butts as an alternative fiber additive to the traditionally used cellulose fiber (SL) was investigated. This method aims to achieve both environmental benefits in terms of waste management and economic advantages in terms of additive materials. Additionally, the effect of using different SL contents (0.1%, 0.2%, 0.3%, 0.4%, 0.5%) on mixture performance was examined. Within this scope, both pure bitumen (B) and Elvaloy RET + PPA (E)-modified bitumen (1.6%, 1.7%, and 1.8% Elvaloy RET + 0.2% PPA) were used to produce both fiber-reinforced and non-fiber-reinforced SMA mixtures. Traditional and Superpave tests were conducted to determine the rheological and physical properties of the pure and modified binders. All SMA specimens were tested for Marshall stability and flow, Marshall quotient, indirect tensile strength (ITS), tensile strength ratio (TSR), Schellenberg bitumen drainage, sand patch, and Cantabro particle loss. Furthermore, a cost analysis was carried out to evaluate the economic effect of different fiber types and proportions. Among the SMA mixtures, the highest stability and resistance to moisture damage were achieved in the mixtures containing 1.6% Elvaloy RET + 0.2% PPA with 0.3–0.4% SG and 1.7% Elvaloy RET + 0.2% PPA with 0.3–0.4% SL, while the optimum surface texture depth was obtained in the mixtures containing 1.6–1.7% Elvaloy RET + 0.2% PPA with 0.3% SG. In conclusion, the Elvaloy RET + PPA modification enhanced the aging resistance of the bitumen, while the SG fibers used at 0.3–0.4% fiber content in the 1.6–1.7% Elvaloy RET + 0.2% PPA-modified series were identified as a promising mechanical and economic alternative to conventional SL fibers. Full article
Show Figures

Figure 1

29 pages, 2298 KB  
Review
Integrating 3D Printing and Additive Manufacturing into Personalized Medicine for Pharmaceuticals: Opportunities, Limitations, and Future Perspectives
by Nithin Vidiyala, Pavani Sunkishala, Preethi Mandati, Prashanth Parupathi and Dinesh Nyavanandi
Sci. Pharm. 2025, 93(4), 61; https://doi.org/10.3390/scipharm93040061 - 24 Nov 2025
Viewed by 658
Abstract
Over the last decade, additive manufacturing (AM) has been widely investigated for developing on-demand, patient-centric, and personalized medications. Among various AM techniques, fused deposition modeling (FDM), semi-solid extrusion (SSE), inkjet printing, binder jet printing, stereolithography (SLA), and selective laser sintering (SLS) have been [...] Read more.
Over the last decade, additive manufacturing (AM) has been widely investigated for developing on-demand, patient-centric, and personalized medications. Among various AM techniques, fused deposition modeling (FDM), semi-solid extrusion (SSE), inkjet printing, binder jet printing, stereolithography (SLA), and selective laser sintering (SLS) have been most widely studied for developing simple and complex pharmaceutical medications. Implementing the AM platform enables decentralized manufacturing of medications at the hospitals and clinical sites. The dose and release profiles of the dosage forms can be tailored based on patient needs, providing flexibility to the physician. In fact, streamlining the AM process into a continuous manufacturing process equipped with process analytical technology (PAT) tools will ensure the manufacturing and delivery of safe and efficacious medications to the patient population. Complex medications, such as polypills, which are complex and time-consuming to manufacture using traditional manufacturing techniques, can be printed quickly using the AM approach. The pediatric patient population can be attracted to medication by printing the dosage forms with a geometry of interest. The AM platform can be integrated with artificial intelligence (AI) and health records to accelerate drug development and tailor medications based on patient conditions. Despite the various advantages that the AM platform brings to the pharmaceutical field, a few limitations, such as scalability, material innovation, secondary processing, and regulatory evolution, need to be addressed. This review article compares the advantages and limitations of the existing AM techniques along with a note on the recent advancements and future perspectives. Full article
Show Figures

Graphical abstract

38 pages, 12996 KB  
Article
Street and Urban Muralism in Public Art: Conservation Between Evolution and Research in the Methods of the Istituto Centrale per Il Restauro
by Paola Mezzadri, Sara De Angelis, Rebecca Picca Orlandi, Michela Renna and Giancarlo Sidoti
Heritage 2025, 8(11), 483; https://doi.org/10.3390/heritage8110483 - 17 Nov 2025
Viewed by 658
Abstract
This paper presents an overview of a research line developed at the Istituto Centrale per il Restauro within the CHANGES (Cultural Heritage Active Innovation for Next-Gen Sustainable Society) project, funded under the Italian National Recovery and Resilience Plan. The research was developed in [...] Read more.
This paper presents an overview of a research line developed at the Istituto Centrale per il Restauro within the CHANGES (Cultural Heritage Active Innovation for Next-Gen Sustainable Society) project, funded under the Italian National Recovery and Resilience Plan. The research was developed in different phases: a first one dedicated to the study of the deep background and the state of the art in the ICR background: history, methodologies and research in the field; a second phase was dedicated to the selection of a specific urban art mural, as a key study with conservation problems connected to some of the principal preservation treatments related to the outdoor context; the mural was also identified as a beloved icon in the public space with a profound socio-cultural meaning for the community. Nido di Vespe, created in 2014 by the artist Lucamaleonte is part of a broader artistic project called M.U.Ro-Museum of Urban Art of Rome, an open-air public art museum located in the Quadraro district in Rome, designed by the artist Diavù. A third phase focused on the research in ICR laboratories, specifically addressing: cleaning, reintegration, and protection strategies adapted to dynamic outdoor environments. A multi-step cleaning system based on polyvinyl alcohol-borax semi-interpenetrated hydrogels loaded with nanostructured fluids was developed to selectively remove spray-paint vandalism while preserving the chemically similar original pictorial layers. The reintegration phase investigated acrylic and urea-aldehyde resins as binders to produce compatible, reversible, and UV-traceable retouching and infilling materials. For surface protection, multilayer coating systems incorporating nanoparticles with antimicrobial, photocatalytic, and UV-stabilizing properties were formulated to enhance durability and chromatic stability. Laboratory tests on mock-ups simulating typical street and urban art materials and morphologies showed satisfactory results, while diagnostic investigations on Nido di Vespe provided the reference data to calibrate the experiments with real mural conditions. Cleaning tests demonstrated promising removal efficiency, influenced by the chemical composition, thickness of the overpainted layers, and surface roughness. The reintegration system met the expected performance requirements, as the tested binders provided good results and allowed the development of compatible, reversible, and distinguishable solutions. Protective coatings showed good results in terms of chromatic stability and surface integrity; however, the long-term behavior of both reintegration, cleaning, and protection systems requires further evaluation. The results achieved so far support the development of sustainable and flexible conservation strategies for the conservation of contemporary street and urban murals and will guide the future application of the selected materials and methodologies in pilot conservation interventions on the mural chosen as a meaningful case study within the broader research. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

33 pages, 5084 KB  
Article
Cost–Performance Multi-Objective Optimization of Quaternary-Blended Cement Concrete
by Yassir M. Abbas, Ammar Babiker, Abobakr Elwakeel and Mohammad Iqbal Khan
Buildings 2025, 15(22), 4074; https://doi.org/10.3390/buildings15224074 - 12 Nov 2025
Viewed by 457
Abstract
The development of sustainable concrete capable of trading off the mechanical performance and cost remains a persistent scientific and engineering challenge. Although previous research has employed multi-objective optimization for binary and ternary cement blends, the simultaneous optimization of quaternary-blended systems, incorporating multiple supplementary [...] Read more.
The development of sustainable concrete capable of trading off the mechanical performance and cost remains a persistent scientific and engineering challenge. Although previous research has employed multi-objective optimization for binary and ternary cement blends, the simultaneous optimization of quaternary-blended systems, incorporating multiple supplementary cementitious materials, has received little systematic attention. This study addresses this gap by introducing an interpretable artificial intelligence (AI)-driven approach that integrates the Category Boosting (CatBoost) algorithm with the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) to model and optimize the compressive strength (CS) and total cost of quaternary-blended concretes. A curated database of 810 experimentally documented mixtures was used to train and validate the model. CatBoost achieved superior predictive performance (R2 = 0.987, MAE = 1.574 MPa), while Shapley additive explanations identified curing age, water-to-binder ratio, and Portland cement content as the dominant parameters governing CS. Multi-objective optimization produced Pareto-optimal elite mixtures achieving CS of 51–80 MPa, with a representative 60 MPa mix requiring approximately 62% less cement than conventional designs. The findings establish a scientifically grounded, interpretable methodology for data-driven design of low-carbon, high-performance concretes and demonstrate, for the first time, the viability of AI-assisted multi-criteria optimization for complex quaternary-blended systems. This framework offers both methodological innovation and practical guidance for implementing sustainable construction materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

34 pages, 10116 KB  
Article
Gas Evolution and Stability of Alkali-Activated MSWI Slag and Fly Ash: Implications for Safe Use and Energy Valorization
by Beata Łaźniewska-Piekarczyk, Grzegorz Dzido, Monika Czop and Małgorzata Kajda-Szcześniak
Energies 2025, 18(21), 5857; https://doi.org/10.3390/en18215857 - 6 Nov 2025
Viewed by 369
Abstract
This study investigates the valorization of municipal solid waste incineration (MSWI) residues—specifically bottom ash with slag (BA + S) and fly ash (FA)—through alkaline activation in geopolymer and cementitious systems. The research demonstrates that alkali activation significantly improves mechanical properties, with compressive strengths [...] Read more.
This study investigates the valorization of municipal solid waste incineration (MSWI) residues—specifically bottom ash with slag (BA + S) and fly ash (FA)—through alkaline activation in geopolymer and cementitious systems. The research demonstrates that alkali activation significantly improves mechanical properties, with compressive strengths up to 45.9 MPa for cement mortars and 33.2 MPa for geopolymers. A key innovation includes the quantification of hydrogen gas release during activation, with up to 72.5 dm3/kg H2 from BA + S, offering insights into binder design and potential green hydrogen recovery. Environmental leachability assessments confirmed that activated BA + S immobilizes heavy metals effectively, although FA showed higher barium and lead leaching. Morphological analysis (SEM, granulometry) revealed microstructural changes enhancing reactivity. Additionally, a practical swelling test is proposed for early detection of expansion risk. The findings contribute to the development of sustainable, high-performance binders from waste, with implications for circular economy and energy valorization strategies. Full article
Show Figures

Graphical abstract

20 pages, 3412 KB  
Article
Development of a Mineral Binder for Wood Wool Acoustic Panels with a Reduced Carbon Footprint
by Aleksandrs Korjakins, Genadijs Sahmenko, Ina Pundiene, Jolanta Pranckevicienė and Vjaceslavs Lapkovskis
Materials 2025, 18(21), 4999; https://doi.org/10.3390/ma18214999 - 1 Nov 2025
Viewed by 773
Abstract
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, [...] Read more.
The construction industry’s reliance on Portland cement (PC) significantly contributes to global CO2 emissions, driving the search for sustainable binder alternatives. This study develops and evaluates novel mineral binder systems for wood wool acoustic panels with a reduced carbon footprint. Alternative binders, including calcium aluminate cement (CAC), magnesium oxychloride cement (MOC), and gypsum–cement–pozzolan (GCP) hybrids, were combined with additives such as metakaolin and liquid glass. Mechanical testing demonstrated that 20–30% metakaolin and liquid glass composites achieved flexural strengths of up to 2.65 MPa and densities above 490 kg/m3. The GCP system showed synergistic improvements in flexural and compressive strengths by nearly 50%, along with enhanced dimensional stability and water resistance. Life cycle assessment indicated substantial CO2 emission increases, particularly for the MOC and CAC formulations, compared to conventional Portland cement-based panels. The carbon footprint of the binder system consisting of GCP is approximately 5.644 kg of CO2 equivalent per functional unit compared to magnesium chloride binder systems, which reach up to 10.84 kg CO2 eq., and white Portland cement systems, which are around 6.19 kg CO2 eq. The three-component GCP binder system offers the best balance of mechanical performance and minimised environmental impact. Key raw material contributors to the ecological load are cement (various types), MgO, MgCl2, and metakaolin, highlighting the importance of optimising binder formulations to reduce carbon emissions. The GCP system, in particular, demonstrates unprecedented synergistic improvements in flexural and compressive strengths, dimensional stability, and water resistance while minimising CO2 emissions. Current work sets a new benchmark for sustainable building materials by offering an eco-innovative pathway towards low-carbon, high-performance wood wool acoustic panels, aligning with global decarbonisation goals. Full article
Show Figures

Figure 1

61 pages, 13924 KB  
Review
Agar-Based Composites in Sustainable Energy Storage: A Comprehensive Review
by Zeenat Akhter, Sultan Ullah, Arvydas Palevicius and Giedrius Janusas
Energies 2025, 18(21), 5618; https://doi.org/10.3390/en18215618 - 25 Oct 2025
Cited by 1 | Viewed by 1406
Abstract
The shift towards renewable resources has positioned agar, a natural seaweed polysaccharide, as a pivotal and sustainable material for developing next-generation energy storage technologies. This review highlights the transformative role of agar-based composites as a game-changing and eco-friendly platform for supercapacitors, batteries, and [...] Read more.
The shift towards renewable resources has positioned agar, a natural seaweed polysaccharide, as a pivotal and sustainable material for developing next-generation energy storage technologies. This review highlights the transformative role of agar-based composites as a game-changing and eco-friendly platform for supercapacitors, batteries, and fuel cells. Moving beyond the traditional synthetic polymers, agar introduces a novel paradigm by leveraging its natural gelation, superior film-forming ability, and inherent ionic conductivity to create advanced electrolytes, binders, and matrices. The novelty of this field lies in the strategic fabrication of synergistic composites with polymers, metal oxides, and carbon materials, engineered through innovative techniques like electrospinning, solvent casting, crosslinking, 3D printing, and freeze-drying. We critically examine how these innovative composites are breaking new ground in enhancing device efficacy, flexibility, and thermal stability. Ultimately, this analysis not only consolidates the current landscape but also charts future pathways, positioning agar-based materials as a pivotal and sustainable solution for powering the future. Full article
Show Figures

Figure 1

23 pages, 3246 KB  
Article
Characterization of Asphalt Binder Properties Modified with One-Time Use Masks: Zero Shear Viscosity, Fatigue Life, and Low-Temperature Performance
by Alaaeldin A. A. Abdelmagid, Guanghui Jin, Guocan Chen, Nauman Ijaz, Baotao Huang, Yiming Li and Aboubaker I. B. Idriss
Materials 2025, 18(21), 4861; https://doi.org/10.3390/ma18214861 - 23 Oct 2025
Viewed by 471
Abstract
The widespread adoption of one-time use masks (OUM) has resulted in a substantial new stream of polymer waste, posing a formidable challenge to circular economy and waste management initiatives. Concurrently, the pavement industry continuously seeks innovative modifiers to enhance the durability and service [...] Read more.
The widespread adoption of one-time use masks (OUM) has resulted in a substantial new stream of polymer waste, posing a formidable challenge to circular economy and waste management initiatives. Concurrently, the pavement industry continuously seeks innovative modifiers to enhance the durability and service life of asphalt binders. This study presents a novel approach to waste valorization by systematically investigating the potential of shredded OUM as a polymer modifier for asphalt. The research evaluates the impact of various OUM concentrations (up to 10% by weight) on the binder’s chemical, rheological, and performance characteristics. Fourier-transform infrared spectroscopy (FTIR) indicated that the modification is a physical blending process, with the OUM fibers forming a stable reinforcing network within the asphalt matrix, a finding supported by excellent high-temperature storage stability. Rheological assessments revealed a remarkable enhancement in high-temperature performance, with the Zero-Shear Viscosity (ZSV) increasing by nearly 700% (from approximately 450 Pa·s to about 3500 Pa·s) at 10% OUM content, signifying superior rutting resistance. Furthermore, fatigue life, evaluated via the Linear Amplitude Sweep (LAS) test, improved by up to 168% at a 2.5% strain level. However, these benefits were accompanied by a detrimental effect on low-temperature properties, where creep stiffness at −12 °C increased by over 50% and the m-value dropped below the critical 0.30 threshold, indicating a heightened risk of thermal cracking. The study concludes that OUM is a highly effective modifier for improving high-temperature and fatigue performance, with up to 10% content being viable. This research establishes a promising circular economy pathway, transforming a problematic waste stream into a valuable resource for constructing more resilient and sustainable pavement infrastructure. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

34 pages, 100622 KB  
Article
Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders
by Magdalena Rudziewicz, Katarzyna Mróz, Marcin Maroszek, Paweł Wołkanowski and Marek Hebda
Materials 2025, 18(21), 4829; https://doi.org/10.3390/ma18214829 - 22 Oct 2025
Viewed by 430
Abstract
In response to escalating environmental concerns, the construction industry is under growing pressure to adopt sustainable practices. As a major consumer of natural resources and a significant emitter of greenhouse gases, it paradoxically holds the potential to become a leader in green transformation. [...] Read more.
In response to escalating environmental concerns, the construction industry is under growing pressure to adopt sustainable practices. As a major consumer of natural resources and a significant emitter of greenhouse gases, it paradoxically holds the potential to become a leader in green transformation. This study investigates the development of innovative, fire-resistant, and alkali-activated hybrid binder foams incorporating recycled materials: fly ash, coal slag, and ground brick waste, as sustainable alternatives to traditional building materials. The fire resistance performance at a technical scale and the thermal behavior of fiber-reinforced, alkali-activated hybrid binder foams synthesized from recycled aluminosilicate precursors were determined. The properties of unreinforced composite were compared with the composites reinforced with merino wool, basalt fibers, polypropylene fibers, and coconut fiber. Small-scale fire-resistance tests revealed that merino wool-reinforced composites exhibited the best thermal insulation performance, maintaining structural integrity, that is, retaining shape and continuity without delamination or collapse for 83 min under fire exposure. Analyses combining chemical characterization (X-ray fluorescence) with microstructural methods (computed tomography and colorimetry) confirmed that fire performance is strongly influenced not only by fiber type but also by pore distribution, phase composition, and oxide migration under thermal loading. These findings demonstrate the potential of fiber-reinforced foamed, alkali-activated hybrid binder as eco-efficient, printable materials for fire-safe and thermally demanding construction applications. Full article
Show Figures

Figure 1

20 pages, 7623 KB  
Article
Comparative Assessment of Cement and Geopolymer Immobilization Approaches: Short-Term Leaching Performance of Thermally Treated Ion Exchange Resin Waste Forms
by Raúl Fernández, Pedro Perez-Cortes, Esther Irene Marugán, Pilar Padilla-Encinas, Francisca Puertas, Inés García-Lodeiro, Ana Isabel Ruiz, Jaime Fernando Cuevas, María Jesús Turrero, María Cruz Alonso and Elena Torres
Appl. Sci. 2025, 15(20), 11196; https://doi.org/10.3390/app152011196 - 19 Oct 2025
Viewed by 717
Abstract
Cementation using Ordinary Portland Cement (OPC) remains the standard method for conditioning low- and intermediate-level radioactive waste, including Spent Ion Exchange Resins (SIERs). This work presents an integrated strategy involving thermal pretreatment to minimize waste volume and eliminate organic constituents, followed by encapsulation [...] Read more.
Cementation using Ordinary Portland Cement (OPC) remains the standard method for conditioning low- and intermediate-level radioactive waste, including Spent Ion Exchange Resins (SIERs). This work presents an integrated strategy involving thermal pretreatment to minimize waste volume and eliminate organic constituents, followed by encapsulation within three distinct binders: CEM I, CEM III, and a novel one-part geopolymer. The one-part geopolymer system represents a significant operational innovation, enabling safe and simple “just-add-water” processing and avoiding the need to handle alkaline solutions. The proposed geopolymer, synthesized from metakaolin, blast furnace slag, and solid sodium silicate, was systematically benchmarked against conventional OPC matrices (CEM I, CEM III) by assessing their capacity to immobilize thermally treated SIER ashes under accelerated leaching conditions. For benchmarking, leaching indices for Cs and Sr were determined following the ANSI/ANS 16.9 standard protocol in three representative environments simulating operational and long-term repository scenarios, providing a quantitative evaluation of radionuclide retention and matrix durability. Results indicate that the one-part geopolymer improved leaching indices for Cs and Sr compared to both cementitious binders and complied with regulatory waste acceptance criteria. The comparative results highlight the potential of geopolymer technology to increase waste loading efficiencies and improve long-term safety, establishing a robust framework for future radioactive waste management approaches. Full article
(This article belongs to the Special Issue Radioactive Waste Treatment and Environment Recovery)
Show Figures

Figure 1

Back to TopTop