Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (119)

Search Parameters:
Keywords = inlet/outlet configurations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 4845 KiB  
Article
Mechanism Analysis and Establishment of a Prediction Model for the Total Pressure Loss in the Multi-Branch Pipeline System of the Pneumatic Seeder
by Wei Qin, Cheng Qian, Yuwu Li, Daoqing Yan, Zhuorong Fan, Minghua Zhang, Ying Zang and Zaiman Wang
Agriculture 2025, 15(15), 1681; https://doi.org/10.3390/agriculture15151681 - 3 Aug 2025
Viewed by 105
Abstract
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system [...] Read more.
This study aims to clarify the nonlinear pressure loss patterns of the pneumatic system in a pneumatic seeder under varying pipeline structures and airflow parameters, and to develop a rapid prediction equation for the main pipe’s pressure loss. The studied multi-branch pipeline system consists of a main pipe, a header, and ten branch pipes. The main pipe is vertically installed at the center of the header in a straight-line configuration. The ten branch pipes are symmetrically and evenly spaced along the axial direction of the header, distributed on both sides of the main pipe. The outlet directions of the branch pipes are arranged in a 180° orientation opposite to the inlet direction of the main pipe, forming a symmetric multi-branch configuration. Firstly, this study investigated the flow characteristics within the multi-branch pipeline of the pneumatic system and elaborated on the mechanism of flow division in the pipeline. The key geometric factors affecting airflow were identified. Secondly, from a microscopic perspective, CFD simulations were employed to analyze the fundamental causes of pressure loss in the multi-branch pipeline system. Finally, from a macroscopic perspective, a dimensional analysis method was used to establish an empirical equation describing the relationship between the pressure loss (P) and several influencing factors, including the air density (ρ), air’s dynamic viscosity (μ), closed-end length of the header (Δl), branch pipe 1’s flow rate (Q), main pipe’s inner diameter (D), header’s inner diameter (γ), branch pipe’s inner diameter (d), and the spacing of the branch pipe (δ). The results of the bench tests indicate that when 0.0018 m3·s−1Q ≤ 0.0045 m3·s−1, 0.0272 m < d ≤ 0.036 m, 0.225 m < δ ≤ 0.26 m, 0.057 m ≤ γ ≤ 0.0814 m, and 0.0426 m ≤ D ≤ 0.0536 m, the prediction accuracy of the empirical equation can be controlled within 10%. Therefore, the equation provides a reference for the structural design and optimization of pneumatic seeders’ multi-branch pipelines. Full article
Show Figures

Figure 1

23 pages, 4810 KiB  
Article
Construction of Microclimatic Zone Based on Convection–Radiation System for Local Cooling in Deep Mines
by Xiangru Chen, Xiaodong Wang and Hui Wang
Energies 2025, 18(12), 3029; https://doi.org/10.3390/en18123029 - 7 Jun 2025
Viewed by 556
Abstract
As global mineral resources at shallow depths continue to deplete, thermal hazards have emerged as a critical challenge in deep mining operations. Conventional localized cooling systems suffer from a fundamental inefficiency where their cooling capacity is rapidly dissipated by the main ventilation airstream. [...] Read more.
As global mineral resources at shallow depths continue to deplete, thermal hazards have emerged as a critical challenge in deep mining operations. Conventional localized cooling systems suffer from a fundamental inefficiency where their cooling capacity is rapidly dissipated by the main ventilation airstream. This study introduces the innovative concept of a “microclimatic circulation zone” implemented through a convection–radiation cooling system. The design incorporates a synergistic arrangement of dual fans and flow-guiding baffles that creates a semi-enclosed air circulation field surrounding the modular convection–radiation cooling apparatus, effectively preventing cooling capacity loss to the primary ventilation flow. The research develops comprehensive theoretical models characterizing both internal and external heat transfer mechanisms of the modular convection–radiation cooling system. Using Fluent computational fluid dynamics software, we constructed an integrated heat–moisture–flow coupled numerical model that identified optimal operating parameters: refrigerant velocity of 0.2 m/s, inlet airflow velocity of 0.45 m/s, and outlet aperture height of 70 mm. Performance evaluation conducted at a mining operation in Yunnan Province utilized the Wet Bulb Globe Temperature (WBGT) index as the assessment criterion. Results demonstrate that the enhanced microclimatic circulation system exhibits superior cooling retention capabilities, with a 19.83% increase in refrigeration power and merely 3% cooling capacity dissipation at a 7 m distance, compared to 19.23% in the conventional system. Thermal field analysis confirms that the improved configuration successfully establishes a stable microclimatic circulation zone with significantly more concentrated low-temperature regions. This effectively addresses the principal limitation of conventional systems where conditioned air is readily dispersed by the main ventilation current. The approach presented offers a novel technological pathway for localized thermal environment management in deep mining operations affected by heat stress conditions. Full article
Show Figures

Figure 1

30 pages, 6072 KiB  
Article
Investigation on the Effect of Opening Size and Position on Wind-Driven Cross-Ventilation in an Isolated Gable Roof Building
by Hacımurat Demir and Burak Aktepe
Appl. Sci. 2025, 15(11), 6190; https://doi.org/10.3390/app15116190 - 30 May 2025
Viewed by 526
Abstract
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of [...] Read more.
In this study, the influence of window opening sizes and positions on wind-induced cross ventilation performance in an isolated gable roof building was numerically investigated using the k-ω SST turbulence model. The results obtained from numerical analyses to evaluate the ventilation efficiency of different configurations show that larger inlet openings significantly increase the ventilation rates and the WO5 model reaches the highest ventilation rate of 0.004089 m3/s with an improvement of 37.27% compared to the reference model. As with the WO1 model, smaller inlet openings limited the air intake, reducing ventilation efficiency and indoor air quality. In terms of outlet window opening sizes, the LO5 model showed the highest ventilation efficiency, improving ventilation by 28% compared to reference model, while smaller outlet openings, as in the LO1 model, were associated with significantly lower performance. Additionally, when evaluating window opening locations, configurations with higher exit openings generally exhibited superior ventilation rates. The best overall ventilation performance was achieved in the Upper-Lower configuration at 0.003129 m3/s. The findings emphasized the critical role of window design in natural ventilation performance. Larger and strategically located window openings optimize airflow, increase ventilation efficiency and improve indoor air quality, providing valuable information for energy-efficient building design. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

27 pages, 9421 KiB  
Article
Transport Mechanism and Optimization Design of LBM–LES Coupling-Based Two-Phase Flow in Static Mixers
by Qiong Lin, Qihan Li, Pu Xu, Runyuan Zheng, Jiaji Bao, Lin Li and Dapeng Tan
Processes 2025, 13(6), 1666; https://doi.org/10.3390/pr13061666 - 26 May 2025
Cited by 4 | Viewed by 576
Abstract
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex [...] Read more.
Static mixers have been widely used in marine research fields, such as marine control systems, ballast water treatment systems, and seawater desalination, due to their high efficiency, low energy consumption, and broad applicability. However, the turbulent mixing process and fluid–wall interactions involving complex structures make the mixing transport characteristics of static mixers complex and nonlinear, which affect the mixing efficiency and stability of the fluid control device. Here, the modeling and design optimization of the two-phase flow mixing and transport dynamics of a static mixer face many challenges. This paper proposes a modeling and problem-solving method for the two-phase flow transport dynamics of static mixers, based on the lattice Boltzmann method (LBM) and large eddy simulation (LES). The characteristics of the two-phase flow mixing dynamics and design optimization strategies for complex component structures are analyzed. First, a two-phase flow transport dynamics model for static mixers is set up, based on the LBM and a multiple-relaxation-time wall-adapting local eddy (MRT-WALE) vortex viscosity coupling model. Using octree lattice block refinement technology, the interaction mechanism between the fluid and the wall during the mixing process is explored. Then, the design optimization strategies for the flow field are analyzed under different flow rates and mixing element configurations to improve the mixing efficiency and stability. The research results indicate that the proposed modeling and problem-solving methods can reveal the dynamic evolution process of mixed-flow fields. Blade components are the main driving force behind the increased turbulent kinetic energy and induced vortex formation, enhancing the macroscopic mixing effect. Moreover, variations in the flow velocity and blade angles are important factors affecting the system pressure drop. If the inlet velocity is 3 m/s and the blade angle is 90°, the static mixer exhibits optimized overall performance. The quantitative analysis shows that increasing the blade angle from 80° to 100° reduces the pressure drop by approximately 44%, while raising the inlet velocity from 3 m/s to 15 m/s lowers the outlet COV value by about 70%, indicating enhanced mixing uniformity. These findings confirm that an inlet velocity of 3 m/s combined with a 90° blade angle provides an optimal trade-off between mixing performance and energy efficiency. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

26 pages, 15325 KiB  
Article
Impact of the Pilotis Ratio on the Summer Wind and Thermal Environment in Shaded Areas of Enclosed Courtyards in Hot and Humid Regions
by Zhihua Luo, Wangning Mu, Yingzhi Liang, Zhihui Xiao, Zhiqiang Zhou and Yuankui Li
Sustainability 2025, 17(10), 4689; https://doi.org/10.3390/su17104689 - 20 May 2025
Viewed by 336
Abstract
Enclosed courtyards with partially ground floor pilotis represent a prevalent architectural spatial configuration in hot-humid regions, where the shaded outdoor areas serve as frequently utilized spaces for heat avoidance and rest. This study employed a combined approach of ENVI-met simulations and field measurements [...] Read more.
Enclosed courtyards with partially ground floor pilotis represent a prevalent architectural spatial configuration in hot-humid regions, where the shaded outdoor areas serve as frequently utilized spaces for heat avoidance and rest. This study employed a combined approach of ENVI-met simulations and field measurements to investigate the wind and thermal environment in the shaded areas of courtyards under 40 different pilotis width configurations. The Comfortable Wind Zone Ratio (CWZR) and Physiological Equivalent Temperature (PET) were used as primary evaluation metrics to systematically investigate the influence of varying inlet/outlet width ratios in building pilotis on the wind-thermal environment within courtyard-shaded zones. The results demonstrate that: (1) Under a fixed outlet size, enlarging the inlet significantly enhances the CWZR in the shaded area, with a 28.66% difference observed between inlet sizes of L/4 and L. In contrast, under a fixed inlet size, expanding the outlet has a negligible effect on CWZR improvement. (2) Under a fixed outlet size, increasing the inlet width substantially reduces PET in the shaded zone, showing a 2.46 °C difference between inlet sizes of L/4 and L. Conversely, under a fixed inlet size, widening the outlet has a minimal impact on PET reduction. (3) A negative correlation exists between CWZR and PET in the shaded area, indicating that an increase in CWZR leads to a decrease in PET values. The findings provide bioclimatically quantified guidelines for the spatial design of courtyard pilotis in hot-humid regions, offering practical insights for optimizing thermal comfort in shaded outdoor environments. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 7149 KiB  
Article
Numerical Improvement of Battery Thermal Management Integrating Phase Change Materials with Fin-Enhanced Liquid Cooling
by Bo Wang, Changzhi Jiao and Shiheng Zhang
Energies 2025, 18(9), 2406; https://doi.org/10.3390/en18092406 - 7 May 2025
Viewed by 653
Abstract
Under high-rate charging and discharging conditions, the coupling of phase change materials (PCMs) with liquid cooling proves to be an effective approach for controlling battery pack operating temperature and performance. To address the inherent low thermal conductivity of PCM and enhance heat transfer [...] Read more.
Under high-rate charging and discharging conditions, the coupling of phase change materials (PCMs) with liquid cooling proves to be an effective approach for controlling battery pack operating temperature and performance. To address the inherent low thermal conductivity of PCM and enhance heat transfer from PCM to cooling plates, numerical simulations were conducted to investigate the effects of installing fins between the upper and lower cooling plates on temperature distribution. The results demonstrated that merely adding cooling plates on battery surfaces and filling PCM in inter-cell gaps had limited effectiveness in reducing maximum temperatures during 4C discharge (8A discharge current), achieving only a 1.8 K reduction in peak temperature while increasing the maximum temperature difference to over 10 K. Cooling plates incorporating optimized flow channel configurations in fins, alternating coolant inlet/outlet arrangements, appropriate increases in coolant flow rate (0.5 m/s), and reduced coolant inlet temperature (293.15 K) could maintain battery pack temperatures below 306 K while constraining maximum temperature differences to approximately 5 K during 4C discharge. Although increased flow rates enhanced cooling efficiency, improvements became negligible beyond 0.7 m/s due to inherent limitations in battery and PCM thermal conductivity. Excessively low coolant inlet temperatures (293.15 K) were found to adversely affect maximum temperature difference control during initial discharge phases. While reducing the inlet temperature from 300.65 K to 293.15 K decreased the maximum temperature by 10.1 K, it concurrently increased maximum temperature difference by 0.44 K. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

13 pages, 3514 KiB  
Article
A Comprehensive Analysis of Thermal Heat Dissipation for Lithium-Ion Battery Packs
by Xuguang Zhang, Hexiang Zhang, Amjad Almansour, Mrityunjay Singh, James D. Kiser, Hengling Zhu, Michael C. Halbig and Yi Zheng
Energies 2025, 18(9), 2234; https://doi.org/10.3390/en18092234 - 28 Apr 2025
Viewed by 816
Abstract
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow [...] Read more.
Effective thermal management is essential for the safe and efficient operation of lithium-ion battery packs, particularly in compact, airflow-sensitive applications such as drones. This study presents a comprehensive thermal analysis of a 16-cell lithium-ion battery pack by exploring seven geometric configurations under airflow speeds ranging from 0 to 15 m/s and integrating nano-carbon-based phase change materials (PCMs) to enhance heat dissipation. A Computational Fluid Dynamics (CFD) approach was employed using Ansys Discovery and Workbench 2024 R1 to simulate airflow and heat transfer processes with high spatial resolution. Using high-fidelity 3D simulations, we found that the trapezoidal wide-base configuration, combined with a 5-inlet and 1-outlet airflow design, achieved the most balanced cooling performance across all speed regimes. This configuration maintained battery temperatures within the optimal operating range (∼45 °C) in both low- and high-speed airflow conditions, with a maximum temperature reduction of up to 8.3 °C compared to the standard square configuration. Additionally, PCM integration extended the thermal regulation duration to approximately 12.5 min, effectively buffering thermal spikes during peak loads. These findings underscore the critical role of CFD-driven geometric optimization and advanced material integration in designing high-efficiency, compact cooling systems for energy-dense battery applications in drones and portable electronics. Full article
Show Figures

Figure 1

15 pages, 4450 KiB  
Article
Numerical Simulation of the Flow Field in a Tubular Thermal Cracking Reactor for Water Vapor and Difluoromonochloromethane
by Limin Yang, Hongxing Dou, Yongwen Cui, Xiaolai Zhang and Li Wang
Processes 2025, 13(4), 1170; https://doi.org/10.3390/pr13041170 - 12 Apr 2025
Viewed by 369
Abstract
Tetrafluoroethylene (TFE), as a key basic chemical raw material, has an irreplaceable position in strategic emerging industries involving high-end materials, electronics, chemicals, and pharmaceuticals. Currently, TFE is industrially produced via the vapor cracking of difluoromonochloromethane (R22). However, there is a gap between China [...] Read more.
Tetrafluoroethylene (TFE), as a key basic chemical raw material, has an irreplaceable position in strategic emerging industries involving high-end materials, electronics, chemicals, and pharmaceuticals. Currently, TFE is industrially produced via the vapor cracking of difluoromonochloromethane (R22). However, there is a gap between China and the developed countries in the high-end tetrafluoroethylene monomer, the purity of tetrafluoroethylene monomer is difficult to reach the high purity requirement of 99.999%, and the content of the key impurities that determine the nature of the functional materials is high, which leads to a series of problems of instability in the performance of the high-end and special products and high media loss. To enhance the purity of TFE monomers produced by the pyrolysis reactor of R22 and water vapor, the fluid dynamics simulations of the reactor model were conducted using Ansys Fluent. The reactor model was initially constructed using Space Claim, followed by mesh generation with Fluent Meshing and other relevant configurations. Both cold-state and thermal-state simulations were performed. The cold-state simulation analyzed the effects of temperature, flow velocity, and turbulence models on the turbulent gas flow and mixing processes within the reactor model. The thermal-state simulation examined the impacts of reaction process variations on internal temperature, turbulence, component distribution, and outlet component concentrations during the actual reaction process. Finally, the inlet flow rate and structure of the reactor were optimized. The results indicated that the optimal inlet flow rates for R22 and water vapor were 0.2–0.3 kg/s and 0.4–0.5 kg/s, respectively. In practical production, the internal fluid mixing achieved an optimal value after modifying the inlet structure to a T shape. This study provides new insights into the pyrolysis reaction and lays the foundation for further improving the purity of TFE monomers. Full article
(This article belongs to the Special Issue Fluid Dynamics and Processes of Heat Transfer Enhancement)
Show Figures

Figure 1

22 pages, 5174 KiB  
Article
In Situ Measurement and Mapping of Lubricant Film Temperature in Cylindrical Roller Thrust Bearings Using Thin-Film Sensors
by Manjunath Manjunath, Patrick De Baets and Dieter Fauconnier
Machines 2025, 13(4), 297; https://doi.org/10.3390/machines13040297 - 2 Apr 2025
Cited by 1 | Viewed by 399
Abstract
This study explores the in situ measurement of contact temperature in thermo-elastohydrodynamic lubrication (TEHL) within cylindrical roller thrust bearings (CRTBs) utilizing vapour-deposited resistive thin-film sensors. The sensors, optimized for compactness and high spatial resolution, were strategically embedded on the stationary bearing raceways near [...] Read more.
This study explores the in situ measurement of contact temperature in thermo-elastohydrodynamic lubrication (TEHL) within cylindrical roller thrust bearings (CRTBs) utilizing vapour-deposited resistive thin-film sensors. The sensors, optimized for compactness and high spatial resolution, were strategically embedded on the stationary bearing raceways near the outer, inner, and mean radius. This configuration enabled a precise measurement of temperature variations in both pure rolling and rolling–sliding regions of the CRTBs. The experimental results revealed a consistent decrease in temperature from the inner and outer radius zones towards the mean radius as the slip-to-roll ratio (SRR) decreased in these regions. Temperature profiles showed an early rise in the inlet zone attributed to thermal inlet shear. At higher speeds, a secondary temperature peak indicative of full-film lubrication was observed in the outlet zone immediately following the Hertzian contact. The study further shows the influence of surface pressure, shear rates, sliding friction, and circumferential speed on contact temperature dynamics, offering insights into their complex interplay. Additionally, viscosity variations due to different oil temperatures were found to critically affect the rate of temperature rise and the propensity for mixed friction phenomena. A higher viscosity resulted in an earlier onset of the temperature rise in the contact, while a lower viscosity and higher speeds promote mixed lubrication, leading to reduced contact film temperatures. These findings provide valuable insights into the behaviour of CRTB-lubricated contacts under various operating conditions and serve as crucial validation data for advanced TEHL computational models. Full article
Show Figures

Figure 1

25 pages, 12567 KiB  
Article
Design and Thermal Performance Analysis of a Liquid Cooling Plate Based on Gradually Varied Circular Notched Fins for Lithium-Ion Batteries
by Huaibin Gao, Xingwang Hou, Wei Ma and Yu Ma
Processes 2025, 13(3), 924; https://doi.org/10.3390/pr13030924 - 20 Mar 2025
Viewed by 1026
Abstract
Thermal management of lithium-ion batteries is crucial for enhancing the performance and safety of electric vehicles. This study proposes a novel liquid cooling plate featuring gradually varied circular notched fins (GV-CNF) to improve the thermal management of a commercial LiFePO4 battery. The [...] Read more.
Thermal management of lithium-ion batteries is crucial for enhancing the performance and safety of electric vehicles. This study proposes a novel liquid cooling plate featuring gradually varied circular notched fins (GV-CNF) to improve the thermal management of a commercial LiFePO4 battery. The results indicate that GV-CNF provides a more uniform temperature distribution, a lower Ta, and a reduced ∆P compared to circular fins under identical conditions, leading to a 41.1% improvement in the comprehensive performance evaluation indicator (TP). Notably, the value of TP increases with the height of the coolant channel; however, when the channel height exceeds 4 mm, the change in TP value becomes minimal. Afterward, further studies were conducted to investigate the effects of different inlet–outlet configurations on the cooling performance. The single-inlet, dual-outlet configuration (Type III) for the liquid cooling plate not only reduces the Ta value but also exhibits the lowest ∆P and a smaller high-temperature region. Additionally, when the outlet spacing (L) is 81 mm, the lowest Ta recorded is 27.87 °C, and the ∆P is 3.13 Pa, indicating that this is the best outlet spacing. Additionally, comparative analysis of GV-CNF with serpentine-channel and circular-fin cooling structures reveals that the GV-CNF design effectively reduces the maximum temperature of the battery module, minimizes localized heat accumulation, and maintains low energy consumption, demonstrating superior overall thermal performance. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

44 pages, 11723 KiB  
Article
Numerical Analysis of Inlet–Outlet Leg Barriers in Vertical Borehole Heat Exchangers: A Strategy to Mitigate the Thermal Resistance
by Asfia Nishat and Hossam Abuel-Naga
Geotechnics 2025, 5(1), 17; https://doi.org/10.3390/geotechnics5010017 - 1 Mar 2025
Viewed by 985
Abstract
The efficiency of heat transfer through borehole heat exchangers is influenced by the thermal resistances of both the borehole and the surrounding soil. Optimizing these resistances can improve the heat transfer performance and reduce system costs. Soil thermal resistance is geographically specific and [...] Read more.
The efficiency of heat transfer through borehole heat exchangers is influenced by the thermal resistances of both the borehole and the surrounding soil. Optimizing these resistances can improve the heat transfer performance and reduce system costs. Soil thermal resistance is geographically specific and challenging to reduce, according to previous research; in contrast, borehole resistance can be minimized through practical approaches, such as increasing the thermal conductivity of the grout or adjusting the shank spacing in the U-tube configuration. The previous literature also suggests that coaxial pipes are a more efficient design than a single U-tube borehole heat exchanger. A novel approach involves inserting a physical barrier between the U-tube’s inlet and outlet legs to reduce the thermal short-circuiting and/or to improve the temperature distribution from the inlet leg in a U-tube borehole. Limited studies exist on the barrier technique and its contribution to reducing thermal resistance. The effects of two different barrier geometries, flat plate and U-shape, made from different materials, with various grout and soil thermal conductivities and shank spacing configurations, were considered in this study. Using FlexPDE software version 6.51, this study numerically assesses thermal resistances through the borehole. This study focuses on the sole contribution of a barrier in mitigating the thermal resistance of a U-tube borehole heat exchanger. This study suggests that the barrier technique is an effective solution for optimizing heat transfer through U-tube borehole heat exchangers, especially with reduced shank spacing and lower thermal conductivity soil. It can reduce the length of a U-tube borehole by up to 8.1 m/kW of heat transfer, offering a viable alternative to increasing shank spacing in the U-tube borehole or the enhancing thermal conductivity of the grout. Moreover, under specific conditions of soil and grout with low to medium thermal conductivity, a U-tube borehole heat exchanger with a barrier between the legs demonstrates a reduction of up to 43.4 m per kW heat transfer (22.7%) in the overall length compared to coaxial pipes. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (2nd Edition))
Show Figures

Figure 1

23 pages, 17741 KiB  
Article
Influence of Non-Uniform Airflow on Two-Phase Parallel-Flow Heat Exchanger in Data Cabinet Cooling System
by Hao Cheng, Tongzhi Yang, Quan Cheng, Yifan Zhao, Leixin Wang and Weixing Yuan
Energies 2025, 18(4), 923; https://doi.org/10.3390/en18040923 - 14 Feb 2025
Cited by 1 | Viewed by 688
Abstract
The energy consumption of data center cooling systems is rapidly increasing, necessitating urgent improvements in cooling system performance. This study investigates a pump-driven two-phase cooling system (PTCS) utilizing a parallel-flow heat exchanger (PFHE) as an evaporator, positioned at the rear of server cabinets. [...] Read more.
The energy consumption of data center cooling systems is rapidly increasing, necessitating urgent improvements in cooling system performance. This study investigates a pump-driven two-phase cooling system (PTCS) utilizing a parallel-flow heat exchanger (PFHE) as an evaporator, positioned at the rear of server cabinets. The findings indicate that enhancing the vapor quality at the PFHE outlet improves the overall cooling performance. However, airflow non-uniformity induces premature localized overheating, restricting further increases in vapor quality. For PFHEs operating with a two-phase outlet condition, inlet air temperature non-uniformity has a relatively minor impact on the cooling capacity but significantly affects the drop in pressure. Specifically, higher upstream air temperatures increase the pressure drop by 7%, whereas higher downstream air temperatures reduce it by 7.7%. The implementation of multi-pass configurations effectively mitigates localized overheating caused by airflow non-uniformity, suppresses the decline in cooling capacity, and enhances the operational vapor quality of the cooling system. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics (CFD) Study for Heat Transfer)
Show Figures

Figure 1

22 pages, 10315 KiB  
Article
Numerical Investigation on the Effect of Passive Jet Control on the Performance of a Vortex Induced Vibration Energy Harvester System
by Dineshkumar Ravi, Grzegorz Litak, Mateusz Waśkowicz and Marcin Fronc
Energies 2025, 18(4), 793; https://doi.org/10.3390/en18040793 - 8 Feb 2025
Viewed by 610
Abstract
The present study investigates the effect of the passive jet control system on the performance of a vibration energy harvester system (VIVEHS). The shape of a bluff body plays a crucial role in determining the vortex shedding mechanism, while the passive jet control [...] Read more.
The present study investigates the effect of the passive jet control system on the performance of a vibration energy harvester system (VIVEHS). The shape of a bluff body plays a crucial role in determining the vortex shedding mechanism, while the passive jet control system influences the dynamic behavior of these vortices, either enhancing or suppressing the bluff body’s oscillatory performance. This study introduces key innovations, including the incorporation of perforations in the bluff body, variations in outlet angles, and different inlet and outlet configurations. In this regard, a two-dimensional numerical investigation has been carried out to understand and optimize the dynamic response from the bluff body and its effect on beam deflection. The validation of the numerical code has been carried out for a cylindrical shaped bluff body using ANSYS Fluent 23.2 numerical modelling software. Upon validation, the effects of a single inlet and a symmetrical dual outlet with different outlet angles are numerically analyzed under various flow conditions to assess their impact on the dynamic behavior of the system. The outlet angle varies between 30 degrees and 120 degrees with intervals of 30 degrees. The contours of vorticity and the bluff body dynamic characteristics were observed and plotted for various flow conditions ranging between 1 m/s and 8 m/s with intervals of 1 m/s. The results of this numerical study are crucial for designing passive jet control systems in practical energy harvesting applications. The optimization of outlet configurations and control strategies can significantly enhance both the efficiency and stability of energy harvesting systems. Full article
(This article belongs to the Section K: State-of-the-Art Energy Related Technologies)
Show Figures

Figure 1

20 pages, 4935 KiB  
Article
An Analytical Model for the Steady-State Thermal Analysis of Façade-Integrated PV Modules Cooled by a Solar Chimney
by Marko Šućurović, Dardan Klimenta, Darius Andriukaitis, Mindaugas Žilys, Tomyslav Sledevič and Milan Tomović
Appl. Sci. 2025, 15(3), 1664; https://doi.org/10.3390/app15031664 - 6 Feb 2025
Cited by 1 | Viewed by 1034
Abstract
This paper proposes a steady-state thermal model for the passive cooling of photovoltaic (PV) modules integrated into a vertical building façade by means of a solar chimney, including an empirical correlation for turbulent free convection from a vertical isothermal plate. The proposed analytical [...] Read more.
This paper proposes a steady-state thermal model for the passive cooling of photovoltaic (PV) modules integrated into a vertical building façade by means of a solar chimney, including an empirical correlation for turbulent free convection from a vertical isothermal plate. The proposed analytical model estimates the air velocities at the inlet and at the outlet of the ventilation channel of such a cooling system and the average temperature of the façade-integrated PV modules. A configuration composed of a maximum of six vertically installed PV modules and one solar chimney is considered. The air velocities at the inlet and at the outlet of the ventilation channel obtained for the case of installing PV modules on the building façade are compared with those calculated for the case where the PV modules are integrated into the roof with a slope of 37°. By comparing each of the solutions with one PV module to the corresponding one with six PV modules, it was found that the increase in the air velocity due to the effects of the solar irradiance and the height difference between the two openings of the ventilation channel ranges between 41.05% in the case of “Roof” and 141.14% in the case of “Façade”. In addition, it was obtained that an increase in the solar chimney height of 1 m leads to a decrease in the average PV section temperature by 1.95–7.21% and 0.65–2.92% in the cases of “Roof” and “Façade”, respectively. Finally, the obtained results confirmed that the use of solar chimneys for passive cooling of façade-integrated PV modules is technically justified. Full article
(This article belongs to the Special Issue Application of Perovskite Solar Cells)
Show Figures

Figure 1

25 pages, 7880 KiB  
Article
Comparative Analysis of BTM Systems Made of a Fireproof Composite Material with Nano Boron Nitride
by Ioan Szabo, Florin Mariasiu and Thomas Imre Cyrille Buidin
Fire 2025, 8(2), 63; https://doi.org/10.3390/fire8020063 - 4 Feb 2025
Viewed by 903
Abstract
The paper presents a numerical analysis of the possibilities of replacing the aluminum serpentines in the current construction of battery thermal management systems (BTMS) with cooling serpentines made of fireproof composite materials with high heat transfer parameters (fireproof epoxy resin + nano boron [...] Read more.
The paper presents a numerical analysis of the possibilities of replacing the aluminum serpentines in the current construction of battery thermal management systems (BTMS) with cooling serpentines made of fireproof composite materials with high heat transfer parameters (fireproof epoxy resin + nano boron nitride). This approach was given by the need to replace aluminum (which, in case of fire, maintains and accelerates the combustion process) with fireproof materials that reduce/eliminate the fire risk due to improper battery operation. Numerical analysis methods were used through simulation to identify the most efficient design among the single-channel, multichannel, multiflow and multiple coolant inlet–outlet solutions for cooling serpentine. In addition to these geometric constructive parameters, the variation of the coolant flow rate (9, 12, 15 and 18 L/min) and coolant inlet temperature (17, 20 and 25 °C) was also considered. The obtained results showed that the single-inlet nanocomposite resin cooling serpentine four-channel configuration presents the highest cooling efficiency of the cells that form the battery module while ensuring very good thermal uniformity as well. These findings are supported by the lowest average heat absorption by the batteries, of 34.44 kJ, as well as the lowest average internal resistance difference (caused by thermal gradients), of 5.23%. Future research is needed to identify the degree of structural resistance of serpentines made of fireproof composite material to external stresses (vibrations characteristic of the operation of electric vehicles). Full article
(This article belongs to the Special Issue Advances in Thermal Energy Storage in Fire Prevention and Control)
Show Figures

Figure 1

Back to TopTop