Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (301)

Search Parameters:
Keywords = initial cell attachment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 3600 KB  
Article
TREM-1 Interacts with Rotavirus Proteins and Drives Inflammatory Responses: A Combined Experimental and Computational Approach
by Amanda de Oliveira Matos, José Rodrigues do Carmo Neto, Fernanda Craveiro Franco, Jefferson do Carmo Dietz, Pedro Henrique dos Santos Dantas, Andrei Giacchetto Felice, Adriana Luchs, Milton Adriano Pelli de Oliveira, Artur Christian Garcia da Silva, Siomar de Castro Soares, Simone Gonçalves da Fonseca, Fátima Ribeiro-Dias, Bruno Junior Neves, Carolina Horta Andrade, Marcelle Silva-Sales and Helioswilton Sales-Campos
Pathogens 2025, 14(10), 1029; https://doi.org/10.3390/pathogens14101029 - 10 Oct 2025
Viewed by 387
Abstract
Rotavirus (RV) is one of the main etiologic agents associated with diarrheal diseases (DDs), being responsible for approximately 200 thousand deaths annually. Currently, there are still many aspects regarding the virus biology, cell cycle, and pathophysiology of RV that need further elucidation. Therefore, [...] Read more.
Rotavirus (RV) is one of the main etiologic agents associated with diarrheal diseases (DDs), being responsible for approximately 200 thousand deaths annually. Currently, there are still many aspects regarding the virus biology, cell cycle, and pathophysiology of RV that need further elucidation. Therefore, the present work aimed to investigate whether the triggering receptor expressed on myeloid cells 1 (TREM-1) might be associated with RV infection. This immune receptor has been observed as an amplifier of inflammatory responses in different infectious and non-infectious diseases, including inflammatory bowel disease and celiac disease. Initially, we searched for public transcriptomic data regarding RV infection and the expression of TREM-1 and its associated genes, which were significantly upregulated in infected mice and children. Then, we infected monocytes with the virus, with or without a TREM-1 inhibitor. The inhibition of the receptor’s activity resulted in a significant decrease in IL-1β production. We also observed a reduction in cytopathic effects when MA104 cells were treated with TREM-1 inhibitors and then infected with simian RV. To further elucidate the interactions between the virus and TREM-1, in silico tools were used to simulate interactions between the receptor and RV proteins. These simulations suggested the occurrence of interactions between TREM-1 and VP5*, a protein involved in viral attachment to target cells, and also between the receptor and NSP4, a viral enterotoxin with immunostimulant properties. Hence, our results indicate that TREM-1 is involved in RV infection, both as a mediator of inflammatory responses and as a player in the host–virus relationship. Full article
Show Figures

Figure 1

52 pages, 1718 KB  
Review
Plant-Based Scaffolds for Tissue Engineering: A Review
by Maria Isabela Vargas-Ovalle, Christian Demitri and Marta Madaghiele
Polymers 2025, 17(19), 2705; https://doi.org/10.3390/polym17192705 - 8 Oct 2025
Viewed by 691
Abstract
The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue [...] Read more.
The global need for tissue and organ transplantation paved the way for plant-based scaffolds as cheap, ethical, and valuable alternatives to synthetic and animal-derived matrices for tissue regeneration. Over the years, the field has outgrown its initial scope, including the development of tissue models, platforms for drug testing and delivery, biosensors, and laboratory-grown meat. In this scoping review, we aimed to shed light on the frequency of the use of different plant matrices, the main techniques for decellularization, the functionalization methods for stimulating mammalian cell attachment, and the main results. To that purpose, we searched the keywords “decellularized” AND “scaffold” AND (“plant” OR “vegetable”) in online-available databases (Science Direct, Scopus, PubMed, and Sage Journals). From the selection and study of 71 articles, we observed a multitude of plant sources and tissues, along with a large and inhomogeneous body of protocols used for decellularization, functionalization and recellularization of plant matrices, which all led to variable results, with different extents of success (mostly in vitro). Since the field of plant-based scaffolds shows high potential for growth in the next few years, driven by emerging biotechnological applications, we conclude that future research should focus on plant sources with low economic and environmental impacts while also pursuing the standardization of the methods involved and a much deeper characterization of the scaffold performance in vivo. Full article
(This article belongs to the Special Issue Polymer Scaffolds for Tissue Engineering, 3rd Edition)
Show Figures

Figure 1

18 pages, 4920 KB  
Article
Electrospray Beta-Glucan Particle Coated PVP/CA Electrospun Mat as a Potential Scaffold for Dental Tissue Regeneration
by Thanutham Somboonchokephisal, Pratchaya Tipduangta, Sarawut Kumphune and Tanida Srisuwan
Polymers 2025, 17(19), 2693; https://doi.org/10.3390/polym17192693 - 5 Oct 2025
Viewed by 438
Abstract
Regenerative endodontic procedures (REPs) are a promising treatment for immature teeth with pulpal necrosis. However, the outcomes remain unpredictable, partly due to scaffold limitations. Beta-glucan (BG), a bioactive polysaccharide with regenerative properties, may enhance scaffold performance. This study aimed to fabricate BG-coated polyvinylpyrrolidone/cellulose [...] Read more.
Regenerative endodontic procedures (REPs) are a promising treatment for immature teeth with pulpal necrosis. However, the outcomes remain unpredictable, partly due to scaffold limitations. Beta-glucan (BG), a bioactive polysaccharide with regenerative properties, may enhance scaffold performance. This study aimed to fabricate BG-coated polyvinylpyrrolidone/cellulose acetate (PVP/CA) electrospun scaffolds and evaluate their physicochemical properties and cell attachment. Electrospun scaffolds were fabricated by electrospinning a 10% w/v PVP/CA (70:30) solution in acetone and N,N-dimethylacetamide (2:1) (PC). BG (8% w/v in 1 M NaOH) was electrosprayed onto the scaffold at 0.1, 0.2, and 0.4 mL volumes, generating PC-BG01, PC-BG02, and PC-BG04, respectively. Scaffold characterization included SEM, FTIR, BG enzymatic assay, water absorbance, degradation, and cell adhesion assays. SEM images of the scaffolds exhibited smooth cylindrical fibers (547.3–585.9 nm diameter) with high porosity (42.37–49.91%). BG particles were confirmed by elemental analysis and BG enzymatic assay. At 28 days, the PC group showed significant fiber diameter and porosity reduction. BG particle degradation was observed at 14 and 28 days. Notably, BG-coated scaffolds significantly enhanced initial apical papilla cell adhesion at 1 and 24 h. These findings highlight the potential of BG-coated scaffolds as bioactive scaffolds for REPs. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

14 pages, 5396 KB  
Article
Hypoxia-Induced Extracellular Matrix Deposition in Human Mesenchymal Stem Cells: Insights from Atomic Force, Scanning Electron, and Confocal Laser Microscopy
by Agata Nowak-Stępniowska, Paulina Natalia Osuchowska, Henryk Fiedorowicz and Elżbieta Anna Trafny
Appl. Sci. 2025, 15(19), 10701; https://doi.org/10.3390/app151910701 - 3 Oct 2025
Viewed by 500
Abstract
(1) Background: The extracellular matrix (ECM) is a natural scaffold for cells, creating a three-dimensional architecture composed of fibrous proteins (mainly collagen) and proteoglycans, which are synthesized by resident cells. In this study, a physiological hypoxic environment was utilized to enhance ECM production [...] Read more.
(1) Background: The extracellular matrix (ECM) is a natural scaffold for cells, creating a three-dimensional architecture composed of fibrous proteins (mainly collagen) and proteoglycans, which are synthesized by resident cells. In this study, a physiological hypoxic environment was utilized to enhance ECM production by human mesenchymal stem cells (hMSCs), a process relevant to tissue engineering and regenerative medicine. (2) Methods: hMSCs were treated with deferoxamine (DFO), a pharmaceutical hypoxia-mimetic agent that induces cellular responses similar to low-oxygen conditions through stabilization of hypoxia inducible factor-1α (HIF-1α). The time points 0 h 24 h, 3 h 24 h, and 24 h 24 h refer to DFO being added immediately after cell seeding (before cells adhesion), 3 h after cell seeding (during initial cells attachment), and 24 h after cell seeding (after focal adhesions formation and actin organization), respectively, to evaluate the influence of cell adhesion on ECM deposition. hMSCs incubated in culture media were subsequently exposed to DFO for 24 h. Samples were then subjected to cell viability tests, scanning electron microscopy (SEM), atomic force microscopy (AFM) and laser scanning confocal microscopy (CLSM) assessments. (3) Results: Viability tests indicated that DFO concentrations in the range of 0–300 µM were non-toxic over 24 h. The presence of collagen fibers in the DFO-derived ECM was confirmed with anti-collagen antibodies under CLSM. Increased ECM secretion was observed under the following conditions: 3 μM DFO (24 h 24 h), 100 μM DFO (0 h 24 h) and 300 μM DFO (3 h 24 h). SEM and AFM images revealed the morphology of various stages of collagen formation with both collagen fibrils and fibers identified. (4) Conclusions: Our preliminary study demonstrated enhanced ECM secretion by hMSC treated with DFO at concentrations of 3, 100, and 300 µM within a short cultivation period of 24–48 h without significant affecting cell viability. By mimicking physiological processes, it may be possible to stimulate endogenous tissue regeneration, for example, at an injury site. Full article
(This article belongs to the Special Issue Modern Trends and Applications in Cell Imaging)
Show Figures

Figure 1

14 pages, 1358 KB  
Article
The Endocrine-Disrupting Chemical Benzophenone-3 in Concentrations Ranging from 0.001 to 10 µM Does Not Affect the Human Decidualization Process in an In Vitro Setting
by Kristin Krausser, Julia Howanski, Beate Fink, Mario Bauer, Florence Fischer, Federica Romanelli, Ana Claudia Zenclussen and Anne Schumacher
Int. J. Mol. Sci. 2025, 26(19), 9314; https://doi.org/10.3390/ijms26199314 - 24 Sep 2025
Viewed by 427
Abstract
Endocrine-disrupting chemicals such as benzophenone-3 (BP-3) can have severe consequences for human reproduction by affecting critical processes during pregnancy. To shed further light on potential harmful BP-3 actions, our current study addressed the impact of BP-3 on decidualization and trophoblast invasion. Decidualization was [...] Read more.
Endocrine-disrupting chemicals such as benzophenone-3 (BP-3) can have severe consequences for human reproduction by affecting critical processes during pregnancy. To shed further light on potential harmful BP-3 actions, our current study addressed the impact of BP-3 on decidualization and trophoblast invasion. Decidualization was initiated in human endometrial stromal cells (THESC) upon treatment with a mixture of cAMP, progesterone, and estradiol. In parallel to hormonal treatment, the cells were exposed to different BP-3 concentrations ranging from 0.001 µM to 10 µM. The expression of decidualization and invasion markers was determined. Moreover, trophoblastic spheroids derived from JEG-3 cells were transferred to decidualized THESC after BP-3 exposure, and spheroid attachment and invasion were analyzed. Hormonal treatment successfully initiated decidualization in THESC, which was confirmed by increased prolactin levels and IGFBP1 and NCOA-3 mRNA expression. Notably, BP-3 exposure did not affect these markers. Furthermore, BP-3 changed neither THESC proliferation nor viability nor the frequency of cells expressing MMP2/9 or TIMP1/3. Trophoblastic spheroid attachment and outgrowth into THESC were not altered through any of the BP-3 concentrations applied. Our results do not provide evidence for an influence of BP-3 on the decidualization process and the capability of trophoblast cells to adhere and invade into endometrial stromal cells. Full article
(This article belongs to the Special Issue Reproductive Toxicity of Chemicals)
Show Figures

Figure 1

18 pages, 2240 KB  
Article
Role of Tpm Isoforms Produced by the TPM4 Gene in the Regulation of Actin Filament Dynamics by Cofilin
by Svetlana G. Roman, Victoria V. Nefedova and Alexander M. Matyushenko
Biomolecules 2025, 15(8), 1206; https://doi.org/10.3390/biom15081206 - 21 Aug 2025
Cited by 1 | Viewed by 761
Abstract
The actin cytoskeleton determines a huge number of intracellular processes, as well as maintaining the cell shape, transport, formation of intercellular contacts, etc. The actin cytoskeleton’s function is largely determined by actin-binding proteins. Here, the mutual influence of two actin-binding proteins, cofilin (cof) [...] Read more.
The actin cytoskeleton determines a huge number of intracellular processes, as well as maintaining the cell shape, transport, formation of intercellular contacts, etc. The actin cytoskeleton’s function is largely determined by actin-binding proteins. Here, the mutual influence of two actin-binding proteins, cofilin (cof) and tropomyosin (Tpm), is studied. In the present work, using various biochemical approaches, we reveal the effects of two TPM4 gene-derived isoforms (Tpm4.1 and Tpm4.2) in the presence of cofilin-1 and cofilin-2. The cofilin severing activity was estimated in F-actin and Tpm/F-actin complexes using viscosity measurements and electron microscopy. Both cofilins prompted the disassembly of F-actin filaments with Tpms attached to them, and the Tpm4.2 isoform demonstrated a better protective effect. We also estimated the ability of cofilin-1 and cofilin-2 to displace Tpms from actin filaments by using the co-sedimentation method. Both cofilin isoforms efficiently displaced Tpm4.1 and Tpm4.2 and bound to actin filaments. Both Tpms decreased the initial rate of actin polymerization in the presence of cofilin-1 and cofilin-2. Overall, we can assume that Tpm4.1 and Tpm4.2 do not affect the binding of cofilin to actin filaments, which may be important for cofilin to exhibit its severing activity and lead to the remodeling of the actin cytoskeleton. Full article
(This article belongs to the Section Cellular Biochemistry)
Show Figures

Figure 1

10 pages, 4976 KB  
Article
Investigating the Effects of Hydraulic Shear on Scenedesmus quadricauda Growth at the Cell Scale Using an Algal-Cell Dynamic Continuous Observation Platform
by Yao Qu, Jiahuan Qian, Zhihua Lu, Ruihong Chen, Sheng Zhang, Jingyuan Cui, Chenyu Song, Haiping Zhang and Yafei Cui
Microorganisms 2025, 13(8), 1776; https://doi.org/10.3390/microorganisms13081776 - 30 Jul 2025
Viewed by 384
Abstract
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell [...] Read more.
Hydraulic shear has been widely accepted as one of the essential factors modulating phytoplankton growth. Previous experimental studies of algal growth have been conducted at the macroscopic level, and direct observation at the cell scale has been lacking. In this study, an algal-cell dynamic continuous observation platform (ACDCOP) is proposed with a parallel-plate flow chamber (PPFC) to capture cellular growth images which are then used as input to a computer vision algorithm featuring a pre-trained backpropagation neural network to quantitatively evaluate the volumes and volumetric growth rates of individual cells. The platform was applied to investigate the growth of Scenedesmus quadricauda cells under different hydraulic shear stress conditions. The results indicated that the threshold shear stress for the development of Scenedesmus quadricauda cells was 270 µL min−1 (5.62 × 10−5 m2 s−3). Cellular growth was inhibited at very low and very high intensities of hydraulic shear. Among all the experimental groups, the longest growth period for a cell, from attachment to PPFC to cell division, was 5.7 days. Cells with larger initial volumes produced larger volumes at division. The proposed platform could provide a novel approach for algal research by enabling direct observation of algal growth at the cell scale, and could potentially be applied to investigate the impacts of various environmental stressors such as nutrient, temperature, and light on cellular growth in different algal species. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

27 pages, 7011 KB  
Review
Conceptus Elongation, Implantation, and Early Placental Development in Species with Central Implantation: Pigs, Sheep, and Cows
by Gregory A. Johnson, Thainá Minela, Heewon Seo, Fuller W. Bazer, Robert C. Burghardt, Guoyao Wu, Ky G. Pohler, Claire Stenhouse, Joe W. Cain, Zachary K. Seekford and Dallas R. Soffa
Biomolecules 2025, 15(7), 1037; https://doi.org/10.3390/biom15071037 - 17 Jul 2025
Cited by 1 | Viewed by 1606
Abstract
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial [...] Read more.
Species have different strategies for implantation and placentation. Much can be learned about general molecular and cellular biology through the examination and comparison of these differences. To varying degrees, implantation in all species includes alterations in epithelial polarity, the transformation of the endometrial stroma, the differentiation of the trophoblast, cell-to-cell and tissue-to-tissue signaling through hormones, cytokines, and extracellular vesicles, and the alteration of the maternal immune system. This review focuses on implantation in pigs, sheep, and cows. These species share with mice/rats and humans/primates the key events of early embryonic development, pregnancy recognition, and the establishment of functional placentation. However, there are differences between the pregnancies of livestock and other species that make livestock unique biomedical models for the study of pregnancy and cell biology in general. Pig, sheep, and cow conceptuses (embryo/fetus and associated placental membranes) elongate prior to implantation, displaying central implantation, extended periods of conceptus attachment to the uterus, and epitheliochorial (pigs) and synepitheliochorial (sheep and cows) placentation. This review will discuss what is understood about how the trophoblast and extraembryonic endoderm of pig, sheep, and cow conceptuses elongate, and how a major goal of current in vitro models is to achieve conceptus elongation. It will then examine the adhesion cascade for conceptus implantation that initiates early placental development in pigs, sheep, and cows. Finally, it will conclude with a brief overview of early placental development in pigs, sheep, and cows, with a listing of some important “omics” studies that have been published. Full article
Show Figures

Figure 1

20 pages, 1818 KB  
Article
Interfacial Layer (“Interlayer”) Addition to Improve Active Material Utilisation in Lithium–Sulfur Batteries: Use of a Phenylsulfonated MWCNT Film
by Luke D. J. Barter, Steven J. Hinder, John F. Watts, Robert C. T. Slade and Carol Crean
Batteries 2025, 11(7), 266; https://doi.org/10.3390/batteries11070266 - 16 Jul 2025
Viewed by 1600
Abstract
Films of functionalised multiwalled carbon nanotubes (MWCNTs) were fabricated as interlayers (interfacial layers between the cathode and separator) in a lithium–sulfur battery (LSB). Phenylsulfonate functionalisation of commercial MWCNTs was achieved via diazotisation to attach lithium phenylsulfonate groups and was characterised by IR and [...] Read more.
Films of functionalised multiwalled carbon nanotubes (MWCNTs) were fabricated as interlayers (interfacial layers between the cathode and separator) in a lithium–sulfur battery (LSB). Phenylsulfonate functionalisation of commercial MWCNTs was achieved via diazotisation to attach lithium phenylsulfonate groups and was characterised by IR and XPS spectroscopies. SEM-EDX showed sulfur and oxygen colocations due to the sulfonate groups on the interlayer surface. However, CHNS elemental microstudies showed a low degree of functionalisation. Without an interlayer, the LSB produced stable cycling at a capacity of 600 mA h g−1sulfur at 0.05 C for 40 cycles. Using an unfunctionalised interlayer as a control gave a capacity of 1400 mA h g−1sulfur for the first cycle but rapidly decayed to the same 600 mA h g−1sulfur at the 40th cycle at 0.05 C, suggesting a high degree of polysulfide shuttling. Adding a lithium phenylsulfonated interlayer gave an initial capacity increase to 1100 mA h g−1sulfur that lowered to 800 mA h g−1sulfur at 0.05 C by the 40th cycle, showing an increase in charge storage (33%) relative to the other cells. This performance increase has been attributed to lessened polysulfide shuttling due to repulsion by the phenylsulfonate groups, increased conductivity at the separator-cathode interface and an increase in surface area. Full article
Show Figures

Graphical abstract

29 pages, 4661 KB  
Article
The Activity of Human NK Cells Towards 3D Heterotypic Cellular Tumor Model of Breast Cancer
by Anastasia Leonteva, Maria Abdurakhmanova, Maria Bogachek, Tatyana Belovezhets, Anna Yurina, Olga Troitskaya, Sergey Kulemzin, Vladimir Richter, Elena Kuligina and Anna Nushtaeva
Cells 2025, 14(14), 1039; https://doi.org/10.3390/cells14141039 - 8 Jul 2025
Viewed by 1261
Abstract
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro, we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7, MDA-MB-231, and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in [...] Read more.
Due to the complexity of modeling tumor-host interactions within the tumor microenvironment in vitro, we developed a 3D heterotypic cellular breast cancer (BC) model. We generated spheroid models using MCF7, MDA-MB-231, and SK-BR-3 cell lines alongside cancer-associated (BrC4f) and normal (BN120f) fibroblasts in ultra-low attachment plates. Stromal spheroids (3Df) were formed using a liquid overlay technique (graphical abstract). The YT cell line and peripheral blood NK (PB-NK) cells were used as immune components in our 3D model. In this study, we showed that stromal cells promoted tumor cell aggregation into spheroids, regardless of the initial proliferation rates, with NK cells accumulating in fibroblast-rich regions. The presence of CAFs within the model induced alterations in the expression levels of MICA/B and PD-L1 by tumor cells within the 3D-2 model. The feasibility of utilizing a 3D cell BC model in combination with cytokines and PB-NKs was evaluated. We observed that IL-15 and IL-2 enhanced NK cell activity within spheroids, whereas TGFβ had varying effects on proliferation depending on the cell type. Stimulation with IL-2 and IL-15 or TGFβ1 altered PB-NK markers and stimulated their differentiation into ILC1-like cells in 3D models. These findings underscore the regulatory function of CAFs in shaping the response of the tumor microenvironment to immunotherapeutic interventions. Full article
Show Figures

Graphical abstract

25 pages, 2295 KB  
Article
Transitions of the Bacteria–Fungi Microbiomes Associated with Different Life Cycle Stages of Dinoflagellate Scrippsiella acuminata
by Caixia Yue, Zhaoyang Chai, Fengting Li, Lixia Shang, Zhangxi Hu, Yunyan Deng and Ying-Zhong Tang
Microorganisms 2025, 13(6), 1340; https://doi.org/10.3390/microorganisms13061340 - 9 Jun 2025
Cited by 1 | Viewed by 877
Abstract
Dinoflagellates significantly contribute to the carbon fixation and microbial loop in the ocean with high ecological diversity. While the microbial communities associated with the HABs of dinoflagellates have attracted intensive attention in recent years, little attention has been paid to the microbiomes associated [...] Read more.
Dinoflagellates significantly contribute to the carbon fixation and microbial loop in the ocean with high ecological diversity. While the microbial communities associated with the HABs of dinoflagellates have attracted intensive attention in recent years, little attention has been paid to the microbiomes associated with resting cysts, an important stage in the life cycle and bloom initiation dynamics of dinoflagellates. Using Scrippsiella acuminata as a representative of cyst producers and cyst-relevant research in dinoflagellates, we surveyed the bacteria and fungi microbiomes long associated with different life cycle stages of the dinoflagellate culture through 16S and ITS rRNA amplicon sequencing, and predicted their possible functions using the PICRUSt2 algorithm. The results found high species diversity of the associated bacteria–fungi microbiomes, and species featured with diverse and flexible metabolic capabilities that have stably co-occurred with the laboratory culture of S. acuminata. The host-attached and the free-living groups of bacteria–fungi microbiomes, as operationally defined in the context, showed significant differences in terms of their nutritional preferences. The bacteria–fungi species diversity and community structure associated with cysts are also distinguished significantly from that with vegetative cells, with the latter attracting more bacteria–fungi species specializing in phosphate solubilization. These results suggest that the relative species abundance and thus the community structure of the host-associated microbiome shift with the transition of life cycle stages and environmental conditions. Our findings show the association tightness between bacteria–fungi microbiomes and dinoflagellate hosts and the different life stages of hosts shaping the bacteria–fungi communities, which result in dynamic and specific interactions between bacteria–fungi microbiomes and their hosts. Full article
(This article belongs to the Special Issue Research on Biology of Dinoflagellates)
Show Figures

Figure 1

14 pages, 4335 KB  
Article
Impact of Atomic Layer-Deposited Hydroxyapatite-Coated Titanium on Expression of Focal Adhesion Molecules of Human Gingival Fibroblasts
by Nagat Areid, Faleh Abushahba, Sini Riivari, Elisa Närvä, Elina Kylmäoja, Mikko Ritala, Juha Tuukkanen, Pekka K. Vallittu and Timo O. Närhi
Nanomaterials 2025, 15(12), 887; https://doi.org/10.3390/nano15120887 - 8 Jun 2025
Cited by 1 | Viewed by 874
Abstract
This study investigated the impact of the nanocrystalline atomic layer-deposited hydroxyapatite (ALD-HA) coating of titanium (Ti) surface on the attachment and proliferation of human gingival fibroblasts (HGFs). Ti discs were divided into ALD-HA-coated and non-coated (NC) controls. HGFs were harvested from gingival biopsies [...] Read more.
This study investigated the impact of the nanocrystalline atomic layer-deposited hydroxyapatite (ALD-HA) coating of titanium (Ti) surface on the attachment and proliferation of human gingival fibroblasts (HGFs). Ti discs were divided into ALD-HA-coated and non-coated (NC) controls. HGFs were harvested from gingival biopsies of patients subjected to extraction of their third molar. The cells were cultivated on the Ti discs for 2 and 24 h to evaluate the initial cell attachment using confocal microscopy. Spreading of cells and the signals of focal adhesion proteins were measured. Moreover, the adhesion proteins vinculin and paxillin expression levels were evaluated using Western blot after 3 d of cultivation. In addition, the proliferation of HGF was assessed by cultivating the cells on Ti discs for 1, 3, and 7 d. Fibroblast spreading was significantly greater on ALD-HA surfaces than on NC surfaces after 2 h (p < 0.001). In addition, the signals of vinculin and paxillin were significantly higher on the ALD-HA than on the NC surfaces at 2 and 24 h. The confocal microscope analysis also revealed significantly higher expression of focal adhesion molecules on ALD-HA surfaces at both time points. Furthermore, the cell proliferation rate was significantly higher at d 3 (p = 0.022) and d 7 (p < 0.001) on the ALD-HA compared to the NC surfaces. These findings indicate that ALD-HA coating enhances focal adhesion formation, cell spreading, and proliferation on Ti surfaces, suggesting its potential to improve gingival tissue attachment to Ti implant surfaces. Full article
(This article belongs to the Special Issue Advances in Nanotechnology for Medical Implants)
Show Figures

Figure 1

10 pages, 576 KB  
Viewpoint
THSD1 Is a Multifaceted Regulator in Health and Disease
by Mengjun Dai, Kuizhi Qu, Sophie Liu, Zhen Xu and Yan-Ning Rui
Biomedicines 2025, 13(6), 1292; https://doi.org/10.3390/biomedicines13061292 - 24 May 2025
Viewed by 891
Abstract
Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) is a transmembrane protein increasingly recognized for its critical roles in vascular biology and disease pathogenesis. Initially identified as a marker of hematopoietic stem and endothelial cells during embryogenesis, THSD1 has since been implicated in a [...] Read more.
Thrombospondin Type 1 Domain-Containing Protein 1 (THSD1) is a transmembrane protein increasingly recognized for its critical roles in vascular biology and disease pathogenesis. Initially identified as a marker of hematopoietic stem and endothelial cells during embryogenesis, THSD1 has since been implicated in a wide spectrum of physiological and pathological processes. This paper consolidates current knowledge on THSD1, with a focus on its roles in vascular integrity, perinatal disorders, and tumorigenesis. In vascular systems, THSD1 promotes focal adhesion assembly and suppresses autophagy-mediated adhesion turnover, thereby stabilizing endothelial attachment and maintaining barrier function. Genetic and functional studies support its protective role against intracranial aneurysms and hemorrhagic vascular disorders. THSD1 mutations have also been linked to perinatal disorders such as nonimmune hydrops fetalis and congenital vascular anomalies, suggesting a broader role in embryonic vascular patterning. Moreover, emerging evidence indicates that THSD1 acts as a tumor and metastasis suppressor, with potential anti-angiogenic properties, although its role in cancer remains to be fully defined. This paper not only consolidates existing knowledge but also identifies critical research gaps, providing a robust foundation for future investigations into the biology and clinical relevance of THSD1. Full article
(This article belongs to the Section Cell Biology and Pathology)
Show Figures

Figure 1

22 pages, 9346 KB  
Article
Assessment of Disinfection Efficiency of Chlorine and Bromine-Based Biocides for Marine Biofouling
by Susan N. James, Alya Ahmed Alteneiji, Ameera Badr Alteneiji, Fatema Mohammed Alharmi, Noura Hatem Al Balushi, Shahad K. Hassooni, Ashraf Aly Hassan and Mohamed A. Hamouda
Sustainability 2025, 17(10), 4262; https://doi.org/10.3390/su17104262 - 8 May 2025
Viewed by 921
Abstract
Marine biofouling is a significant challenge for industries that rely on seawater. This study examined the effect of structural materials, carbon concentration, and salinity on biofilm formation. Furthermore, it compares the disinfection efficiency of chlorine (NaClO) and bromine (NaBr) biocides and attempts to [...] Read more.
Marine biofouling is a significant challenge for industries that rely on seawater. This study examined the effect of structural materials, carbon concentration, and salinity on biofilm formation. Furthermore, it compares the disinfection efficiency of chlorine (NaClO) and bromine (NaBr) biocides and attempts to identify their optimal dosing. Among tested materials, PVC exhibited the highest microbial attachment (40%), followed by plastic (30%) and concrete (23%). Biofilm attachment and growth increased with higher concentrations of total organic carbon (TOC), which depends upon the seawater’s salinity. The simultaneous reduction of salinity and TOC concentration further enhanced the biofilm attachment and growth. A strong positive linear correlation (r = 0.98 and p = 0.003) was found between the initial cell count of seawater and biofilm formation. Disinfection experiments showed that NaBr (97.36%) was slightly more effective than NaClO (95.83%). Response Surface Methodology (RSM) identified optimal disinfection conditions: 0.6 mg/L biocide concentration and 138 min dosing period. Generally, there are three strategies for reducing biofilm growth: selecting appropriate materials, controlling carbon concentrations, or optimizing concentrations and dosing periods with biocides. Full article
Show Figures

Figure 1

21 pages, 1175 KB  
Review
Applications of Growth Factors in Implant Dentistry
by Balen Hamid Qadir, Mohammed Aso Abdulghafor, Mohammed Khalid Mahmood, Faraedon Mostafa Zardawi, Mohammed Taib Fatih, Handren Ameer Kurda, Zana Fuad Noori, Herve Tassery, Delphine Tardivo, Arthur Falguiere, Vincent Romao and Romain Lan
Curr. Issues Mol. Biol. 2025, 47(5), 317; https://doi.org/10.3390/cimb47050317 - 28 Apr 2025
Cited by 1 | Viewed by 1517
Abstract
Growth factors are proteins that play an essential part in tissue regeneration and development. They attach surface receptors to mediate their actions on cells. Signaling systems within cells are activated when growth factors bind to their associated receptors. These signaling cascades control the [...] Read more.
Growth factors are proteins that play an essential part in tissue regeneration and development. They attach surface receptors to mediate their actions on cells. Signaling systems within cells are activated when growth factors bind to their associated receptors. These signaling cascades control the transcription of genes involved in cellular functions like proliferation, differentiation, migration, protein synthesis, and metabolism. This narrative review provides a comprehensive update on the use of growth factors in implant dentistry with a special emphasis on human clinical trials. Since wound healing and osseointegration are pre-requisites of successful implantation and growth factors are important components of homeostasis and wound healing, this review first starts with the basic biology of wound healing. Then, it presents the specific role of growth factors in wound healing and tissue regeneration. Finally, the PubMed database was searched using relevant keywords with some filters related to the research question. Out of the initial 44 records, all the clinical human studies (n = 29) with the actual dental implant placement and its assessment were included. These results of the published and relevant literature over the last 25 years on different applications of growth factors in the field of implant dentistry are critically discussed. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop