Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,736)

Search Parameters:
Keywords = inhibition of aggregation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4215 KiB  
Article
Ag/TA@CNC Reinforced Hydrogel Dressing with Enhanced Adhesion and Antibacterial Activity
by Jiahao Yu, Junhao Liu, Yicheng Liu, Siqi Liu, Zichuan Su and Daxin Liang
Gels 2025, 11(8), 591; https://doi.org/10.3390/gels11080591 (registering DOI) - 31 Jul 2025
Abstract
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) [...] Read more.
Developing multifunctional wound dressings with excellent mechanical properties, strong tissue adhesion, and efficient antibacterial activity is crucial for promoting wound healing. This study prepared a novel nanocomposite hydrogel dressing based on sodium alginate-polyacrylic acid dual crosslinking networks, incorporating tannic acid-coated cellulose nanocrystals (TA@CNC) and in-situ reduced silver nanoparticles for multifunctional enhancement. The rigid CNC framework significantly improved mechanical properties (elastic modulus of 146 kPa at 1 wt%), while TA catechol groups provided excellent adhesion (36.4 kPa to pigskin, 122% improvement over pure system) through dynamic hydrogen bonding and coordination interactions. TA served as a green reducing agent for uniform AgNPs loading, with CNC negative charges preventing particle aggregation. Antibacterial studies revealed synergistic effects between TA-induced membrane disruption and Ag+-triggered reactive oxygen species generation, achieving >99.5% inhibition against Staphylococcus aureus and Escherichia coli. The TA@CNC-regulated porous structure balanced swelling performance and water vapor transmission, facilitating wound exudate management and moist healing. This composite hydrogel successfully integrates mechanical toughness, tissue adhesion, antibacterial activity, and biocompatibility, providing a novel strategy for advanced wound dressing development. Full article
(This article belongs to the Special Issue Recent Research on Medical Hydrogels)
Show Figures

Figure 1

23 pages, 3769 KiB  
Article
Study on the Spatio-Temporal Distribution and Influencing Factors of Soil Erosion Gullies at the County Scale of Northeast China
by Jianhua Ren, Lei Wang, Zimeng Xu, Jinzhong Xu, Xingming Zheng, Qiang Chen and Kai Li
Sustainability 2025, 17(15), 6966; https://doi.org/10.3390/su17156966 (registering DOI) - 31 Jul 2025
Abstract
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully [...] Read more.
Gully erosion refers to the landform formed by soil and water loss through gully development, which is a critical manifestation of soil degradation. However, research on the spatio-temporal variations in erosion gullies at the county scale remains insufficient, particularly regarding changes in gully aggregation and their driving factors. This study utilized high-resolution remote sensing imagery, gully interpretation information, topographic data, meteorological records, vegetation coverage, soil texture, and land use datasets to analyze the spatio-temporal patterns and influencing factors of erosion gully evolution in Bin County, Heilongjiang Province of China, from 2012 to 2022. Kernel density evaluation (KDE) analysis was also employed to explore these dynamics. The results indicate that the gully number in Bin County has significantly increased over the past decade. Gully development involves not only headward erosion of gully heads but also lateral expansion of gully channels. Gully evolution is most pronounced in slope intervals. While gentle slopes and slope intervals host the highest density of gullies, the aspect does not significantly influence gully development. Vegetation coverage exhibits a clear threshold effect of 0.6 in inhibiting erosion gully formation. Additionally, cultivated areas contain the largest number of gullies and experience the most intense changes; gully aggregation in forested and grassland regions shows an upward trend; the central part of the black soil region has witnessed a marked decrease in gully aggregation; and meadow soil areas exhibit relatively stable spatio-temporal variations in gully distribution. These findings provide valuable data and decision-making support for soil erosion control and transformation efforts. Full article
(This article belongs to the Special Issue Sustainable Agriculture, Soil Erosion and Soil Conservation)
Show Figures

Figure 1

20 pages, 2840 KiB  
Article
Functional Analysis of BmHemolin in the Immune Defense of Silkworms
by Long He, Lijing Liu, Huawei Liu, Xin Tang, Yide Meng, Hui Xie, Lin Zhu, Qingyou Xia and Ping Zhao
Insects 2025, 16(8), 778; https://doi.org/10.3390/insects16080778 - 29 Jul 2025
Viewed by 255
Abstract
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on [...] Read more.
Hemolin has been identified as a crucial immune gene in insect immune defense. The silkworm is susceptible to infections by pathogenic microorganisms when reared on artificial diets. In this study, through comparative analysis of the expression patterns of BmHemolin in silkworms fed on mulberry leaves and artificial diets, we found that the expression of BmHemolin was significantly upregulated in silkworms reared on artificial diets, and this upregulation was highly likely induced by pathogenic microorganisms. Further interaction analysis revealed that BmHemolin could bind to pathogenic microorganisms and form aggregates. Meanwhile, BmHemolin enhanced the melanization and aggregation of hemocytes. Subsequent in vitro antibacterial experiments showed that BmHemolin had the ability to inhibit the growth of Escherichia coli. In vivo clearance experiments demonstrated that BmHemolin facilitated the clearance of pathogens in the body. Moreover, CRISPR/Cas9-mediated knockout of the BmHemolin gene led to the downregulation of antimicrobial peptides and phagocytosis-related factors, while an excess of BmHemolin could enhance the expression of these genes, thereby improving the silkworm’s immune resistance to Enterococcus mundtii and increasing survival rates. In summary, our research demonstrates that BmHemolin played a pivotal role in both humoral and cellular immunity in the silkworm, thereby defending against pathogen invasion. Full article
(This article belongs to the Section Insect Molecular Biology and Genomics)
Show Figures

Figure 1

30 pages, 3370 KiB  
Article
Rivastigmine Templates with Antioxidant Motifs—A Medicinal Chemist’s Toolbox Towards New Multipotent AD Drugs
by Inês Dias, Marlène Emmanuel, Paul Vogt, Catarina Guerreiro-Oliveira, Inês Melo-Marques, Sandra M. Cardoso, Rita C. Guedes, Sílvia Chaves and M. Amélia Santos
Antioxidants 2025, 14(8), 921; https://doi.org/10.3390/antiox14080921 (registering DOI) - 28 Jul 2025
Viewed by 151
Abstract
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good [...] Read more.
A series of rivastigmine hybrids, incorporating rivastigmine fragments (RIV) and a set of different antioxidant scaffolds, were designed, synthesized, and evaluated as multifunctional agents for the potential therapy of Alzheimer’s disease (AD). In vitro bioactivity assays indicated that some compounds have very good antioxidant (radical-scavenging) activity. The compounds also displayed good inhibitory activity against cholinesterases, though the bigger-sized hybrids showed higher inhibitory ability for butyrylcholinesterase (BChE) than for acetylcholinesterase (AChE), due to the larger active site cavity of BChE. All the hybrids exhibited an inhibition capacity for self-induced amyloid-β (Aβ1–42) aggregation. Furthermore, cell assays demonstrated that some compounds showed capacity for rescuing neuroblastoma cells from toxicity induced by reactive oxygen species (ROS). Among these RIV hybrids, the best in vitro multifunctional capacity was found for the caffeic acid derivatives enclosing catechol moieties (4AY5, 4AY6), though the Trolox derivatives (4AY2, 4BY2) presented the best cell neuroprotective activity against oxidative damage. Molecular-docking studies provided structural insights into the binding modes of RIV-based hybrids to the cholinesterases, revealing key interaction patterns despite some lack of correlation with inhibitory potency. Overall, the balanced multifunctional profiles of these hybrids render them potentially promising candidates for treating AD, thus deserving further investigation. Full article
(This article belongs to the Special Issue Oxidative Stress as a Therapeutic Target of Alzheimer’s Disease)
Show Figures

Figure 1

25 pages, 4954 KiB  
Article
Local Fungi Promote Plant Growth by Positively Affecting Rhizosphere Metabolites to Drive Beneficial Microbial Assembly
by Deyu Dong, Zhanling Xie, Jing Guo, Bao Wang, Qingqing Peng, Jiabao Yang, Baojie Deng, Yuan Gao, Yuting Guo, Xueting Fa and Jianing Yu
Microorganisms 2025, 13(8), 1752; https://doi.org/10.3390/microorganisms13081752 - 26 Jul 2025
Viewed by 321
Abstract
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi [...] Read more.
Ecological restoration in the cold and high-altitude mining areas of the Qinghai–Tibet Plateau is faced with dual challenges of extreme environments and insufficient microbial adaptability. This study aimed to screen local microbial resources with both extreme environmental adaptability and plant-growth-promoting functions. Local fungi (DK; F18-3) and commercially available bacteria (B0) were used as materials to explore their regulatory mechanisms for plant growth, soil physicochemical factors, microbial communities, and metabolic profiles in the field. Compared to bacterial treatments, local fungi treatments exhibited stronger ecological restoration efficacy. In addition, the DK and F18-3 strains, respectively, increased shoot and root biomass by 23.43% and 195.58% and significantly enhanced soil nutrient content and enzyme activity. Microbiome analysis further implied that, compared with the CK, DK treatment could significantly improve the α-diversity of fungi in the rhizosphere soil (the Shannon index increased by 14.27%) and increased the amount of unique bacterial genera in the rhizosphere soil of plants, totaling fourteen genera. Meanwhile, this aggregated the most biomarkers and beneficial microorganisms and strengthened the interactions among beneficial microorganisms. After DK treatment, twenty of the positively accumulated differential metabolites (DMs) in the plant rhizosphere were highly positively associated with six plant traits such as shoot length and root length, as well as beneficial microorganisms (e.g., Apodus and Pseudogymnoascus), but two DMs were highly negatively related to plant pathogenic fungi (including Cistella and Alternaria). Specifically, DK mainly inhibited the growth of pathogenic fungi through regulating the accumulation of D-(+)-Malic acid and Gamma-Aminobutyric acid (Cistella and Alternaria decreased by 84.20% and 58.53%, respectively). In contrast, the F18-3 strain mainly exerted its antibacterial effect by enriching Acidovorax genus microorganisms. This study verified the core role of local fungi in the restoration of mining areas in the Qinghai–Tibet Plateau and provided a new direction for the development of microbial agents for ecological restoration in the Qinghai–Tibet Plateau. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

16 pages, 2096 KiB  
Article
Acridine Derivatives as Antifungal and Antivirulence Agents Against Candida albicans
by Amra Yunus, Oluwatosin Oluwaseun Faleye, Jin-Hyung Lee and Jintae Lee
Int. J. Mol. Sci. 2025, 26(15), 7228; https://doi.org/10.3390/ijms26157228 - 25 Jul 2025
Viewed by 371
Abstract
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal [...] Read more.
Candida albicans is a clinically important fungal pathogen capable of causing both superficial and systemic infections, particularly in immunocompromised individuals. A key factor contributing to its pathogenicity is its ability to form biofilms, structured microbial communities that confer significant resistance to conventional antifungal therapies. Addressing this challenge, we explored the antivirulence potential of acridine derivatives, a class of heterocyclic aromatic compounds known for their diverse biological activities, including antimicrobial, antitumor, and antiparasitic properties. In this study, a series of acridine derivatives was screened against C. albicans biofilms, revealing notable inhibitory activity and highlighting their potential as scaffolds for the development of novel antifungal agents. Among the tested compounds, acridine-4-carboxylic acid demonstrated the most promising activity, significantly inhibiting the biofilm formation at 10 µg/mL without affecting planktonic cell growth, and with a minimum inhibitory concentration (MIC) of 60 µg/mL. Furthermore, it attenuated filamentation and cell aggregation in a fluconazole-resistant C. albicans strain. Toxicity assessments using Caenorhabditis elegans and plant models supported its low-toxicity profile. These findings highlight the potential of acridine-based scaffolds, particularly acridine-4-carboxylic acid, as lead structures for the development of therapeutics targeting both fungal growth and biofilm formation in Candida albicans infections. Full article
Show Figures

Figure 1

20 pages, 5747 KiB  
Article
Functional Study of the BMP Signaling Pathway in Appendage Regeneration of Exopalaemon carinicauda
by Chaofan Xing, Yong Li, Zhenxiang Chen, Qingyuan Hu, Jiayi Sun, Huanyu Chen, Qi Zou, Yingying Li, Fei Yu, Chao Wang, Panpan Wang and Xin Shen
Biology 2025, 14(8), 940; https://doi.org/10.3390/biology14080940 - 25 Jul 2025
Viewed by 347
Abstract
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages [...] Read more.
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of E. carinicauda. A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h). Additionally, 7740 DEGs were identified between D0 and 14 d post-autotomy (D14d), with 3382 DEGs identified between D18h and D14d. Among them, differentially expressed genes such as EcR, RXR, BMP1, and Smad4 are related to muscle growth or molting and may be involved in the regeneration process. qRT-PCR results revealed that EcBMPR2 was expressed at relatively high levels in the gonad and ventral nerve cord tissues and that the highest level of expression was detected in the regenerative basal tissue at 24 h post-autotomy. In situ hybridization results indicated strong signals of this gene in the cells at the wound site at 72 h post-autotomy. Following knockdown of EcBMPR2, the expression levels of both EcBMPR1B and EcSmad1 were significantly downregulated, and long-term interference with the EcBMPR2 gene resulted in a significantly slower appendage regeneration process compared to the control group. When the downstream transcription factor EcSmad1 was knocked down, the two receptor genes EcBMPR2 and EcBMPR1B were downregulated, whereas EcBMP7 was upregulated. After inhibiting the BMP signaling pathway, the degree of cell aggregation at the autotomy site in the experimental group was significantly lower than that in the control group, the wound healing rate was delayed, and the blastema regeneration time was prolonged from 5 d to 7 d. Collectively, these results indicate that the BMP signaling pathway plays a critical role in the early stages of appendage regeneration in E. carinicauda. This study provides important theoretical insights for understanding limb regeneration in crustaceans. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 271
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

14 pages, 2694 KiB  
Article
Functional Amyloids in Adhesion of Non-albicans Candida Species
by Melissa C. Garcia-Sherman, Safraz A. Hamid, Desmond N. Jackson, James Thomas and Peter N. Lipke
Pathogens 2025, 14(8), 723; https://doi.org/10.3390/pathogens14080723 - 22 Jul 2025
Viewed by 297
Abstract
Candida fungal species are the most common fungal opportunistic pathogens. Their ability to form antifungal resistant biofilms contributes to their increasing clinical frequency. These fungi express surface-anchored adhesins including members of the Als family. These adhesins mediate epithelial adhesion, aggregation, and biofilm formation. [...] Read more.
Candida fungal species are the most common fungal opportunistic pathogens. Their ability to form antifungal resistant biofilms contributes to their increasing clinical frequency. These fungi express surface-anchored adhesins including members of the Als family. These adhesins mediate epithelial adhesion, aggregation, and biofilm formation. Many of the adhesins contain cross-β core sequences that form amyloid-like protein aggregates on the fungal surface. The aggregates mediate high-avidity bonding that contributes to biofilm establishment and persistence. Accordingly, autopsy sections from individuals with candidiasis and other mycoses have amyloids within abscesses. An amyloid-forming peptide containing a sequence from Candida albicans Als5 bound to C. albicans, C. tropicalis, and C. parapsilosis. C. albicans and C. tropicalis aggregated with beads coated with serum albumin, and the aggregates stained with the amyloid-binding dye thioflavin T. Additionally, an Als5-derived amyloid-inhibiting peptide blocked cell aggregation. The amyloid-inhibiting peptide also blocked C. albicans, C. tropicalis, and C. parapsilosis adhesion to monolayers of FaDu epithelial cells. These results show the involvement of amyloid-like interactions in pathogenesis in several Candida species. Full article
Show Figures

Graphical abstract

10 pages, 839 KiB  
Article
Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis
by Vera Bonell, Christoph Schmaderer, Georg Lorenz, Roman Günthner, Susanne Angermann, Quirin Bachmann, Claudius Küchle, Lutz Renders, Uwe Heemann, Thorsten Kessler and Stephan Kemmner
J. Clin. Med. 2025, 14(14), 5156; https://doi.org/10.3390/jcm14145156 - 21 Jul 2025
Viewed by 184
Abstract
Background: Coagulation disorders, including both bleeding and thrombotic complications, are common in patients undergoing hemodialysis (HD). Here, we aimed to characterize platelet function in patients undergoing hemodialysis three times per week, compared to healthy controls. Methods: Platelet function was assessed using the Multiplate [...] Read more.
Background: Coagulation disorders, including both bleeding and thrombotic complications, are common in patients undergoing hemodialysis (HD). Here, we aimed to characterize platelet function in patients undergoing hemodialysis three times per week, compared to healthy controls. Methods: Platelet function was assessed using the Multiplate analyzer (Roche), which is based on multiple electrode impedance aggregometry. Platelet aggregation was induced using adenosine diphosphate (ADP), and the area under the curve (AUC) served as the primary endpoint. In addition, platelet counts and C-reactive protein (CRP) levels were measured. To further evaluate nitric oxide (NO)-mediated inhibition of platelet aggregation, blood samples were incubated with the NO donor, sodium nitroprusside (SNP), and the phosphodiesterase 5A (PDE5A) inhibitor, sildenafil. Results: A total of 60 patients undergoing HD and 67 healthy controls were included in the analysis. Patients receiving HD treatment had significantly lower platelet counts compared to healthy controls (226.9 ± 53.47 vs. 246.7 ± 47.21 G/L, p = 0.029). Platelet aggregation was markedly reduced in patients undergoing HD compared to controls (462.0 ± 266.54 vs. 644.5 ± 254.44 AU × min, p < 0.001) with a significant correlation for platelet count (r = 0.42, p = 0.001) and systemic inflammation as indicated by CRP levels (r = 0.28, p = 0.035). Following SNP and sildenafil administration, inhibition of platelet aggregation remained more pronounced in patients undergoing HD. However, the change in platelet aggregation after SNP/sildenafil treatment did not differ significantly between the groups. Conclusions: Patients undergoing HD exhibit altered platelet function, indicated by reduced aggregation and platelet counts, as well as an association with systemic inflammation. Multiple electrode impedance aggregometry appears to be a feasible method for detecting platelet function alterations in patients receiving HD treatment. Responsiveness to NO donors was preserved in patients undergoing HD. Further studies are needed to identify the underlying mechanisms, particularly the role of NO signaling in platelet dysfunction in patients undergoing HD. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

19 pages, 2565 KiB  
Article
Anti-Thrombotic Effects of Coprinus comatus Fibrinolytic Enzyme in Zebrafish
by Yan Jing, Jinyu Wang, Yating He, Zedan Liu and Xiaolan Liu
Nutrients 2025, 17(14), 2358; https://doi.org/10.3390/nu17142358 - 18 Jul 2025
Viewed by 259
Abstract
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. [...] Read more.
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. Results: CFE significantly attenuated thrombogenesis by inhibiting erythrocyte aggregation in the caudal vessels, reducing staining intensity (3.61-fold decrease) and staining area (3.89-fold decrease). Concurrently, CFE enhanced cardiac hemodynamics, increasing erythrocyte staining intensity (9.29-fold) and staining area (5.55-fold) while achieving an 85.19% thrombosis inhibition rate. Behavioral analysis confirmed improved motility, with CFE-treated zebrafish exhibiting 2.23-fold increases in total movement distance and average speed, alongside a 3.59-fold extension in active movement duration. Mechanistically, ELISA revealed the multi-pathway activity of CFE, promoting fibrinolysis through reductions in plasminogen, fibrinogen, and D-dimer; inhibiting platelet activation via downregulation of prostaglandin-endoperoxide synthase (PTGS), thromboxane A2 (TXA2), P-selectin, and von Willebrand factor (vWF); and modulating coagulation cascades through elevated protein C and tissue factor pathway inhibitor (TFPI) with concurrent suppression of coagulation factor VII (FVII). Conclusions: These results indicate that the fibrinolytic enzyme CFE, derived from Coprinus comatus, exerts potent antithrombotic effects, supporting its potential as a basis for fungal-derived natural antithrombotic functional food ingredients. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

25 pages, 4764 KiB  
Article
Biogenic Synthesis of Calcium-Based Powders from Marine Mollusk Shells: Comparative Characterization and Antibacterial Potential
by Adriana-Gabriela Schiopu, Mihai Oproescu, Alexandru Berevoianu, Raluca Mărginean, Laura Ionașcu, Viorel Năstasă, Andra Dinache, Paul Mereuță, Kim KeunHwan, Daniela Istrate, Adriana-Elena Bălan and Stefan Mira
Materials 2025, 18(14), 3331; https://doi.org/10.3390/ma18143331 - 15 Jul 2025
Viewed by 307
Abstract
Marine mollusk shells are a promising renewable source of calcium-based materials, offering a sustainable alternative for their synthesis. In this study, five types of marine shells—Chamelea gallina, Mya arenaria, Rapana venosa, Mytilus edulis, and Pecten maximus—were calcined [...] Read more.
Marine mollusk shells are a promising renewable source of calcium-based materials, offering a sustainable alternative for their synthesis. In this study, five types of marine shells—Chamelea gallina, Mya arenaria, Rapana venosa, Mytilus edulis, and Pecten maximus—were calcined at 900 °C for 2 h. The resulting powders were characterized by XRD, FTIR, SEM, PSD, and zeta potential analyses. XRD confirmed the dominant presence of CaO, with residual calcite and portlandite. FTIR spectra supported these findings, indicating the decomposition of carbonate phases and the formation of Ca–O bonds. SEM imaging revealed species-specific microstructures ranging from lamellar and wrinkled textures to compact aggregates, while particle size distributions varied from 15 to 37 μm. Thermogravimetric analysis revealed a two-step decomposition process for all samples, with significant species-dependent differences in mass loss and conversion efficiency, highlighting the influence of biogenic origin on the thermal stability and CaO yield of the resulting powders. Zeta potential measurements showed low colloidal stability, with the best performance found in Rapana venosa and Pecten maximus calcinated samples. Antibacterial activity was evaluated using a direct contact method against Escherichia coli and Enterococcus faecalis. All samples exhibited complete inactivation of E. coli, regardless of exposure time, while E. faecalis required prolonged contact (3.3 h) for full inhibition. The results highlight the potential of biogenic CaCO3 and CaO powders as functional, antimicrobial materials suitable for environmental and biomedical applications. This study underscores the viability of marine shell waste valorization within a circular economy framework. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

21 pages, 4391 KiB  
Article
Thermal Cycling-Hyperthermia Attenuates Rotenone-Induced Cell Injury in SH-SY5Y Cells Through Heat-Activated Mechanisms
by Yu-Yi Kuo, Guan-Bo Lin, You-Ming Chen, Hsu-Hsiang Liu, Fang-Tzu Hsu, Yi Kung and Chih-Yu Chao
Int. J. Mol. Sci. 2025, 26(14), 6671; https://doi.org/10.3390/ijms26146671 - 11 Jul 2025
Viewed by 326
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail [...] Read more.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail to stop or reverse disease progression due to the severe side effects or the blood–brain barrier. This study aimed to investigate the neuroprotective effects of an intermittent heating approach, thermal cycling-hyperthermia (TC-HT), in an in vitro PD model using rotenone (ROT)-induced human neural SH-SY5Y cells. Our results revealed that TC-HT pretreatment conferred neuroprotective effects in the ROT-induced in vitro PD model using human SH-SY5Y neuronal cells, including reducing ROT-induced mitochondrial apoptosis and ROS accumulation in SH-SY5Y cells. In addition, TC-HT also inhibited the expression of α-syn and p-tau through heat-activated pathways associated with sirtuin 1 (SIRT1) and heat-shock protein 70 (Hsp70), involved in protein chaperoning, and resulted in the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which inhibit p-tau formation. These findings underscore the potential of TC-HT as an effective treatment for PD in vitro, supporting its further investigation in in vivo models with focused ultrasound (FUS) as a feasible heat-delivery approach. Full article
Show Figures

Figure 1

20 pages, 3062 KiB  
Article
Optimal Horseshoe Crab Blood Collection Solution That Inhibits Cellular Exocytosis and Improves Production Yield of Limulus Amoebocyte Lysate for Use in Endotoxin Tests
by Mengmeng Zhang, Sophia Zhang and Jessica Zhang
Int. J. Mol. Sci. 2025, 26(14), 6642; https://doi.org/10.3390/ijms26146642 - 11 Jul 2025
Viewed by 227
Abstract
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as [...] Read more.
Limulus amoebocyte lysate (LAL) assays have emerged as among the most effective approaches for detecting endotoxins and fungi in vitro since they were first tested 50 years ago. Although detailed protocols are publicly available, conventional LAL collection methods (3% sodium chloride) waste as much as 80% of the total LAL during blood accumulation, confirming the incompatibility of these methods with the lasting survival of the American horseshoe crab. For this reason, new implementations of blood collection–suspension buffer combinations are critical. Here, we evaluated the ability of different blood collection solutions to inhibit exocytosis and subsequently treated the cells with CaCl2 to stimulate exocytosis and improve the yield of LAL. Two test methods, chromogenic and turbidimetric tests for LAL activity, were evaluated. Crabs were bled during the bleeding season. The crab blood samples were collected with the following blood collection solutions: citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer. The cell pellets were washed with 3% NaCl and subsequently resuspended in LRW or CaCl2 to facilitate degranulation. Both the chromogenic test and the turbidimetric assay were used to evaluate the LAL enzyme activity. Citric acid buffer, malic acid buffer, PBS buffer, and PBS–caffeine buffer blocked exocytosis, resulting in the high yields of LAL. There was no observable effect on the activity output of crab size via a chromogenic test with PBS–caffeine buffer during the bleeding season. This protocol substantially benefited prior processes, as the PBS–caffeine collection mixture decreased amoebocyte aggregation/clot formation during processing. Furthermore, we evaluated the specific biochemical parameters of PBS–caffeine-derived LAL. We developed an accessible, promising phosphate–caffeine-based blood collection buffer that prevents amoebocyte degranulation during blood collection, maximizing the LAL yield. Moreover, our analysis revealed that phosphate–caffeine-derived LAL is uniquely adaptable to compatibility with chromogenic and turbidimetric assay techniques. By employing this method for LAL blood extraction, our same-cost approach fostered significantly greater LAL yields, simultaneously ensuring a healthy limulus polyphemus population. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

15 pages, 2587 KiB  
Article
Curdlan-Induced Significant Enhancement of Lipid Oxidation Control and Gelling Properties of Low-Salt Marine Surimi Gel Containing Transglutaminase and Lysine
by Wenhui Ma, Guangcan Liang, Qiliang Huang, Feng Ling, Weilin Pan, Yungang Cao and Miao Chen
Gels 2025, 11(7), 535; https://doi.org/10.3390/gels11070535 - 10 Jul 2025
Viewed by 239
Abstract
In this study, curdlan was investigated as a substitute for egg-white protein, and the effects of different concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%) on lipid oxidation and the physicochemical properties of a novel low-salt surimi gel containing transglutaminase (TGase) and lysine were [...] Read more.
In this study, curdlan was investigated as a substitute for egg-white protein, and the effects of different concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%) on lipid oxidation and the physicochemical properties of a novel low-salt surimi gel containing transglutaminase (TGase) and lysine were evaluated. The results indicated that adding appropriate curdlan concentrations (0.2%–0.4%, especially 0.4%) significantly inhibited lipid oxidation in the surimi gel, achieving the highest L* and whiteness values. The fracture strength, WHC, hardness, and chewiness of the gel increased by 23.87%, 6.70%, 32.80%, and 13.49%, respectively, compared to the control gel containing egg-white protein (p < 0.05). At 0.4% curdlan, the gel also enhanced the crosslinking within the surimi, improved its resistance to shear stress, significantly increased the G’ value, and shortened the T21, T22, and T23 relaxation times, inhibiting the conversion of immobilized to free water in the gel and promoting a denser three-dimensional network structure. However, excessive curdlan amounts (0.6%–1.0%) led to a notable deterioration in the gel performance, causing a more irregular microstructure, the formation of larger cluster-like aggregates, and a negative effect on color. In conclusion, the combination of 0.4% curdlan with TGase and Lys is effective for preparing low-salt surimi products. Full article
(This article belongs to the Special Issue Research and Application of Edible Gels)
Show Figures

Figure 1

Back to TopTop