Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders
Abstract
1. Introduction
1.1. Fire-Resistant and Reaction-Foamed Geopolymer Composites
1.2. Fiber-Reinforced Geopolymer-Based Materials
2. Materials and Methods
2.1. Materials
2.2. Mixture Preparation Procedure
2.3. Methods
2.3.1. Apparent Density
2.3.2. Small Screening Tests for Fire Resistance
- (a)
- Monitoring of a self-load-bearing capacity. The self-load-bearing capacity was assessed based on the time the slab could support its own weight before collapsing.
- (b)
- Monitoring of slab integrity. Integrity was evaluated as the duration the slab could prevent flames from passing through to the unexposed side. Integrity was considered lost once flames were detected on the unexposed surface.
- (c)
- Monitoring of thermal insulation. Thermal insulation was determined by measuring the temperature increase on the unexposed surface. Specifically, it was assessed as the time taken for the average temperature (based on three measurements) to rise by 140 °C above the initial value.
2.3.3. Moisture Content
2.3.4. Colorimetry
2.3.5. XRF Analysis of Distinct Layer Compositions
2.3.6. Computed Tomography Analysis of Porosity
2.3.7. Microscopy Analysis
3. Results and Discussion
3.1. Volumetric and Moisture Changes During Curing
3.2. Small Screening Tests for Fire Resistance
3.3. Colorimetry
3.4. XRF Analysis of Distinct Layer Compositions
3.5. Computed Tomography Analysis of Porosity
3.6. Optical Microscopy Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Y.; Ye, G.; Yang, E.-H.; Zhou, A.; Liu, T. Pore Pressure Build-Up and Explosive Spalling in Concrete at Elevated Temperature: A Review. Constr. Build. Mater. 2021, 284, 122818. [Google Scholar] [CrossRef]
- Amran, M.; Murali, G.; Makul, N.; Kurpinska, M. Fire Induced Falling of Ultra High Performance Concrete: A Systematic Critical Review. Constr. Build. Mater. 2023, 373, 130869. [Google Scholar] [CrossRef]
- Klima, K.M.; Schollbach, K.; Brouwers, H.J.H.; Yu, Q. Thermal and Fire Resistance of Class F Fly Ash-Based Geopolymers—A Review. Constr. Build. Mater. 2022, 323, 126529. [Google Scholar] [CrossRef]
- Amiri, M.; Aryanpour, M.; Porhonar, F. Microstructural Study of Concrete Performance after Exposure to Elevated Temperatures via Considering C–S–H Nanostructure Changes. High. Temp. Mater. Process. 2022, 41, 224–237. [Google Scholar] [CrossRef]
- Kizilkanat, A.B.; Yüzer, N.; Kabay, N. Thermo-Physical Properties of Concrete Exposed to High Temperature. Constr. Build. Mater. 2013, 45, 157–161. [Google Scholar] [CrossRef]
- Alsharari, F.; Iftikhar, B.; Uddin, M.A.; Deifalla, A. Data-Driven Strategy for Evaluating the Response of Eco-Friendly Concrete at Elevated Temperatures for Fire Resistance Construction. Results Eng. 2023, 20, 101595. [Google Scholar] [CrossRef]
- Xu, L.; Hu, X.; Tang, R.; Zhang, X.; Xia, Y.; Ran, B.; Liu, J.; Zhuang, S.; Tian, W. Microscopic Mechanical Properties and Physicochemical Changes of Cement Paste Exposed to Elevated Temperatures and Subsequent Rehydration. Materials 2025, 18, 1050. [Google Scholar] [CrossRef] [PubMed]
- Oyejobi, D.O.; Firoozi, A.A.; Blanco Fernández, D.; Avudaiappan, S. Integrating Circular Economy Principles into Concrete Technology: Enhancing Sustainability through Industrial Waste Utilization. Results Eng. 2024, 24, 102846. [Google Scholar] [CrossRef]
- Statista. World Cement Production by Country. Available online: https://www.statista.com/statistics/267364/world-cement-production-by-country/ (accessed on 7 June 2025).
- CEMBUREAU—The European Cement Association; SPC—Stowarzyszenie Producentów Cementu. Rola Cementu w Niskoemisyjnej Gospodarce do Roku 2050. Available online: https://lowcarboneconomy.cembureau.eu/wp-content/uploads/2018/09/Gospodarka-niskoemisyjna-2050-Sektor-cementowy.pdf (accessed on 7 June 2025).
- Eštoková, A.; Wolfová Fabiánová, M.; Ondová, M. Concrete Structures and Their Impacts on Climate Change and Water and Raw Material Resource Depletion. Int. J. Civ. Eng. 2022, 20, 735–747. [Google Scholar] [CrossRef]
- Singh, N.B.; Middendorf, B. Geopolymers as an Alternative to Portland Cement: An Overview. Constr. Build. Mater. 2020, 237, 117455. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, W.; Wang, X.; Pan, H.; Zhao, Q.; Wang, D. Utilization of Municipal Solid Waste Incineration Fly Ash with Red Mud-Carbide Slag for Eco-Friendly Geopolymer Preparation. J. Clean. Prod. 2022, 340, 130820. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I. Rubberized Geopolymer Concrete: Application of Taguchi Method for Various Factors. Int. J. Recent. Technol. Eng. 2020, 8, 1167–1174. [Google Scholar] [CrossRef]
- Mahutjane, T.C.; Tchadjié, L.N.; Sithole, T.N. The Feasibility of Utilizing Sewage Sludge as a Source of Aluminosilicate to Synthesise Geopolymer Cement. J. Mater. Res. Technol. 2023, 25, 3314–3323. [Google Scholar] [CrossRef]
- Tommasini Vieira Ramos, F.J.H.; Marques Vieira, M.F.; Tienne, L.G.P.; de Oliveira Aguiar, V. Evaluation and Characterization of Geopolymer Foams Synthesized from Blast Furnace with Sodium Metasilicate. J. Mater. Res. Technol. 2020, 9, 12019–12029. [Google Scholar] [CrossRef]
- Ramesh, V.; Muthramu, B.; Rebekhal, D. A Review of Sustainability Assessment of Geopolymer Concrete through AI-Based Life Cycle Analysis. AI Civ. Eng. 2025, 4, 3. [Google Scholar] [CrossRef]
- Esparham, A.; Vatin, N.I.; Kharun, M.; Hematibahar, M. A Study of Modern Eco-Friendly Composite (Geopolymer) Based on Blast Furnace Slag Compared to Conventional Concrete Using the Life Cycle Assessment Approach. Infrastructures 2023, 8, 58. [Google Scholar] [CrossRef]
- Marczyk, J.; Ziejewska, C.; Gądek, S.; Korniejenko, K.; Łach, M.; Góra, M.; Kurek, I.; Doğan-Sağlamtimur, N.; Hebda, M.; Szechyńska-Hebda, M. Hybrid Materials Based on Fly Ash, Metakaolin, and Cement for 3D Printing. Materials 2021, 14, 6874. [Google Scholar] [CrossRef]
- Rathod, N.; Chippagiri, R.; Ralegaonkar, R.V. Cleaner Production of Geopolymer Materials: A Critical Review of Waste-Derived Activators. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Maroszek, M.; Rudziewicz, M.; Hebda, M. Recycled Components in 3D Concrete Printing Mixes: A Review. Materials 2025, 18, 4517. [Google Scholar] [CrossRef]
- Sbahieh, S.; McKay, G.; Al-Ghamdi, S.G. Comprehensive Analysis of Geopolymer Materials: Properties, Environmental Impacts, and Applications. Materials 2023, 16, 7363. [Google Scholar] [CrossRef]
- Ziejewska, C.; Grela, A.; Mierzwiński, D.; Hebda, M. Influence of Waste Glass Addition on the Fire Resistance, Microstructure and Mechanical Properties of Geopolymer Composites. Materials 2023, 16, 6011. [Google Scholar] [CrossRef]
- Shehata, N.; Sayed, E.T.; Abdelkareem, M.A. Recent Progress in Environmentally Friendly Geopolymers: A Review. Sci. Total Environ. 2021, 762, 143166. [Google Scholar] [CrossRef]
- Zheng, Y.-Q.; Zhang, W.; Zheng, L.; Zheng, J. Mechanical Properties of Steel Fiber-Reinforced Geopolymer Concrete after High Temperature Exposure. Constr. Build. Mater. 2024, 439, 137394. [Google Scholar] [CrossRef]
- Munir, Q.; Kärki, T. The Effect of Glass Fiber on Fresh Properties of Industrial-Based Geopolymer Concrete. Mater. Sci. Eng. Appl. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Samal, S. Effect of High Temperature on the Microstructural Evolution of Fiber Reinforced Geopolymer Composite. Heliyon 2019, 5, e01779. [Google Scholar] [CrossRef] [PubMed]
- Le, V.S.; Nguyen, V.V.; Sharko, A.; Ercoli, R.; Nguyen, T.X.; Tran, D.H.; Łoś, P.; Buczkowska, K.E.; Mitura, S.; Špirek, T.; et al. Fire Resistance of Geopolymer Foams Layered on Polystyrene Boards. Polymers 2022, 14, 1945. [Google Scholar] [CrossRef]
- Naveen Kumar, D.; Ramujee, K. Abrasion Resistance of Polypropylene Fiber Reinforced Geopolymer Concrete. J. Emerg. Technol. 2017, 4, 276–283. [Google Scholar]
- Kaya, M.; Köksal, F.; Bayram, M.; Nodehi, M.; Gencel, O.; Ozbakkaloglu, T. The Effect of Marble Powder on Physico-Mechanical and Microstructural Properties of Kaolin-Based Geopolymer Pastes. Struct. Concr. 2023, 24, 6485–6504. [Google Scholar] [CrossRef]
- Chindaprasirt, P.; Lao-un, J.; Zaetang, Y.; Wongkvanklom, A.; Phoo-ngernkham, T.; Wongsa, A.; Sata, V. Thermal Insulating and Fire Resistance Performances of Geopolymer Mortar Containing Auto Glass Waste as Fine Aggregate. J. Build. Eng. 2022, 60, 105178. [Google Scholar] [CrossRef]
- Iqbal, H.W.; Hamcumpai, K.; Nuaklong, P.; Jongvivatsakul, P.; Likitlersuang, S.; Pothisiri, T.; Chintanapakdee, C.; Wijeyewickrema, A.C. Enhancing Fire Resistance in Geopolymer Concrete Containing Crumb Rubber with Graphene Nanoplatelets. Constr. Build. Mater. 2024, 426, 136115. [Google Scholar] [CrossRef]
- Azmi, A.A.; Al Bakri Abdullah, M.M.; Ghazali, C.M.R.; Ahmad, R.; Jaya, R.P.; Abd Rahim, S.Z.; Almadani, M.A.; Wysłocki, J.J.; Sliwa, A.; Sandu, A.V. Crumb Rubber Geopolymer Mortar at Elevated Temperature Exposure. Arch. Civ. Eng. 2022, 68, 87–105. [Google Scholar]
- Mejía, J.M.; Rodríguez, E.; de Gutiérrez, R.M.; Gallego, N. Preparation and Characterization of a Hybrid Alkaline Binder Based on a Fly Ash with No Commercial Value. J. Clean. Prod. 2015, 104, 346–352. [Google Scholar] [CrossRef]
- Sharmin, S.; Biswas, W.K.; Sarker, P.K. Exploring the Potential of Using Waste Clay Brick Powder in Geopolymer Applications: A Comprehensive Review. Buildings 2024, 14, 2317. [Google Scholar] [CrossRef]
- Liu, X.; Liu, E.; Fu, Y. Reduction in Drying Shrinkage and Efflorescence of Recycled Brick and Concrete Fine Powder–Slag-Based Geopolymer. Appl. Sci. 2023, 13, 2997. [Google Scholar] [CrossRef]
- Šimonová, H.; Bazan, P.; Kucharczyková, B.; Kocáb, D.; Łach, M.; Mierzwinski, D.; Setlak, K.; Nykiel, M.; Nosal, P.; Korniejenko, K. Hybrid Geopolymer Composites Based on Fly Ash Reinforced with Glass and Flax Fibers. Appl. Sci. 2024, 14, 9787. [Google Scholar] [CrossRef]
- Nasreddine, H.; Dujardin, N.; Djerbi, A.; Salem, T.; Gautron, L. Impact of Hemp Shiv Content and Binder Type on the Thermal and Mechanical Properties of Geopolymer Composites. Constr. Build. Mater. 2025, 476, 141297. [Google Scholar] [CrossRef]
- Bazan, P.; Figiela, B.; Kozub, B.; Łach, M.; Mróz, K.; Melnychuk, M.; Korniejenko, K. Geopolymer Foam with Low Thermal Conductivity Based on Industrial Waste. Materials 2024, 17, 6143. [Google Scholar] [CrossRef]
- Sitarz, M.; Figiela, B.; Łach, M.; Korniejenko, K.; Mróz, K.; Castro-Gomes, J.; Hager, I. Mechanical Response of Geopolymer Foams to Heating—Managing Coal Gangue in Fire-Resistant Materials Technology. Energies 2022, 15, 3363. [Google Scholar] [CrossRef]
- Ye, T.; Xiao, J.; Duan, Z.; Li, S. Geopolymers Made of Recycled Brick and Concrete Powder—A Critical Review. Constr. Build. Mater. 2022, 330, 127232. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Y.; Li, Y.; Wang, H.; Lou, H. Strength Recovery of Thermally Damaged High-Performance Concrete during Recuring. Materials 2024, 17, 3531. [Google Scholar] [CrossRef] [PubMed]
- Łach, M.; Mierzwinski, D.; Korniejenko, K.; Mikuła, J. Geopolymer Foam as a Passive Fire Protection. MATEC Web Conf. 2018, 247, 00031. [Google Scholar] [CrossRef]
- Rudziewicz, M.; Maroszek, M.; Góra, M.; Dziura, P.; Mróz, K.; Hager, I.; Hebda, M. Feasibility Review of Aerated Materials Application in 3D Concrete Printing. Materials 2023, 16, 6032. [Google Scholar] [CrossRef]
- Anggarini, U.; Pratapa, S.; Purnomo, V.; Sukmana, N.C. A Comparative Study of the Utilization of Synthetic Foaming Agent and Aluminum Powder as Pore-Forming Agents in Lightweight Geopolymer Synthesis. Open Chem. 2019, 17, 629–638. [Google Scholar] [CrossRef]
- Han, J.; Cai, J.; Lin, Y.; Sun, Y.; Pan, J. Impact Resistance of Engineered Geopolymer Composite (EGC) in Cold Temperatures. Constr. Build. Mater. 2022, 343, 128150. [Google Scholar] [CrossRef]
- Raza, A.; Salmi, A.; El Ouni, M.H.; Shabbir, F.; Ghazouani, N.; Ahmed, B.; Ali, M.R.; Hendy, A.S. A Comprehensive Review on Material Characterization and Thermal Properties of Geopolymers: Potential of Various Fibers. Case Stud. Constr. Mater. 2024, 21, e03519. [Google Scholar] [CrossRef]
- Bantie, Z.; Abera, D. Performance Enhancement of Geopolymers through Natural Fiber Reinforcement: Sustainable Alternative Construction Materials. In Advances in Geopolymers; IntechOpen: London, UK, 2024. [Google Scholar]
- Zhang, L.V.; Suleiman, A.R.; Nehdi, M.L. Self-Healing in Fiber-Reinforced Alkali-Activated Slag Composites Incorporating Different Additives. Constr. Build. Mater. 2020, 262, 120059. [Google Scholar] [CrossRef]
- Tung, T.T.; Pham, T.M.; Hao, H. Experimental and analytical investigation on flexural behaviour of ambient cured geopolymer concrete beams reinforced with steel fibers. Eng. Struct. 2019, 200, 109707. [Google Scholar] [CrossRef]
- Raza, A.; Selmi, A.; Arshad, M.; Elhadi, K.M.; Alashker, Y. Tests and Modeling of Hybrid Fiber-Reinforced Geopolymer Concrete Elements Having BFRP Helix: An Application for Sustainable Built Environment. J. Build. Eng. 2024, 82, 108229. [Google Scholar] [CrossRef]
- Islam, A.; Alengaram, U.J.; Jumaat, M.Z.; Ghazali, N.B.; Yusoff, S.; Bashar, I.I. Influence of Steel Fibers on the Mechanical Properties and Impact Resistance of Lightweight Geopolymer Concrete. Constr. Build. Mater. 2017, 152, 964–977. [Google Scholar] [CrossRef]
- Larsen, I.L.; Thorstensen, R.T. The influence of steel fibres on compressive and tensile strength of ultra high performance concrete: A review. Constr. Build. Mater. 2020, 256, 119459. [Google Scholar] [CrossRef]
- Sharma, U.; Gupta, N.; Bahrami, A.; Özkılıç, Y.O.; Verma, M.; Berwal, P.; Althaqafi, E.; Khan, M.A.; Islam, S. Behavior of Fibers in Geopolymer Concrete: A Comprehensive Review. Buildings 2024, 14, 136. [Google Scholar] [CrossRef]
- Faris, M.A.; Al Bakri Abdullah, M.M.; Muniandy, R.; Ramasamy, S.; Abu Hashim, M.F.; Junaedi, S.; Sandu, A.V.; Mohd Tahir, M.F. Review on Mechanical Properties of Metakaolin Geopolymer Concrete by Inclusion of Steel Fibers. Arch. Metall. Mater. 2022, 67, 020150. [Google Scholar] [CrossRef]
- Qadir, H.H.; Faraj, R.H.; Sherwani, A.F.H.; Mohammed, B.H.; Younis, K.H. Mechanical Properties and Fracture Parameters of Ultra High Performance Steel Fiber Reinforced Concrete Composites Made with Extremely Low Water per Binder Ratios. SN Appl. Sci. 2020, 2, 1594. [Google Scholar] [CrossRef]
- Cai, J.; Jiang, J.; Gao, X.; Ding, M. Improving the Mechanical Properties of Fly Ash-Based Geopolymer Composites with PVA Fiber and Powder. Materials 2022, 15, 2363. [Google Scholar] [CrossRef]
- Hisseine, O.A.; Tagnit-Hamou, A. Characterization and Nano-Engineering the Interface Properties of PVA Fibers in Strain-Hardening Cementitious Composites Incorporating High-Volume Ground-Glass Pozzolans. Constr. Build. Mater. 2020, 234, 117213. [Google Scholar] [CrossRef]
- Xu, S.; Malik, M.A.; Qi, Z.; Huang, B.; Li, Q.; Sarkar, M. Influence of the PVA Fibers and SiO2 NPs on the Structural Properties of Fly Ash-Based Sustainable Geopolymer. Constr. Build. Mater. 2018, 164, 238–245. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, K.; Wang, J.; Guo, J.; Hu, S.; Ling, Y. Mechanical Properties and Prediction of Fracture Parameters of Geopolymer/Alkali-Activated Mortar Modified with PVA Fiber and Nano-SiO2. Ceram. Int. 2020, 46, 20027–20037. [Google Scholar] [CrossRef]
- Wang, Q.; Yao, B.; Lu, R. Behavior Deterioration and Microstructure Change of Polyvinyl Alcohol Fiber-Reinforced Cementitious Composite (PVA-ECC) after Exposure to Elevated Temperatures. Materials 2020, 13, 5539. [Google Scholar] [CrossRef]
- Farhan, K.Z.; Megat Johari, M.A.M.; Demirboğa, R. Impact of Fiber Reinforcements on Properties of Geopolymer Composites: A Review. J. Build. Eng. 2021, 44, 102628. [Google Scholar] [CrossRef]
- Aliu, A.O.; Fakuyi, F.; Williams, O. Feasibility of Using Coconut Fibre to Improve Concrete Strength. Int. J. Eng. Res. Technol. (IJERT) 2022, 11, 1–6. Available online: http://www.ijert.org (accessed on 10 August 2025).
- Abbass, M.; Singh, D.; Singh, G. Properties of Hybrid Geopolymer Concrete Prepared Using Rice Husk Ash, Fly Ash and GGBS with Coconut Fiber. Mater. Today Proc. 2021, 45, 4964–4970. [Google Scholar] [CrossRef]
- Beemkumar, N.; Subbiah, G.; Upadhye, V.J.; Arora, A.; Jena, S.P.; Priya, K.K.; Alemayehu, H. Thermal Stability and Flame-Retardant Properties of a Basalt/Kevlar Fiber-Reinforced Hybrid Polymer Composite with Bran Filler Particulates. Results Eng. 2025, 25, 104207. [Google Scholar] [CrossRef]
- Le, V.S.; Szczypinski, M.M.; Hájková, P.; Kovacic, V.; Bakalova, T.; Volesky, L.; Hiep, L.C.; Louda, P. Mechanical Properties of Geopolymer Foam at High Temperature. Sci. Eng. Compos. Mater. 2020, 27, 129–138. [Google Scholar] [CrossRef]
- Behera, P.; Baheti, V.; Militky, J.; Louda, P. Elevated Temperature Properties of Basalt Microfibril Filled Geopolymer Composites. Constr. Build. Mater. 2018, 163, 850–860. [Google Scholar] [CrossRef]
- Růžek, V.; Dostayeva, A.M.; Walter, J.; Grab, T.; Korniejenko, K. Carbon Fiber-Reinforced Geopolymer Composites: A Review. Fibers 2023, 11, 17. [Google Scholar] [CrossRef]
- Prasad, B.; Anand, N.; Kanagaraj, B.; Kiran, T.; Lublóy, É.; Naser, M.Z.; Arumairaj, P.; Andrushia, A. Investigation on Residual Bond Strength and Microstructure Characteristics of Fiber-Reinforced Geopolymer Concrete at Elevated Temperature. Case Stud. Constr. Mater. 2023, 19, e02526. [Google Scholar] [CrossRef]
- Santos, A.; Andrejkovičová, S.; Almeida, F.; Rocha, F. Thermoelectric Properties of Geopolymers with Iron Ore Mine Waste: A Case Study for Energy Management. Ceram. Int. 2024, 50, 36112–36125. [Google Scholar] [CrossRef]
- Luhar, S.; Nicolaides, D.; Luhar, I. Fire Resistance Behaviour of Geopolymer Concrete: An Overview. Buildings 2021, 11, 82. [Google Scholar] [CrossRef]
- Chen, H.; Li, D. Constitutive Relation of Polypropylene-Fiber-Reinforced Mortar Under Uniaxial Compression at High Temperature. Buildings 2025, 15, 468. [Google Scholar] [CrossRef]
- Zeiml, M.; Leithner, D.; Lackner, R.; Mang, H.A. How Do Polypropylene Fibers Improve the Spalling Behavior of In-Situ Concrete? Cem. Concr. Res. 2006, 36, 929–942. [Google Scholar] [CrossRef]
- Alyousef, R.; Alabduljabbar, H.; Mohammadhosseini, H.; Mohamed, A.; Siddika, A.; Alrshoudi, F.; Alaskar, A. Utilization of sheep wool as potential fibrous materials in the production of concrete composites. J. Build. Eng. 2020, 30, 101216. [Google Scholar] [CrossRef]
- Murri, N.; Medri, V.; Landi, E. Production and Thermomechanical Characterization of Wool-Geopolymer Composites. J. Am. Ceram. Soc. 2017, 100, 2822–2831. [Google Scholar] [CrossRef]
- Rudziewicz, M.; Hutyra, A.; Maroszek, M.; Korniejenko, K.; Hebda, M. 3D-Printed Lightweight Foamed Concrete with Dispersed Reinforcement. Appl. Sci. 2025, 15, 4527. [Google Scholar] [CrossRef]
- Przybek, A.; Łach, M. Insulating Innovative Geopolymer Foams with Natural Fibers and Phase-Change Materials—A Review of Solutions and Research Results. Materials 2024, 17, 4503. [Google Scholar] [CrossRef] [PubMed]
- Markin, V.; Nerella, V.N.; Schröfl, C.; Guseynova, G.; Mechtcherine, V. Material Design and Performance Evaluation of Foam Concrete for Digital Fabrication. Materials 2019, 12, 2433. [Google Scholar] [CrossRef] [PubMed]
- Mróz, K.; Hager, I. Experimental Setup for Assessment of Concrete Susceptibility to Fire Spalling. In Building Materials Engineering—New Materials Testing Methods; Hager, I., Ed.; Wydawnictwo PK: Kraków, Poland, 2021; pp. 7–16. [Google Scholar]
- ISO 834-1:1999; Fire-Resistance Tests—Elements of Building Construction—Part 1: General Requirements. International Organization for Standardization: Geneva, Switzerland, 1999.
- PN-EN 13501-2:2016-07; Fire Classification of Construction Products and Building Elements—Part 2: Classification Using Data from Fire Resistance Tests, Excluding Ventilation Services—Polish Version. Polish Center for Standardization (PKN): Warszawa, Poland, 2017.
- Hager, I.; Tracz, T.; Krzemień, K. The Usefulness of Selected Non-Destructive and Destructive Methods in the Assessment of Concrete after Fire. Cem. Wapno Beton. 2014, 19, 145–151. [Google Scholar]
- Carré, H.; Hager, I.; Perlot, C. Assessment of Concrete after Fire Exposure. Eur. J. Environ. Civ. Eng. 2014, 18, 1130–1144. [Google Scholar] [CrossRef]
- Hager, I. Colour Change in Heated Concrete. Fire Technol. 2014, 50, 945–958. [Google Scholar] [CrossRef]
- D’Angelo, A.; Dal Poggetto, G.; Piccolella, S.; Leonelli, C.; Catauro, M. Characterisation of White Metakaolin-Based Geopolymers Doped with Synthetic Organic Dyes. Polymers 2022, 14, 3380. [Google Scholar] [CrossRef]
- Pelosi, C.; Pulidori, E.; D’aNgelo, A.; Tiné, M.R.; Catauro, M. Synthesis, Thermal, and Mechanical Characterisation of Metakaolin-Based Geopolymers Coloured with Grape Marc Extract. J. Therm. Anal. Calorim. 2025, 150, 1169–1180. [Google Scholar] [CrossRef]
- Chakkor, O. Durability and Mechanical Analysis of Basalt Fiber Reinforced Metakaolin–Red Mud-Based Geopolymer Composites. Buildings 2025, 15, 2010. [Google Scholar] [CrossRef]
- Ziada, M.; Erdem, S.; Tammam, Y.; Kara, S.; Lezcano, R.A.G. The Effect of Basalt Fiber on Mechanical, Microstructural, and High-Temperature Properties of Fly Ash-Based and Basalt Powder Waste-Filled Sustainable Geopolymer Mortar. Sustainability 2021, 13, 12610. [Google Scholar] [CrossRef]
- Ziejewska, C.; Marczyk, J.; Korniejenko, K.; Bednarz, S.; Sroczyk, P.; Łach, M.; Mikuła, J.; Figiela, B.; Szechyńska-Hebda, M.; Hebda, M. 3D Printing of Concrete-Geopolymer Hybrids. Materials 2022, 15, 2819. [Google Scholar] [CrossRef]
- Lee, J.; Choi, K.; Hong, K. The Effect of High Temperature on Color and Residual Compressive Strength of Concrete. In Proceedings of the 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures. High Performance, Fiber Reinforced Concrete, Special Loadings and Structural Applications, Jeju, Republic of Korea, 23–28 May 2010. [Google Scholar]
- Kang, H.; Cho, H.-C.; Choi, S.-H.; Heo, I.; Kim, H.-Y.; Kim, K.S. Estimation of Heating Temperature for Fire-Damaged Concrete Structures Using Adaptive Neuro-Fuzzy Inference System. Materials 2019, 12, 3964. [Google Scholar] [CrossRef] [PubMed]
- Felicetti, R. Digital camera colorimetry for the assessment of fire-damaged concrete. WSp Fire design of concrete structures: What now. In Proceedings of the 2nd Fib Task Group 4.3 Workshop—Fire Design of Concrete Structures: What Now? What Next? Milan, Italy, 2–4 December 2004; pp. 211–220. [Google Scholar]
- Wang, S.; Gainey, L.; Mackinnon, I.D.R.; Allen, C.; Gu, Y.; Xi, Y. Thermal Behaviors of Clay Minerals as Key Components and Additives for Fired Brick Properties: A Review. J. Build. Eng. 2023, 66, 105802. [Google Scholar] [CrossRef]
- Yang, C.; Bai, J.; Wang, G.; Wang, H.; Ma, S. Effect of Na2O Content on Wettability, Crystallization and Performances of Sealing Glass. J. Mater. Res. Technol. 2023, 23, 4117–4134. [Google Scholar] [CrossRef]
- Kljajević, L.; Nenadović, M.; Ivanović, M.; Bučevac, D.; Mirković, M.; Mladenović Nikolić, N.; Nenadović, S. Heat Treatment of Geopolymer Samples Obtained by Varying Concentration of Sodium Hydroxide as Constituent of Alkali Activator. Gels 2022, 8, 333. [Google Scholar] [CrossRef]
- Tulyaganov, D.; Baino, F. Silicate Glasses and Glass–Ceramics: Types, Role of Composition and Processing Methods. In Ceramics, Glass and Glass-Ceramics; Baino, F., Tomalino, M., Tulyaganov, D., Eds.; PoliTO Springer Series; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Zulkifly, K.; Yong, H.C.; Al Bakri Abdullah, M.M.A.B.; Ming, L.Y.; Panias, D.; Sakkas, K. Review of Geopolymer Behaviour in Thermal Environment. IOP Conf. Ser. Mater. Sci. Eng. 2017, 209, 012085. [Google Scholar] [CrossRef]
- Terungwa, K.; Momoh, E. Effect of Coconut Shell Ash on the Sulphate Resisting Capabilities of Concrete. Int. J. Adv. Eng. Res. Technol. (IJAERT) 2018, 6, 393–399. [Google Scholar]
- Anuar, M.F.; Wing Fen, Y.; Mohd Zaid, M.H.; Matori, K.A.; Mohamed Khaidir, R.E. Synthesis and Structural Properties of Coconut Husk as Potential Silica Source. Results Phys. 2018, 11, 1–4. [Google Scholar] [CrossRef]
- Hernández Chávez, M.; Vargas Ramírez, M.; Herrera González, A.M.; García Serrano, J.; Cruz Ramírez, A.; Romero Serrano, J.A.; Sánchez Alvarado, R.G. Thermodynamic Analysis of the Influence of Potassium on the Thermal Behavior of Kaolin Raw Material. Physicochem. Probl. Miner. Process. 2021, 57, 39–52. [Google Scholar] [CrossRef]
- Kreft, O.; Hausmann, J.; Hubálková, J.; Aneziris, C.; Straube, B.; Schoch, T. Pore Size Distribution Effects on the Thermal Conductivity of Lightweight Autoclaved Aerated Concrete. Cem. Wapno Beton. 2011, 16, 49–52. [Google Scholar]
- Chen, G.; Li, F.; Jing, P.; Geng, J.; Si, Z. Effect of Pore Structure on Thermal Conductivity and Mechanical Properties of Autoclaved Aerated Concrete. Materials 2021, 14, 339. [Google Scholar] [CrossRef]
- Xu, K.; Tremsin, A.S.; Li, J.; Ushizima, D.M.; Davy, C.A.; Bouterf, A.; Su, Y.T.; Marroccoli, M.; Mauro, A.M.; Osanna, M.; et al. Microstructure and Water Absorption of Ancient Concrete from Pompeii: An Integrated Synchrotron Microtomography and Neutron Radiography Characterization. Cem. Concr. Res. 2021, 139, 106282. [Google Scholar] [CrossRef]
- Novais, R.; Pullar, R.; Labrincha, J.A. Geopolymer foams: An overview of recent advancements. Prog. Mater. Sci. 2020, 109, 100621. [Google Scholar] [CrossRef]
- Alghamdi, H.; Neithalath, N. Synthesis and Characterization of 3D-Printable Geopolymeric Foams for Thermally Efficient Building Envelope Materials. Cem. Concr. Compos. 2019, 104, 103377. [Google Scholar] [CrossRef]
- Barve, P.; Bahrami, A.; Shah, S. Geopolymer 3D Printing: A Comprehensive Review on Rheological and Structural Performance Assessment, Printing Process Parameters, and Microstructure. Front. Mater. 2023, 10, 1241869. [Google Scholar] [CrossRef]
- Bedarf, P.; Szabó, A.; Zanini, M.; Dillenburger, B. Robotic 3D Printing of Geopolymer Foam for Lightweight and Insulating Building Elements. 3D Print. Addit. Manuf. 2023, 11, 1–9. [Google Scholar] [CrossRef]
- Przybek, A.; Piątkowski, J.; Romańska, P.; Łach, M.; Masłoń, A. Low-Carbon Insulating Geopolymer Binders: Thermal Properties. Sustainability 2025, 17, 6898. [Google Scholar] [CrossRef]
- Kalifa, P.; Chéné, G.; Gallé, C. High-temperature behaviour of HPC with polypropylene fi bers: From spalling to microstructure. Cem. Concr. Res. 2001, 31, 1487–1499. [Google Scholar] [CrossRef]
- Hager, I.; Tracz, T. Wpływ wysokiej temperatury na wybrane właściwości betonu wysokowartościowego z dodatkiem włókien polipropylenowych (Influence of Elevated Temperature on Selected Properties of High Performance Concrete Modified with the Addition of Polypropylene Fibres). Mater. Bud. 2009, 1, 48–51. [Google Scholar]
No. | Designation of the Mixture | w/s | Cement [%] | Sand [%] | Fly Ash [%] | Coal Slag [%] | Ground Bricks [%] | Coconut Fibers [%] | Basalt Fibers [%] | Glass Fibers [%] | Merino Fibers [%] | Polypropylene Fibers [%] |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | HGP/CO | 0.22 | 27 | 37 | 5 | 15 | 15 | 0.5 | - | - | - | - |
2 | HGP/B | 0.22 | 27 | 37 | 5 | 15 | 15 | - | 0.5 | - | - | - |
3 | HGP/G | 0.22 | 27 | 37 | 5 | 15 | 15 | - | - | 0.5 | - | - |
4 | HGP/M | 0.24 | 27 | 37 | 5 | 15 | 15 | - | - | - | 0.5 | - |
5 | HGP/PP | 0.24 | 27 | 37 | 5 | 15 | 15 | - | - | - | - | 0.5 |
6 | HGP | 0.22 | 27 | 37 | 5 | 15 | 15 | - | - | - | - | - |
Process Number | Process Time [min] | Operation |
---|---|---|
1 | 2 | Adding dry ingredients to the mixer and mixing them |
2 | 15 | Adding an activator and mixing |
3 | 0.5 | Mix integration verification |
4 | 2 | Preparing the concrete mass and mixing it at high speed (~500 rpm) |
5 | 2 | Alkali-activated hybrid binder production |
6 | 1 | Adding the remaining 50% of the total foam volume |
7 | 2 | Mixing the alkali-activated hybrid binder mixture and foam together |
8 | 0.5 | Mix integration verification |
9 | 1 | Adding the remaining part of the foam |
10 | 2 | Mixing the alkali-activated hybrid binder mixture and foam together |
Temperature [°C] | HGP | HGP/G | HGP/B | HGP/PP | HGP/M | HGP/CO |
---|---|---|---|---|---|---|
200 | 2.21 | 5.99 | 5.00 | 7.16 | 6.84 | 5.57 |
400 | 7.52 | 5.34 | 9.31 | 5.75 | 5.98 | 8.83 |
600 | 6.92 | 11.42 | 10.68 | 12.81 | 5.38 | 20.85 |
800 | 9.70 | 12.76 | 11.41 | 6.52 | 6.05 | 8.55 |
1000 | 8.07 | 9.64 | 8.29 | 15.39 | 7.13 | 14.23 |
Name of the Mixture | Layer Number | ΔE (Color Difference, CIE L*a*b*) |
---|---|---|
HGP | 1 | 11.49 |
2 | 7.61 | |
3 | 6.31 | |
HGP/G | 1 | 12.16 |
2 | 12.13 | |
3 | 7.96 | |
HGP/B | 1 | 11.48 |
2 | 12.19 | |
3 | 12.12 | |
HGP/PP | 1 | 12.29 |
2 | 12.90 | |
3 | 4.26 | |
HGP/M | 1 | 7.50 |
2 | 11.42 | |
3 | 3.97 | |
HGP/CO | 1 | 4.82 |
2 | 19.69 | |
3 | 7.63 |
Series | HGP | HGP/G | HGP/B | HGP/PP | HGP/M | HGP/CO |
---|---|---|---|---|---|---|
Closed porosity [%] | 6.29 | 0.18 | 0.01 | 0.01 | 0 | 0.36 |
Relative porosity [%] | 11.79 | 41.44 | 55.19 | 66.86 | 74.37 | 61.77 |
Total volume sample [mm3] | 42,875 | 42,875 | 42,875 | 42,913 | 42,875 | 42,875 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudziewicz, M.; Mróz, K.; Maroszek, M.; Wołkanowski, P.; Hebda, M. Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders. Materials 2025, 18, 4829. https://doi.org/10.3390/ma18214829
Rudziewicz M, Mróz K, Maroszek M, Wołkanowski P, Hebda M. Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders. Materials. 2025; 18(21):4829. https://doi.org/10.3390/ma18214829
Chicago/Turabian StyleRudziewicz, Magdalena, Katarzyna Mróz, Marcin Maroszek, Paweł Wołkanowski, and Marek Hebda. 2025. "Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders" Materials 18, no. 21: 4829. https://doi.org/10.3390/ma18214829
APA StyleRudziewicz, M., Mróz, K., Maroszek, M., Wołkanowski, P., & Hebda, M. (2025). Fire Resistance and Colorimetric Analysis of Lightweight Fiber-Reinforced Foamed Alkali-Activated Hybrid Binders. Materials, 18(21), 4829. https://doi.org/10.3390/ma18214829