THSD1 Is a Multifaceted Regulator in Health and Disease
Abstract
:1. Introduction
2. THSD1 in Vascular Integrity and Intracranial Aneurysms
3. THSD1 in Developmental and Perinatal Disorders
4. THSD1 in Cancer and Emerging Roles
5. Conclusions/Discussion
Future Directions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
EV | Extracellular vesicle |
FA | Focal adhesion |
IA | Intracranial aneurysm |
NIHF | Nonimmune hydrops fetalis |
THSD1 | Thrombospondin Type 1 Domain-Containing Protein 1 |
References
- Takayanagi, S.; Hiroyama, T.; Yamazaki, S.; Nakajima, T.; Morita, Y.; Usui, J.; Eto, K.; Motohashi, T.; Shiomi, K.; Keino-Masu, K.; et al. Genetic marking of hematopoietic stem and endothelial cells: Identification of the Tmtsp gene encoding a novel cell surface protein with the thrombospondin-1 domain. Blood 2006, 107, 4317–4325. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Rui, Y.N.; Hagan, J.P.; Kim, D.H. Intracranial Aneurysms: Pathology, Genetics, and Molecular Mechanisms. NeuroMolecular Med. 2019, 21, 325–343. [Google Scholar] [CrossRef]
- Santiago-Sim, T.; Fang, X.; Hennessy, M.L.; Nalbach, S.V.; DePalma, S.R.; Lee, M.S.; Greenway, S.C.; McDonough, B.; Hergenroeder, G.W.; Patek, K.J.; et al. THSD1 (Thrombospondin Type 1 Domain Containing Protein 1) Mutation in the Pathogenesis of Intracranial Aneurysm and Subarachnoid Hemorrhage. Stroke 2016, 47, 3005–3013. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Gu, X.; Liu, F.; Sun, C.; Mu, J.; Jin, D.; Sui, X.; Geng, D.; Li, Q.; Jiang, Y.; et al. SNP rs3803264 polymorphisms in THSD1 and abnormally expressed mRNA are associated with hemorrhagic stroke. Front. Aging Neurosci. 2023, 15, 1144364. [Google Scholar] [CrossRef] [PubMed]
- Sauvigny, T.; Alawi, M.; Krause, L.; Renner, S.; Spohn, M.; Busch, A.; Kolbe, V.; Altmuller, J.; Loscher, B.S.; Franke, A.; et al. Exome sequencing in 38 patients with intracranial aneurysms and subarachnoid hemorrhage. J. Neurol. 2020, 267, 2533–2545. [Google Scholar] [CrossRef]
- Roberts, W.; Magwenzi, S.; Aburima, A.; Naseem, K.M. Thrombospondin-1 induces platelet activation through CD36-dependent inhibition of the cAMP/protein kinase A signaling cascade. Blood 2010, 116, 4297–4306. [Google Scholar] [CrossRef]
- Rui, Y.N.; Xu, Z.; Fang, X.; Menezes, M.R.; Balzeau, J.; Niu, A.; Hagan, J.P.; Kim, D.H. The Intracranial Aneurysm Gene THSD1 Connects Endosome Dynamics to Nascent Focal Adhesion Assembly. Cell Physiol. Biochem. 2017, 43, 2200–2211. [Google Scholar] [CrossRef]
- Xu, Z.; Lu, J.; Gao, S.; Rui, Y.N. THSD1 Suppresses Autophagy-Mediated Focal Adhesion Turnover by Modulating the FAK-Beclin 1 Pathway. Int. J. Mol. Sci. 2024, 25, 2139. [Google Scholar] [CrossRef]
- Zhang, J. Teaching the basics of autophagy and mitophagy to redox biologists--mechanisms and experimental approaches. Redox Biol. 2015, 4, 242–259. [Google Scholar] [CrossRef]
- Xu, Z.; Rui, Y.N.; Hagan, J.P.; Kim, D.H. Precision Tagging: A Novel Seamless Protein Tagging by Combinational Use of Type II and Type IIS Restriction Endonucleases. Bio-Protoc. 2018, 8, e2721. [Google Scholar] [CrossRef]
- Haasdijk, R.A.; Den Dekker, W.K.; Cheng, C.; Tempel, D.; Szulcek, R.; Bos, F.L.; Hermkens, D.M.; Chrifi, I.; Brandt, M.M.; Van Dijk, C.; et al. THSD1 preserves vascular integrity and protects against intraplaque haemorrhaging in ApoE-/- mice. Cardiovasc. Res. 2016, 110, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, G.; Sovis, R.; Shellvacumar, S.; Dissanayake, V.H.W. Spontaneous coronary artery dissection with leucoencephalopathy associated with thrombospondin Type 1 domain containing 1 gene mutation: A case report. Eur. Heart J. Case Rep. 2023, 7, ytad419. [Google Scholar] [CrossRef] [PubMed]
- Shamseldin, H.E.; Tulbah, M.; Kurdi, W.; Nemer, M.; Alsahan, N.; Al Mardawi, E.; Khalifa, O.; Hashem, A.; Kurdi, A.; Babay, Z.; et al. Identification of embryonic lethal genes in humans by autozygosity mapping and exome sequencing in consanguineous families. Genome Biol. 2015, 16, 116. [Google Scholar] [CrossRef]
- Abdelrahman, H.A.; Al-Shamsi, A.; John, A.; Hertecant, J.; Lootah, A.; Ali, B.R.; Al-Gazali, L. A recessive truncating variant in thrombospondin-1 domain containing protein 1 gene THSD1 is the underlying cause of nonimmune hydrops fetalis, congenital cardiac defects, and haemangiomas in four patients from a consanguineous family. Am. J. Med. Genet. A 2018, 176, 1996–2003. [Google Scholar] [CrossRef] [PubMed]
- Al Rawi, W.N.; Ibrahim, F.H.; El Nakeib, O.A.S.; Al Zidgali, F.M. Manifestations of thrombospondin type-1 domain-containing protein 1 gene mutation in an extremely premature infant with nonimmune hydrops fetalis. Am. J. Med. Genet. A 2021, 185, 1598–1601. [Google Scholar] [CrossRef]
- Saxena, D.; Tiwari, A.K.; Prasad, R.; Srivastav, S. Resolving fetal hydrops—A rare entity. Eur. J. Med. Genet. 2023, 66, 104888. [Google Scholar] [CrossRef]
- Hall, V.; Vadakekut, E.S.; Avulakunta, I.D. Hemolytic Disease of the Fetus and Newborn. In StatPearls; StatPearls Publishing LLC.: Petersburg, FL, USA, 2025. [Google Scholar]
- Liu, H.; Li, F.; Zhu, Y.; Li, T.; Huang, H.; Lin, T.; Hu, Y.; Qi, X.; Yu, J.; Li, G. Whole-exome sequencing to identify somatic mutations in peritoneal metastatic gastric adenocarcinoma: A preliminary study. Oncotarget 2016, 7, 43894–43906. [Google Scholar] [CrossRef]
- Jin, Y.; Lei, Z.; Li, P.; Lyu, G. Proteome-wide Mendelian randomization and single-cell sequencing analysis identify the association between plasma proteins and gastric cancer. J. Gastrointest. Oncol. 2024, 15, 1464–1474. [Google Scholar] [CrossRef]
- Tang, W.; Ma, X. Application of large-scale and multicohort plasma proteomics data to discover novel causal proteins in gastric cancer. Discov. Oncol. 2024, 15, 570. [Google Scholar] [CrossRef]
- Khamas, A.; Ishikawa, T.; Mogushi, K.; Iida, S.; Ishiguro, M.; Tanaka, H.; Uetake, H.; Sugihara, K. Genome-wide screening for methylation-silenced genes in colorectal cancer. Int. J. Oncol. 2012, 41, 490–496. [Google Scholar] [CrossRef]
- Ko, J.M.; Chan, P.L.; Yau, W.L.; Chan, H.K.; Chan, K.C.; Yu, Z.Y.; Kwong, F.M.; Miller, L.D.; Liu, E.T.; Yang, L.C.; et al. Monochromosome transfer and microarray analysis identify a critical tumor-suppressive region mapping to chromosome 13q14 and THSD1 in esophageal carcinoma. Mol. Cancer Res. 2008, 6, 592–603. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Ju, D.; Jie, Z.; Zhang, A.; Xing, X.; Yang, Q. Aberrant CpG-methylation affects genes expression predicting survival in lung adenocarcinoma. Cancer Med. 2018, 7, 5716–5726. [Google Scholar] [CrossRef]
- Kis, E.; Szatmari, T.; Keszei, M.; Farkas, R.; Esik, O.; Lumniczky, K.; Falus, A.; Safrany, G. Microarray analysis of radiation response genes in primary human fibroblasts. Int. J. Radiat. Oncol. Biol. Phys. 2006, 66, 1506–1514. [Google Scholar] [CrossRef]
- Monroe, J.D.; Moolani, S.A.; Irihamye, E.N.; Speed, J.S.; Gibert, Y.; Smith, M.E. RNA-Seq Analysis of Cisplatin and the Monofunctional Platinum(II) Complex, Phenanthriplatin, in A549 Non-Small Cell Lung Cancer and IMR90 Lung Fibroblast Cell Lines. Cells 2020, 9, 2637. [Google Scholar] [CrossRef] [PubMed]
- Danuta, G.; Tobias, M.; Marcus, D.; Miriam, E.; Nergiz, K.; Olesja, S.; Steffen, R.; Tanja, Z.; Christian, M.; Thomas, H.; et al. Molecular karyotyping and gene expression analysis in childhood cancer patients. J. Mol. Med. 2020, 98, 1107–1123. [Google Scholar] [CrossRef]
- Petrik, J.; Lauks, S.; Garlisi, B.; Lawler, J. Thrombospondins in the tumor microenvironment. Semin. Cell Dev. Biol. 2024, 155, 3–11. [Google Scholar] [CrossRef]
- Conkright, W.R.; Beckner, M.E.; Sterczala, A.J.; Mi, Q.; Lovalekar, M.; Sahu, A.; Krajewski, K.T.; Martin, B.J.; Flanagan, S.D.; Greeves, J.P.; et al. Resistance exercise differentially alters extracellular vesicle size and subpopulation characteristics in healthy men and women: An observational cohort study. Physiol. Genom. 2022, 54, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Conkright, W.R.; Beckner, M.E.; Sahu, A.; Mi, Q.; Clemens, Z.J.; Lovalekar, M.; Flanagan, S.D.; Martin, B.J.; Ferrarelli, F.; Ambrosio, F.; et al. Men and women display distinct extracellular vesicle biomarker signatures in response to military operational stress. J. Appl. Physiol. 2022, 132, 1125–1136. [Google Scholar] [CrossRef]
- Beckner, M.E.; Conkright, W.R.; Sahu, A.; Mi, Q.; Clemens, Z.J.; Martin, B.J.; Flanagan, S.D.; Ferrarelli, F.; Ambrosio, F.; Nindl, B.C. Utility of extracellular vesicles as a potential biological indicator of physiological resilience during military operational stress. Physiol. Rep. 2022, 10, e15219. [Google Scholar] [CrossRef]
- Beckner, M.E.; Conkright, W.R.; Mi, Q.; Martin, B.; Sahu, A.; Flanagan, S.D.; Ledford, A.K.; Wright, M.; Susmarski, A.; Ambrosio, F.; et al. Neuroendocrine, inflammatory, and extracellular vesicle responses during the Navy Special Warfare Screener Selection Course. Physiol. Genom. 2022, 54, 283–295. [Google Scholar] [CrossRef]
Study | Disease/Context | Experimental Model/Method | Key Findings | Quantitative Data |
---|---|---|---|---|
Santiago-Sim et al. (2016) [3] | IA and SAH | Genetic sequencing of 507 IA probands | THSD1 mutation is a potential genetic risk factor for IA/SAH | Variant frequency: 1.6% in IA probands vs. 0 in 89,040 controls |
Rui et al. (2017) [7] | Focal adhesions | siRNA knockdown in HUVECs | THSD1 stabilizes focal adhesions via interaction with FA proteins | FA area decreased; endothelial detachment increased |
Chen et al. (2023) [4] | Hemorrhagic stroke | Case-control study in Chinese Han population | SNP rs3803264 and abnormal THSD1 mRNA associated with stroke | Allele frequency OR > 1.5; p < 0.05 |
Xu et al. (2024) [8] | Vascular autophagy | HUVECs and mouse models | THSD1 suppresses Beclin 1-mediated autophagy of focal adhesions | Beclin1 Y233 phosphorylation decreased after THSD1 loss |
Sauvigny et al. (2020) [5] | IA | Exome sequencing (n = 38) | THSD1 variants detected in IA+SAH patients | Multiple variants with CADD > 20 |
Haasdijk et al. (2016) [11] | Atherosclerosis | Mouse model with THSD1 overexpression | THSD1 preserves vascular integrity and reduces intraplaque hemorrhage | Intraplaque hemorrhage reduced by 45% in THSD1-OE mice |
Ranasinghe et al. (2023) [12] | Spontaneous coronary artery dissection (SCAD) with leukoencephalopathy | Case report: single patient with rare THSD1 mutation | Rare THSD1 variant may be associated with SCAD and neurological phenotype | 1 patient with SCAD and white matter changes + THSD1 mutation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, M.; Qu, K.; Liu, S.; Xu, Z.; Rui, Y.-N. THSD1 Is a Multifaceted Regulator in Health and Disease. Biomedicines 2025, 13, 1292. https://doi.org/10.3390/biomedicines13061292
Dai M, Qu K, Liu S, Xu Z, Rui Y-N. THSD1 Is a Multifaceted Regulator in Health and Disease. Biomedicines. 2025; 13(6):1292. https://doi.org/10.3390/biomedicines13061292
Chicago/Turabian StyleDai, Mengjun, Kuizhi Qu, Sophie Liu, Zhen Xu, and Yan-Ning Rui. 2025. "THSD1 Is a Multifaceted Regulator in Health and Disease" Biomedicines 13, no. 6: 1292. https://doi.org/10.3390/biomedicines13061292
APA StyleDai, M., Qu, K., Liu, S., Xu, Z., & Rui, Y.-N. (2025). THSD1 Is a Multifaceted Regulator in Health and Disease. Biomedicines, 13(6), 1292. https://doi.org/10.3390/biomedicines13061292