Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (240)

Search Parameters:
Keywords = initiative lubrication

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5335 KiB  
Article
Study on the Electro-Optical Properties of Polymer-Dispersed Liquid Crystals Doped with Cellulose Nanocrystals
by Jiayan Wang, Yan Qiao, Ziyi Yang, Yue Han, Hui Zhang, Zhiguang Li, Guili Zheng, Yanjun Zhang and Lizhi Zhu
Molecules 2025, 30(15), 3273; https://doi.org/10.3390/molecules30153273 - 5 Aug 2025
Viewed by 62
Abstract
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low [...] Read more.
The present study focuses on the effect of doping KH560-modified cellulose nanocrystals (CNCs) on the electro-optical characteristics of polymer-dispersed liquid crystals (PDLCs). PDLC films were fabricated through the polymerization-initiated phase separation (PIPS) process and doped with CNC nanoparticles at various concentrations. At low concentrations, the CNCs at the interface, by virtue of their unique chiral characteristics, induce an orderly arrangement of liquid crystal molecules. Meanwhile, the interaction between the film’s fiber structure and the liquid crystal droplets brings about an augmentation in the arrangement efficiency. The excellent dispersion of CNCs diminishes the random alignment of liquid crystal molecules and mitigates light scattering. Additionally, it aids in the deflection of the liquid crystal director, facilitating the lubrication of the liquid crystals’ movement. It is remarkable that within the range of relatively lower CNCs doping concentrations, specifically from 0.005 wt% to 0.05 wt%, the PDLC films exhibit lower threshold and saturation voltages, faster response, enhanced viewing angle performance and higher contrast. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

11 pages, 1887 KiB  
Proceeding Paper
Experimental Evaluation of Coefficient of Friction for Fretting Regimes
by Shumaila Fatima, Shahid Mehmood, Muhammad Awais Hamza, Atta Ur Rahman, Hafiz Samama Sumair, Soban Ullah, Muhammad Ammar Nasir, Muhammad Ehtisham and Husnain Zulfiqar Ali
Mater. Proc. 2025, 23(1), 9; https://doi.org/10.3390/materproc2025023009 - 31 Jul 2025
Abstract
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially [...] Read more.
This study investigates the coefficient of friction (COF) and wear behavior in fretting regimes—stick, stick–slip, and gross sliding—under dry and oil-lubricated conditions. Fretting tests were conducted by increasing oscillation amplitude from a few micrometers to 48 µm. In dry conditions, displacement amplitude initially rose rapidly, stabilizing after about 5 million load cycles, indicating steady-state behavior. The friction ratio (FR) surged early, peaking between 0.7 and 1.0, before declining to stable values, suggesting a shift from adhesive to stable frictional interaction. The minimal slip amplitude confirmed the predominance of the stick regime. Conversely, in oil-lubricated conditions, displacement amplitude stabilized after an initial increase, achieving higher amplitudes than in dry tests. The FR started below 0.2, gradually increasing to a peak around 10,000 load cycles for higher oscillation amplitudes (e.g., 15 µm), reflecting the lubricant’s role in reducing metal-to-metal contact. COF curves in lubricated tests showed smoother transitions and lower peak values compared to dry tests. These findings highlight the lubricant’s effectiveness in minimizing adhesion and enhancing sliding efficiency, offering insights for optimizing material performance in engineering applications. Full article
Show Figures

Figure 1

25 pages, 2151 KiB  
Article
A Possibility of Tribological Investigation of Physicochemical Processes in a Friction Pair Operating Under Selective Transfer Conditions
by Filip Ilie, Daniel Constantin Cotici and Andrei-Florin Hristache
Lubricants 2025, 13(8), 331; https://doi.org/10.3390/lubricants13080331 - 30 Jul 2025
Viewed by 236
Abstract
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed [...] Read more.
The physicochemical processes that occur during selective transfer in the contact area of a bronze/steel friction pair lubricated with glycerin are experimentally studied by the polarization method to observe how they influence the tribological properties (friction and wear) of the pair. The proposed method allows for the study of tribochemical transformations of glycerin and the friction pair materials during the work process with selective transfer. The analysis of the experimental results allows for the establishment of the conditions for a stable and stationary selective transfer during the operation of the bronze/steel pair, by friction, at which the friction coefficient (COF) values and wear are low. This was achieved by implementing continuous lubrication with fresh glycerin in the contact area, choosing the optimal flow rate, and maintaining an optimal ratio between glycerin and the chemical transformation products, within well-established limits, to avoid undesirable consequences. Acrolein, as a product of chemical transformation (resulting from the catalytic dehydration of glycerin), is the most important for the initiation and stability of the selective transfer, and as the main reaction product, also represents a pathway of regeneration. Thus, it was found that the friction relative moments and the acrolein concentration presented conclusive/specific results at loads of 4–15 MPa and a sliding speed of 0.3 m/s. The optimum lubricant entry speed is 15–30 mg/min, for a minimum COF and reduced wear (about 0.028–0.03 at relatively high operating temperatures (45 and 60 °C)), and at low temperatures (30 °C) the minimum COF is about 0.038, but the lubricant inlet entry speed increases considerably, by around 1000 mg/min. Therefore, this paper aims to demonstrate the possibility of moving to another stage of practical use of a friction pair (with greatly improved tribological properties) that operates with selective transfer, much different from the ones still present, using a lubricant with special properties (glycerin). The research method used (polarization) highlights the physicochemical properties, tribochemical transformations of the lubricant, and the friction pair materials present in the contact area, for the understanding, maintenance, and stability of selective transfer, based on experiments, as a novelty compared to other studies. Full article
(This article belongs to the Special Issue Experimental Modelling of Tribosystems)
Show Figures

Figure 1

13 pages, 1480 KiB  
Article
Physicochemical Properties of Coconut and Waste Cooking Oils for Biofuel Production and Lubrication
by Ahissan Innocent Adou, Laura Brelle, Pedro Marote, Muriel Sylvestre, Gerardo Cebriàn-Torrejòn and Nadiège Nomede-Martyr
Fuels 2025, 6(3), 57; https://doi.org/10.3390/fuels6030057 - 30 Jul 2025
Viewed by 323
Abstract
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils [...] Read more.
Vegetable oils are an important alternative to the massive use of fuels and lubricants from non-renewable energy sources. In this study, the physicochemical properties of coconut oil and waste cooking oil are investigated for biofuels and biolubricant applications. A transesterification of both oils was reached, and the transesterified oils were characterized by infrared analysis and gas chromatography. The lubricant performances of these oils have been evaluated using a ball-on-plane tribometer under an ambient atmosphere. Different formulations were developed using graphite particles as solid additive. Each initial and modified oil has been investigated as a base oil and as a liquid additive lubricant. The best friction reduction findings have been obtained for both initial oils as liquid additives, highlighting the key role of triglycerides in influencing tribological performances. Full article
(This article belongs to the Special Issue Biofuels and Bioenergy: New Advances and Challenges)
Show Figures

Figure 1

14 pages, 2969 KiB  
Article
ANSYS-Based Modeling and Simulation of Electrostatic Oil-Line Sensor
by Ruochen Liu, Ge Cai, Jianzhong Sun and Lanchun Zhang
Sensors 2025, 25(15), 4669; https://doi.org/10.3390/s25154669 - 28 Jul 2025
Viewed by 208
Abstract
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, [...] Read more.
Mechanical components are more difficult to detect at the initial state of failure. To solve this problem, this paper models and simulates the characteristics of an electrostatic oil-line sensor (OLS) wear particles carried in the lubricating oil path are detected. In this study, an OLS that monitors the charge in an oil line using the principle of electrostatic induction is modeled and simulated. The sensor characteristics are simulated and tested using finite element simulation. The sensor efficiency, spatial sensitivity, and length-to-diameter ratio are simulated based on the point charges at different locations. The simulation results show that the sensitivity exhibits different trends when the point charge is inside and outside the probe. The length-to-diameter ratio is proportional to the sensor efficiency, the spatial sensitivity distribution law of multiple charges is consistent with that of a point charge, and the relative deviation rate between the mathematically calculated values and the simulated values is less than 3% under the same conditions. In conclusion, the finite element simulation results of the electrostatic oil line sensor constructed in this study are consistent with the theoretical model calculations and can be used in future mechanical fault diagnosis. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

18 pages, 3569 KiB  
Article
The Influence of Carbon Nanotube Additives on the Efficiency and Vibrations of Worm Gears
by Milan Bukvić, Aleksandar Vencl, Saša Milojević, Aleksandar Skulić, Sandra Gajević and Blaža Stojanović
Lubricants 2025, 13(8), 327; https://doi.org/10.3390/lubricants13080327 - 26 Jul 2025
Viewed by 269
Abstract
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an [...] Read more.
Worm gears are used in various mechanical constructions, especially in heavy industrial plants, where they are exposed to high operating loads, large torques, and high temperatures, particularly in conditions where it is necessary for the input and output shafts to be at an angle of 90°. Regarding tribological optimization, the application of carbon nanotube in lubricants can lead to significant improvements in the performance characteristics of worm gears, both in terms of increasing efficiency and reducing the coefficient of friction and wear, as well as minimizing mechanical losses, noise, and vibrations. The objective of this study is for the research results, through the use of oil with varying percentages of carbon nanotube additives (CNTs), to contribute to the optimization of worm gears by improving efficiency, extending service life, and reducing vibrations—both within the gearbox itself and within the industrial facility where it is applied. The research methodology involved laboratory testing of a worm gear using lubricants with varying concentrations of carbon nanotube. During the experiment, measurements of efficiency, vibrations, and noise levels were conducted in order to determine the impact of these additives on the operational performance of the gear system. The main contribution of this research is reflected in the experimental confirmation that the use of lubricants with optimized concentrations of carbon nanotube significantly enhances the operational performance of worm gears by increasing efficiency and reducing vibrations and noise, thereby enabling tribological optimization that contributes to improved reliability, extended service life, and enhanced workplace ergonomics under demanding industrial conditions. Furthermore, experimental investigations have shown that the efficiency of the gearbox increases from an initial value of 0.42–0.65, which represents an increase of 54%, the vibrations of the worm gear decrease from an initial value of 5.83–2.56 mm/s2, which represents an decrease of 56%, while the noise was reduced from 87.5 to 77.2 dB, which represents an decrease of 12% with the increasing percentage of carbon nanotube additives in the lubricant, up to a maximum value of 1%. However, beyond this experimentally determined threshold, a decrease in the efficiency of the tested worm gearbox, as well as an increase in noise and vibration levels was recorded. Full article
(This article belongs to the Special Issue Friction–Vibration Interactions)
Show Figures

Figure 1

23 pages, 1375 KiB  
Review
Sugar Esters of Fatty Acids: Chemo-Enzymatic Synthesis and Biological Activity
by Kinga Hyla and Tomasz Janek
Molecules 2025, 30(15), 3123; https://doi.org/10.3390/molecules30153123 - 25 Jul 2025
Viewed by 487
Abstract
Human applications of surfactants have been diverse, from their initial use as detergents to their subsequent utilization in a multitude of other fields, including medicine, lubricants, cosmetics, and even assisted oil recovery. Nevertheless, the most significant challenge lies in the synthesis of surfactants. [...] Read more.
Human applications of surfactants have been diverse, from their initial use as detergents to their subsequent utilization in a multitude of other fields, including medicine, lubricants, cosmetics, and even assisted oil recovery. Nevertheless, the most significant challenge lies in the synthesis of surfactants. A particular challenge is the purification of compounds following chemical synthesis, as well as the toxic effect of the solvents used. Consequently, there is a growing need for more environmentally friendly solutions, namely solvents that are less toxic and more biocompatible, as well as reactions in which an enzyme serves as a catalyst. This review examines the various methods of synthesizing sugar esters and glycolipids, evaluating their respective advantages and disadvantages. Full article
(This article belongs to the Section Green Chemistry)
Show Figures

Graphical abstract

15 pages, 3833 KiB  
Article
High-Temperature Tribological Behavior of Polyimide Composites with Dual-Phase MoS2/MXene Lubricants: A Synergistic Effect Analysis
by Xingtian Ji, Pengwei Ren, Hao Liu, Yanhua Shi, Yunfeng Yan and Jianzhang Wang
J. Compos. Sci. 2025, 9(7), 373; https://doi.org/10.3390/jcs9070373 - 17 Jul 2025
Viewed by 326
Abstract
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under [...] Read more.
Polyimide (PI), owing to its high heat resistance and low density, is often employed as a substitute for metallic materials in high-temperature environments, such as aircraft engines, bearings, and gears. However, the relatively high friction coefficient of pure PI limits its application under harsh conditions. Therefore, this study synthesized a composite lubricant with binary fillers to improve this performance. This study employed the hydrothermal method to synthesize MoS2/MXene composite lubricating fillers and systematically investigated the high-temperature tribological properties of PI composites reinforced with these fillers. The results demonstrated that the optimal PI composite containing 5% MoS2/MXene exhibited a 14 °C increase in initial decomposition temperature compared to pure PI. Additionally, its thermal conductivity was enhanced by 36%, while the hardness (0.398 GPa) and elastic modulus (6.294 GPa) were elevated by 12.4% and 18.6%, respectively, relative to the pure PI. In terms of tribological behavior, all composite formulations displayed typical temperature-dependent friction characteristics. It is worth noting that MXene’s high hardness and thermal conductivity inhibited the occurrence of abrasive wear. At the same time, the substrate was strengthened, and thermal resistance was enhanced, thereby delaying the plastic deformation of the material at high temperatures. Full article
Show Figures

Figure 1

22 pages, 11458 KiB  
Article
Convolutional Neural Networks—Long Short-Term Memory—Attention: A Novel Model for Wear State Prediction Based on Oil Monitoring Data
by Ying Du, Hui Wei, Tao Shao, Shishuai Chen, Jianlei Wang, Chunguo Zhou and Yanchao Zhang
Lubricants 2025, 13(7), 306; https://doi.org/10.3390/lubricants13070306 - 15 Jul 2025
Viewed by 390
Abstract
Wear state prediction based on oil monitoring technology enables the early identification of potential wear and failure risks of friction pairs, facilitating optimized equipment maintenance and extended service life. However, the complexity of lubricating oil monitoring data often poses challenges in extracting discriminative [...] Read more.
Wear state prediction based on oil monitoring technology enables the early identification of potential wear and failure risks of friction pairs, facilitating optimized equipment maintenance and extended service life. However, the complexity of lubricating oil monitoring data often poses challenges in extracting discriminative features, limiting the accuracy of wear state prediction. To address this, a CNN–LSTM–Attention network is specially constructed for predicting wear state, which hierarchically integrates convolutional neural networks (CNNs) for spatial feature extraction, long short-term memory (LSTM) networks for temporal dynamics modeling, and self-attention mechanisms for adaptive feature refinement. The proposed architecture implements a three-stage computational pipeline. Initially, the CNN performs hierarchical extraction of localized patterns from multi-sensor tribological signals. Subsequently, the self-attention mechanism conducts adaptive recalibration of feature saliency, prioritizing diagnostically critical feature channels. Ultimately, bidirectional LSTM establishes cross-cyclic temporal dependencies, enabling cascaded fully connected layers with Gaussian activation to generate probabilistic wear state estimations. Experimental results demonstrate that the proposed model not only achieves superior predictive accuracy but also exhibits robust stability, offering a reliable solution for condition monitoring and predictive maintenance in industrial applications. Full article
Show Figures

Figure 1

13 pages, 2079 KiB  
Article
Preparation and Properties of a Composite Glass Protective Lubricating Coating for the Forging of Ti-6Al-4V Alloy
by Zunqi Xiao, Qiuyue Xie, Bin Zhang, Bing Ren and Shujian Tian
Coatings 2025, 15(7), 792; https://doi.org/10.3390/coatings15070792 - 5 Jul 2025
Viewed by 368
Abstract
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with [...] Read more.
A SiO2-Al2O3-B2O3-CaO-MgO-Na2O glass-based protective lubricant coating was developed for Ti-6Al-4V alloy forging, featuring a fully non-toxic formulation. The coating consisted of a composite glass matrix formed by blending two phases with distinct softening temperatures, extending its operational window to 700–950 °C. The composite glass showed initial softening at 700 °C and complete melting at 800 °C, with contact angle measurements confirming superior wettability (θ < 90°) across the forging range (800~950 °C). With an increase in temperature, the surface tension of the composite glass melt decreased, and subsequently, the wettability of the composite glass melt was significantly improved. XRD revealed that the uncoated Ti-6Al-4V formed a 22 μm thick rutile TiO2 scale with a porous structure and interfacial cracks, while the coated sample retained an amorphous glass layer with no TiO2. Cross-sectional SEM showed a crack-free, poreless interface with strong metallurgical bonding, in contrast to the uncoated sample’s spalled oxide layer. EDS showed minimal oxygen diffusion of the glass coating into the substrate. Ring upsetting tests showed that the coating reduced friction from 0.5–0.7 to 0.3 (50–57% decrease). Collectively, the glass protective lubricant coating showed good performance in terms of protection and lubrication. Full article
Show Figures

Figure 1

21 pages, 3800 KiB  
Article
Development of Technical Diagnostics for Lubrication in Gear Modules for Advanced Robotic Applications
by Silvia Maláková, Ľubomír Ilečko, Tibor Krenicky and Marian Dzimko
Appl. Sci. 2025, 15(13), 7431; https://doi.org/10.3390/app15137431 - 2 Jul 2025
Viewed by 213
Abstract
The paper focuses on the experimental investigation of the impact of filtration and tribological parameters on the reliability, service life, and functional characteristics of gear mechanisms used in robotics. The primary objective was to analyze the importance of lubricant cleanliness in robotic transmission [...] Read more.
The paper focuses on the experimental investigation of the impact of filtration and tribological parameters on the reliability, service life, and functional characteristics of gear mechanisms used in robotics. The primary objective was to analyze the importance of lubricant cleanliness in robotic transmission modules and to assess the effectiveness of filtration as a preventive and protective measure. As part of the research, a dedicated test rig was designed and developed. Based on the measurements and analyses performed, a significant correlation was confirmed between lubricant contamination levels and degradation phenomena in transmission modules. The study also highlights a sharp increase in contamination during the initial hours of operation, emphasizing the need for early intervention and continuous monitoring. The findings have strong practical potential and are highly relevant for manufacturers of robotic systems, maintenance service providers, and operators of automated production lines. The results contribute to increased system reliability and extended service life, reduced maintenance and repair costs, and improved environmental aspects of robotic system maintenance. Full article
(This article belongs to the Special Issue Technical Diagnostics and Predictive Maintenance, 2nd Edition)
Show Figures

Figure 1

14 pages, 7219 KiB  
Article
The Influence of Atomic Metal Conditioner Additive with Surface Revitalizer on the Lubricating Properties of Engine Oil
by Ruslans Smigins, Audrius Žunda, Albinas Andriušis, Çağla Gizem Acar and Simona Tučkutė
Lubricants 2025, 13(7), 284; https://doi.org/10.3390/lubricants13070284 - 25 Jun 2025
Viewed by 432
Abstract
The development of multifunctional lubricant additives is critical for enhancing the performance and longevity of internal combustion engines. This study investigates the influence of oil additive, containing an atomic metal conditioner (AMC), a two-dimensional sliding agent, and a patented revitalizer on lubricating properties [...] Read more.
The development of multifunctional lubricant additives is critical for enhancing the performance and longevity of internal combustion engines. This study investigates the influence of oil additive, containing an atomic metal conditioner (AMC), a two-dimensional sliding agent, and a patented revitalizer on lubricating properties of engine oil 5W-30 and on surface wear characteristics. The experimental testing involved comparative tribological evaluation using the 4-ball test. Pure commercial engine oil (PEO) 5W-30 and oil mixed with the revitalizer additive (OMA) were used. The changes in friction torque (FTq), temperature, and wear scars were analyzed. FTq evolution showed a distinct behavior across the different test cases: PEO exhibited fluctuating FTq in the initial minute and thereafter, but its value was lower, and the wear scars were smaller compared to OMA. Long-duration tests revealed that OMA resulted in significantly larger wear scars, large FTq values, and less variations emerging later in the test. When switching from PEO (1 h) to OMA (1 h) mid-test, the wear increased compared to 2 h PEO. Across all conditions, oil temperature had a strong relationship with FTq. Although some frictional improvements were observed, no definitive evidence of revitalizer-induced surface regeneration was detected, suggesting adhesive wear remained predominant under the studied conditions. Full article
(This article belongs to the Special Issue Novel Lubricant Additives in 2025)
Show Figures

Figure 1

23 pages, 6546 KiB  
Article
Bidirectionally Coupled FE-CFD Simulation Study on MQL Machining Process of Ti-6Al-4V Alloy
by Xiaorong Zhou, Lin He, Sen Yuan, Hongwan Jiang, Jing Deng, Feilong Du, Jingdou Yang and Zebin Su
Lubricants 2025, 13(6), 274; https://doi.org/10.3390/lubricants13060274 - 19 Jun 2025
Viewed by 769
Abstract
In the context of sustainable manufacturing practices, minimum quantity lubrication (MQL) has been extensively employed in machining operations involving hard-to-cut materials. While substantial experimental and numerical investigations on MQL-assisted machining have been conducted, existing simulation approaches remain inadequate for modeling the dynamic flow [...] Read more.
In the context of sustainable manufacturing practices, minimum quantity lubrication (MQL) has been extensively employed in machining operations involving hard-to-cut materials. While substantial experimental and numerical investigations on MQL-assisted machining have been conducted, existing simulation approaches remain inadequate for modeling the dynamic flow field variations inherent to MQL processes, significantly compromising the predictive reliability of current models. This study introduced an innovative bidirectional iterative coupling framework integrating finite element (FE) analysis and computational fluid dynamics (CFD) to enhance simulation accuracy. Since fluid flow characteristics critically influence tribological and thermal management at the tool–workpiece interface during machining, CFD simulations were initially performed to evaluate how MQL parameters govern fluid flow behavior. Subsequently, an integrated FE-CFD modeling approach was developed to simulate Ti-6Al-4V alloy turning under MQL conditions with varying feed rates. The novel methodology involved transferring thermal flux data from FE simulations to CFD’s heat source domain, followed by incorporating CFD-derived convective heat transfer coefficients back into FE computations. This repetitive feedback process continued until the thermal exchange parameters reached convergence. Validation experiments demonstrated that the proposed method achieved improved alignment between the simulated and experimental results for both cutting temperature profiles and principal force components across different feed conditions, confirming the enhanced predictive capability of this coupled simulation strategy. Full article
Show Figures

Figure 1

18 pages, 7950 KiB  
Article
Combined Effects of DLC Coating and Surface Texturing on Seizure and Friction in Reciprocating Sliding
by Slawomir Wos, Waldemar Koszela, Andrzej Dzierwa and Pawel Pawlus
Lubricants 2025, 13(6), 244; https://doi.org/10.3390/lubricants13060244 - 28 May 2025
Viewed by 712
Abstract
Surface texturing is designed to improve the functional properties of machine elements by generating dimples on the surface contacted. Friction and wear resistance can also be improved by creating diamond-like carbon (DLC) coatings. These two techniques were combined to extend the lifetime of [...] Read more.
Surface texturing is designed to improve the functional properties of machine elements by generating dimples on the surface contacted. Friction and wear resistance can also be improved by creating diamond-like carbon (DLC) coatings. These two techniques were combined to extend the lifetime of the elements and minimise friction in reciprocating conformal sliding contact. This work is functionally important for assemblies operating under high normal loads. Experiments were carried out in initially lubricated reciprocating sliding contact using an Optimol SRV 5 tribotester in the flat-on-flat configuration. The disc samples were untextured, laser textured, and DLC-coated untextured and textured. The combination of DLC coating and surface texturing caused an enhancement of the tribological performance of the sliding pair compared to that of untextured discs with and without DLC coating and textured discs without DLC coating. The DLC coating of the untextured disc caused a growth in the lifetime of a friction pair by a factor of 2.4. Seizure resistance also increased due to surface texturing of the steel disc for pit area ratios of 9 and 13%. Combining surface texturing with pit area ratios of 3 and 9% and DLC coating led to a decrease in the coefficients of friction of sliding pairs compared to only textured and coated discs. The DLC coating caused a decrease in the wear of the disc sample and reduction in wear levels of the counter samples in comparison to those of textured discs without DLC coatings. Full article
(This article belongs to the Special Issue Tribology of Textured Surfaces)
Show Figures

Figure 1

10 pages, 2135 KiB  
Article
Wear Transition of Silicon-Doped Tetrahedral Amorphous Carbon (ta-C:Si) Under Water Lubrication
by Jae-Il Kim, Ji-Woong Jang, Myung Hyun Kim, Se-Hun Kwon and Young-Jun Jang
Coatings 2025, 15(6), 640; https://doi.org/10.3390/coatings15060640 - 26 May 2025
Viewed by 489
Abstract
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing [...] Read more.
Silicon-doped tetrahedral amorphous carbon (ta-C:Si) coatings are promising materials for achieving ultralow friction in water-lubricated environments, attributed to the formation of Si(OH)x-based tribofilms. However, the deposition process via filtered cathodic vacuum arc (FCVA) often introduces large particles into the film, increasing surface roughness and causing accelerated wear during the initial sliding phase, despite the high hardness of the coating. In this study, ball-on-disk tribological tests were performed to investigate the wear behavior of ta-C:Si coatings under water lubrication. Friction coefficients, wear volume, and surface roughness were analyzed over various sliding durations. The Archard wear equation and the plasticity index were used to analyze wear and contact behavior. The friction coefficient decreased from 0.14 to 0.04 within the initial 100 m section, and the surface roughness of ta-C:Si decreased sharply from 0.35 μm to 0.01 μm based on the Rpk parameter during 10 h. Following this period, the plasticity index decreased from an initial value of 1.1 to below 0.6, transitioning to a fully elastic contact stage, marking the onset of steady-state wear after 10 h. These results indicate that the reduction in surface roughness plays a crucial role in stabilizing wear behavior and provide insights into optimizing the long-term performance of ta-C:Si coatings in aqueous environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Graphical abstract

Back to TopTop