Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population and Design
2.2. Blood Sampling and Platelet Function Testing
2.3. Statistics
3. Results
3.1. Study Population
3.2. Platelet Count and Native Platelet Function in Patients Undergoing HD vs. Healthy Controls
3.3. NO-Mediated Inhibition of Platelet Function in Patients Undergoing HD vs. Healthy Controls
3.4. Figures and Schemes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ADP | Adenosine diphosphate |
AU | Arbitrary units |
AUC | Area under the curve |
AU × min | Arbitrary units × min |
BMI | Body mass index |
CAD | Coronary artery disease |
cGMP | Cyclic guanosine monophosphate |
CRP | C-reactive protein |
DMSO | Dimethyl sulfoxide |
FACS | Fluorescence Activated Cell Sorting |
G/L | Giga/liter |
GP | Glycoprotein |
HD | Hemodialysis |
HIV | Human immunodeficiency virus |
Ln | Natural logarithm |
n | Absolute frequency |
µl | Microliter |
mM | Millimolar |
mmol/L | Millimole/liter |
µmol/L | Micromole/liter |
NO | Nitric oxide |
Nr. | Number |
NY | New York |
PDE5A | Phosphodiesterase 5A |
r | Pearson’s Correlation coefficient |
sGC | Soluble guanylate cyclase |
SNP | Sodium nitroprusside |
SPSS | Statistical Package for Social Sciences |
vs. | Versus |
References
- Kaw, D.; Malhotra, D. Platelet dysfunction and end-stage renal disease. Semin. Dial. 2006, 19, 317–322. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Hypertension 2003, 42, 1050–1065. [Google Scholar] [CrossRef] [PubMed]
- Culleton, B.F.; Larson, M.G.; Wilson, P.W.; Evans, J.C.; Parfrey, P.S.; Levy, D. Cardiovascular disease and mortality in a community-based cohort with mild renal insufficiency. Kidney Int. 1999, 56, 2214–2219. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, A.; Kabbani, S.S.; Rimmer, J.M.; Gennari, F.J.; Taatjes, D.J.; Sobel, B.E.; Schneider, D.J. Biphasic effects of hemodialysis on platelet reactivity in patients with end-stage renal disease: A potential contributor to cardiovascular risk. Am. J. Kidney Dis. Off. J. Natl. Kidney Found. 2002, 40, 315–322. [Google Scholar] [CrossRef] [PubMed]
- Schoorl, M.; Grooteman, M.P.; Bartels, P.C.; Nubé, M.J. Aspects of platelet disturbances in haemodialysis patients. Clin. Kidney J. 2013, 6, 266–271. [Google Scholar] [CrossRef] [PubMed]
- Rios, D.R.; Carvalho, M.; Lwaleed, B.A.; Simões e Silva, A.C.; Borges, K.B.; Dusse, L.M. Hemostatic changes in patients with end stage renal disease undergoing hemodialysis. Clin. Chim. Acta Int. J. Clin. Chem. 2010, 411, 135–139. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T.; Bernardo, A.A. Hemodialysis effect on platelet count and function and hemodialysis-associated thrombocytopenia. Kidney Int. 2012, 82, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Bonomini, M.; Sirolli, V.; Di Pietro, N.; Pandolfi, A. Reduced nitric oxide bioavailability in chronic renal failure: A new factor of progression? G. Ital. Di Nefrol. Organo Uff. Della Soc. Ital. Di Nefrol. 2008, 25, 306–316. [Google Scholar]
- Sloand, J.A.; Sloand, E.M. Studies on platelet membrane glycoproteins and platelet function during hemodialysis. J. Am. Soc. Nephrol. JASN 1997, 8, 799–803. [Google Scholar] [CrossRef] [PubMed]
- Gritters, M.; Borgdorff, P.; Grooteman, M.P.; Schoorl, M.; Schoorl, M.; Bartels, P.C.; Tangelder, G.J.; Nubé, M.J. Platelet activation in clinical haemodialysis: LMWH as a major contributor to bio-incompatibility? Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc.-Eur. Ren. Assoc. 2008, 23, 2911–2917. [Google Scholar] [CrossRef] [PubMed]
- van Bladel, E.R.; de Jager, R.L.; Walter, D.; Cornelissen, L.; Gaillard, C.A.; Boven, L.A.; Roest, M.; Fijnheer, R. Platelets of patients with chronic kidney disease demonstrate deficient platelet reactivity in vitro. BMC Nephrol. 2012, 13, 127. [Google Scholar] [CrossRef] [PubMed]
- Kuter, D.J. Overview of Platelet Disorders. Available online: http://www.merckmanuals.com/professional/hematology-and-oncology/thrombocytopenia-and-platelet-dysfunction/overview-of-platelet-disorders (accessed on 1 November 2024).
- National Heart, Lung and Blood Institute. What Are Thrombocythemia and Thrombocytosis? Available online: https://www.nhlbi.nih.gov/health/health-topics/topics/thrm (accessed on 24 March 2022).
- Cardinal, D.C.; Flower, R.J. The electronic aggregometer: A novel device for assessing platelet behavior in blood. J. Pharmacol. Methods 1980, 3, 135–158. [Google Scholar] [CrossRef] [PubMed]
- Ranucci, M.; Baryshnikova, E.; Soro, G.; Ballotta, A.; De Benedetti, D.; Conti, D. Multiple electrode whole-blood aggregometry and bleeding in cardiac surgery patients receiving thienopyridines. Ann. Thorac. Surg. 2011, 91, 123–129. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, D.E.; Bruzelius, M.; Majeed, A.; Odeberg, J.; Holmström, M.; Ågren, A. Whole blood ristocetin-activated platelet impedance aggregometry (Multiplate) for the rapid detection of Von Willebrand disease. Thromb. Haemost. 2017, 117, 1528–1533. [Google Scholar] [CrossRef] [PubMed]
- Sibbing, D.; Braun, S.; Morath, T.; Mehilli, J.; Vogt, W.; Schömig, A.; Kastrati, A.; von Beckerath, N. Platelet Reactivity After Clopidogrel Treatment Assessed with Point-of-Care Analysis and Early Drug-Eluting Stent Thrombosis. J. Am. Coll. Cardiol. 2009, 53, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.; Bernlochner, I.; Braun, S.; Schulz, S.; Orban, M.; Morath, T.; Cala, L.; Hoppmann, P.; Schunkert, H.; Laugwitz, K.L.; et al. Aspirin treatment and outcomes after percutaneous coronary intervention: Results of the ISAR-ASPI registry. J. Am. Coll. Cardiol. 2014, 64, 863–871. [Google Scholar] [CrossRef] [PubMed]
- Christ, G.; Siller-Matula, J.M.; Francesconi, M.; Dechant, C.; Grohs, K.; Podczeck-Schweighofer, A. Individualising dual antiplatelet therapy after percutaneous coronary intervention: The IDEAL-PCI registry. BMJ Open 2014, 4, e005781. [Google Scholar] [CrossRef] [PubMed]
- Müller-Schunk, S.; Linn, J.; Peters, N.; Spannagl, M.; Deisenberg, M.; Brückmann, H.; Mayer, T.E. Monitoring of clopidogrel-related platelet inhibition: Correlation of nonresponse with clinical outcome in supra-aortic stenting. AJNR. Am. J. Neuroradiol. 2008, 29, 786–791. [Google Scholar] [CrossRef] [PubMed]
- Gomchok, D.; Ge, R.-L.; Wuren, T. Platelets in Renal Disease. Int. J. Mol. Sci. 2023, 24, 14724. [Google Scholar] [CrossRef] [PubMed]
- Stehle, D.; Xu, M.Z.; Schomber, T.; Hahn, M.G.; Schweda, F.; Feil, S.; Kraehling, J.R.; Eitner, F.; Patzak, A.; Sandner, P.; et al. Novel soluble guanylyl cyclase activators increase glomerular cGMP, induce vasodilation and improve blood flow in the murine kidney. Br. J. Pharmacol. 2022, 179, 2476–2489. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Schmaderer, C.; Ossadnik, A.; Hammitzsch, A.; Carbajo-Lozoya, J.; Bachmann, Q.; Bonell, V.; Braunisch, M.C.; Heemann, U.; Pham, D.; et al. Immunophenotypic Characterization of Citrate-Containing A Concentrates in Maintenance Hemodialysis: A Pre-Post Study. Int. J. Nephrol. 2023, 2023, 7772677. [Google Scholar] [CrossRef] [PubMed]
- Paniccia, R.; Priora, R.; Liotta, A.A.; Abbate, R. Platelet function tests: A comparative review. Vasc. Health Risk Manag. 2015, 11, 133–148. [Google Scholar] [CrossRef] [PubMed]
- Günthner, R.; Lorenz, G.; Braunisch, M.C.; Angermann, S.; Matschkal, J.; Hausinger, R.; Kuchler, T.; Glaser, P.; Schicktanz, F.; Haller, B.; et al. Endothelial dysfunction in retinal vessels of hemodialysis patients compared to healthy controls. Sci. Rep. 2024, 14, 13948. [Google Scholar] [CrossRef] [PubMed]
- Kessler, T.; Wobst, J.; Wolf, B.; Eckhold, J.; Vilne, B.; Hollstein, R.; von Ameln, S.; Dang, T.A.; Sager, H.B.; Moritz Rumpf, P.; et al. Functional Characterization of the GUCY1A3 Coronary Artery Disease Risk Locus. Circulation 2017, 136, 476–489. [Google Scholar] [CrossRef] [PubMed]
- Jessica, C.; Kevin, V.; Marie, V.A.; Marica, B.; Maria, C.M.; Emanuel, F.; Liberato, C.; Nicoletta, R.; Alexander, G. A comparative study on the haemostatic changes in kidney failure patients: Pre- and post- haemodialysis and haemodiafiltration. Thromb. Res. 2024, 242, 109120. [Google Scholar] [CrossRef] [PubMed]
- Escolar, G.; Díaz-Ricart, M.; Cases, A. Uremic platelet dysfunction: Past and present. Curr. Hematol. Rep. 2005, 4, 359–367. [Google Scholar] [PubMed]
- Escolar, G.; Díaz-Ricart, M.; Cases, A.; Castillo, R.; Ordinas, A.; White, J.G. Abnormal cytoskeletal assembly in platelets from uremic patients. Am. J. Pathol. 1993, 143, 823–831. [Google Scholar] [PubMed]
- Bonomini, M.; Sirolli, V.; Stuard, S.; Settefrati, N. Interactions between platelets and leukocytes during hemodialysis. Artif. Organs 1999, 23, 23–28. [Google Scholar] [CrossRef] [PubMed]
- Vinholt, P.J.; Frederiksen, H.; Hvas, A.M.; Sprogøe, U.; Nielsen, C. Measurement of platelet aggregation, independently of patient platelet count: A flow-cytometric approach. J. Thromb. Haemost. JTH 2017, 15, 1191–1202. [Google Scholar] [CrossRef] [PubMed]
- Michelson, A.D.; Barnard, M.R.; Krueger, L.A.; Frelinger, A.L., III; Furman, M.I. Evaluation of platelet function by flow cytometry. Methods 2000, 21, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Sibbing, D.; Steinhubl, S.R.; Schulz, S.; Schömig, A.; Kastrati, A. Platelet aggregation and its association with stent thrombosis and bleeding in clopidogrel-treated patients: Initial evidence of a therapeutic window. J. Am. Coll. Cardiol. 2010, 56, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Tóth, O.; Calatzis, A.; Penz, S.; Losonczy, H.; Siess, W. Multiple electrode aggregometry: A new device to measure platelet aggregation in whole blood. Thromb. Haemost. 2006, 96, 781–788. [Google Scholar] [CrossRef] [PubMed]
- Gafter, U.; Bessler, H.; Malachi, T.; Zevin, D.; Djaldetti, M.; Levi, J. Platelet count and thrombopoietic activity in patients with chronic renal failure. Nephron 1987, 45, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Lou, Y.; Liu, L.; Luo, P. How Can I Manage Thrombocytopenia in Hemodialysis Patient? A Review. Ther. Apher. Dial. Off. Peer-Rev. J. Int. Soc. Apher. Jpn. Soc. Apher. Jpn. Soc. Dial. Ther. 2020, 24, 352–360. [Google Scholar] [CrossRef] [PubMed]
- Kraehling, J.R.; Benardeau, A.; Schomber, T.; Popp, L.; Vienenkoetter, J.; Ellinger-Ziegelbauer, H.; Pavkovic, M.; Hartmann, E.; Siudak, K.; Freyberger, A.; et al. The sGC Activator Runcaciguat Has Kidney Protective Effects and Prevents a Decline of Kidney Function in ZSF1 Rats. Int. J. Mol. Sci. 2023, 24, 13226. [Google Scholar] [CrossRef] [PubMed]
- Barale, C.; Russo, I. Influence of Cardiometabolic Risk Factors on Platelet Function. Int. J. Mol. Sci. 2020, 21, 623. [Google Scholar] [CrossRef] [PubMed]
Baseline Characteristics | Patients Undergoing HD | Healthy Controls |
---|---|---|
N | 60 | 67 |
Age (years) | 69 ± 15.19 | 69 ± 9.92 |
Female sex, n (%) | 30 (50) | 38 (56.7) |
BMI (kg/m2) | 26.5 ± 5.1 | 24.0 ± 4.0 |
Hyperlipidemia, n (%) | 26 (43) | 17 (25) |
Smoking history, n (%) | 6 (10) | 15 (22) |
Hypertensive medication, n (%) | 57 (95) | 13 (19) |
Anticoagulants, n (%) | 14 (23) | 1 (1) |
Diabetes mellitus type 2, n (%) | 14 (23) | 0 (0) |
Coronary artery disease (CAD), n (%) | 17 (28) | 1 (1) * |
Cerebrovascular disease, n (%) | 10 (17) | 0 (0) |
Heart failure, n (%) | 3 (5) | 0 (0) |
Laboratory Parameters | Value |
---|---|
Hemoglobin [g/dL] | 11.8 ± 1.14 |
Urea [mg/dL] | 126.0 ± 44.25 |
Creatinin [mg/dL] | 7.5 ± 2.47 |
Calcium [mmol/L] | 2.21 ± 0.21 |
Phosphate [mmol/L] | 1.8 ± 0.51 |
Parathyroid hormone (PTH) [pg/mL] | 368.7 ± 324.10 |
C-reactive protein (CRP) [mg/L] | 9.1 ± 12.24 |
Ferritin [ng/mL] | 1100.3 ± 538.63 |
Albumin [mg/L] | 41.3 ± 4.51 |
Bicarbonate [mmol/L] | 20.7 ± 3.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonell, V.; Schmaderer, C.; Lorenz, G.; Günthner, R.; Angermann, S.; Bachmann, Q.; Küchle, C.; Renders, L.; Heemann, U.; Kessler, T.; et al. Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis. J. Clin. Med. 2025, 14, 5156. https://doi.org/10.3390/jcm14145156
Bonell V, Schmaderer C, Lorenz G, Günthner R, Angermann S, Bachmann Q, Küchle C, Renders L, Heemann U, Kessler T, et al. Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis. Journal of Clinical Medicine. 2025; 14(14):5156. https://doi.org/10.3390/jcm14145156
Chicago/Turabian StyleBonell, Vera, Christoph Schmaderer, Georg Lorenz, Roman Günthner, Susanne Angermann, Quirin Bachmann, Claudius Küchle, Lutz Renders, Uwe Heemann, Thorsten Kessler, and et al. 2025. "Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis" Journal of Clinical Medicine 14, no. 14: 5156. https://doi.org/10.3390/jcm14145156
APA StyleBonell, V., Schmaderer, C., Lorenz, G., Günthner, R., Angermann, S., Bachmann, Q., Küchle, C., Renders, L., Heemann, U., Kessler, T., & Kemmner, S. (2025). Ex Vivo Thrombocyte Function and Its Response to NO/Sildenafil in Patients Undergoing Hemodialysis. Journal of Clinical Medicine, 14(14), 5156. https://doi.org/10.3390/jcm14145156