Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (174)

Search Parameters:
Keywords = infrastructure retrofit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 503 KB  
Article
Smart Adaptive Reuse of Vacant Assets for Aging Societies: Integrating IoT-Based Care Systems with Spatial Reconfiguration
by Nahyang Byun and Zoosun Yoon
Buildings 2026, 16(3), 636; https://doi.org/10.3390/buildings16030636 - 3 Feb 2026
Abstract
South Korea faces a “twin crisis” of a super-aged society and urban vacancies, yet traditional adaptive reuse focusing on physical renovation fails to address the critical caregiver shortage. To resolve this, the study proposes a “Smart Adaptive Reuse Model” that fuses spatial reconfiguration [...] Read more.
South Korea faces a “twin crisis” of a super-aged society and urban vacancies, yet traditional adaptive reuse focusing on physical renovation fails to address the critical caregiver shortage. To resolve this, the study proposes a “Smart Adaptive Reuse Model” that fuses spatial reconfiguration with IoT-based care technologies. A comparative analysis of Japanese cases was conducted using two datasets: the “physical-centric phase” (dataset A, pre-2015), focused on hardware improvements, and the “tech-enabled phases” (dataset B, 2020–2024), which utilized digital transformation strategies. Results indicate that while early models struggled with the surveillance of blind spots in complex layouts, recent tech-integrated models successfully mitigated these issues and improved workforce efficiency through “data-driven layouts” without major structural changes. Consequently, this research suggests a “Hybrid Retrofit” framework strategy for Korea—minimizing physical intervention while maximizing digital monitoring—and recommends a regulatory sandbox for “Smart Care Infrastructure” to ensure operational sustainability. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

26 pages, 932 KB  
Systematic Review
Definition, Integration and Effectiveness of Integrated Green-Grey Infrastructure in Residential Street Retrofits: A Systematic Literature Review
by Xinxin Wang, Andreas Wesener and Wendy McWilliam
Urban Sci. 2026, 10(2), 92; https://doi.org/10.3390/urbansci10020092 - 2 Feb 2026
Viewed by 11
Abstract
Suburban residential streets have long been criticised for their multiple short-comings, including traffic-related injury, increased stormwater runoff, and lack of aesthetic values. Research suggests that Integrated Green-Grey Infrastructure (IGGI) is likely to play a role in mitigating these problems. IGGI refers to infrastructure [...] Read more.
Suburban residential streets have long been criticised for their multiple short-comings, including traffic-related injury, increased stormwater runoff, and lack of aesthetic values. Research suggests that Integrated Green-Grey Infrastructure (IGGI) is likely to play a role in mitigating these problems. IGGI refers to infrastructure that consists of both natural materials (such as plants, soil) and human-made structures (such as concrete, pipes). However, IGGI’s definition remains vague, and little is known about its implementation in suburban street retrofitting, and how effective it is. Using a systematic literature review method, this paper analyses peer-reviewed journal articles published over a period of ten years between 2014 and 2023. The objective was to understand IGGI’s definition, integration, and effectiveness in implemented residential street retrofitting projects. Through a rigorous screening process, 15 papers were selected for qualitative analysis. Clusters developed in analysing the results consist of IGGI’s concepts, components, integration and effectiveness. The most notable subject area is system-scale integration, shared by 14 papers. Findings regarding the effectiveness of IGGI suggest strong empirical evidence related to stormwater management and road user behavioural change; however, there were mixed perceptions toward the aesthetic values of rain gardens. Full article
15 pages, 2699 KB  
Article
Preliminary Diagnostic Seismic Analysis of an In-Service Curved Prestressed Concrete Box Girder Bridge with a Mid-Span Hinge
by Stefano Bozza, Alessandro Mazelli, Marco Fasan, Eric Puntel, Natalino Gattesco and Chiara Bedon
Buildings 2026, 16(3), 623; https://doi.org/10.3390/buildings16030623 - 2 Feb 2026
Viewed by 35
Abstract
Since a significant part of the Italian territory was not seismically classified until 2003, most existing bridges have been designed—for decades—disregarding earthquake-induced excitations. In fact, this means that load-bearing devices and shear keys of presently in-service infrastructures may not be up to current [...] Read more.
Since a significant part of the Italian territory was not seismically classified until 2003, most existing bridges have been designed—for decades—disregarding earthquake-induced excitations. In fact, this means that load-bearing devices and shear keys of presently in-service infrastructures may not be up to current codes, both in terms of resistance and displacement capacity. Robust investigations are hence required for verifications and possible retrofit. In this study, the seismic behaviour of a case study post-tensioned concrete bridge built in the 1980s is numerically analysed. The examined structure is 440 m long and composed of nine spans, built with precast segments using the balance cantilever construction method. The deck is divided into two parts connected by a hinged joint in the middle of the central span, obtained with three shear keys and originally designed to allow for thermal expansion only. Most importantly, the mid-span hinge, the end joints and the bearing devices were originally designed without considering the effects of seismic action. In order to preliminarily investigate the performance of devices and joints, the case study bridge is analysed by means of non-linear dynamic time history simulations, formulating different hypotheses about the non-linear behaviour of the load bearings. Forces and displacements over time are obtained for a set of seven accelerograms, and maximum values are compared to the capacity of the bridge devices. Results are then critically discussed. Full article
Show Figures

Figure 1

18 pages, 347 KB  
Article
Energy Poverty in the Era of Climate Change: Divergent Pathways in Hungary and Jordan
by Mohammad M. Jaber, Eszter Siposné Nándori and Katalin Lipták
Urban Sci. 2026, 10(2), 75; https://doi.org/10.3390/urbansci10020075 - 1 Feb 2026
Viewed by 204
Abstract
This study examines the interrelated challenges of climate change and energy poverty across two distinct industrial regions: Borsod-Abaúj-Zemplén in Hungary and Zarqa in Jordan. Both areas face unemployment and low-income levels, as well as environmental legacies of industrial activity; however, they differ significantly [...] Read more.
This study examines the interrelated challenges of climate change and energy poverty across two distinct industrial regions: Borsod-Abaúj-Zemplén in Hungary and Zarqa in Jordan. Both areas face unemployment and low-income levels, as well as environmental legacies of industrial activity; however, they differ significantly in their energy policies and infrastructure development. Using 2025 survey data, we develop indices of energy poverty, financial poverty, and climate perceptions, aligned with OECD guidelines. Regression analysis indicates that the model accounts for approximately 40% of the variance in energy poverty. Notably, heightened perceptions of climate change are associated with increased reports of energy hardship, suggesting that economically deprived households possess greater climate risk awareness. Resilience capacities, including adaptive skills, income stability, and community support, are found to substantially mitigate energy poverty. Income and employment status also play protective roles, underscoring the importance of economic resources. The impact of financial poverty varies markedly, being negligible in Hungary but severe in Jordan due to structural and infrastructural constraints. Our findings underscore the need for tailored, inclusive policy interventions that emphasize energy efficiency and retrofitting in Hungary and promote financial support and the adoption of renewable energy in Jordan. Integrating principles of energy justice into climate resilience strategies is crucial for promoting equitable and sustainable energy transitions, mitigating local vulnerabilities, and enhancing overall household resilience. Full article
Show Figures

Figure 1

33 pages, 6290 KB  
Article
Empirical Research and Optimization Strategies for the Retrofitting and Renewal of Existing Super High-Rise Buildings from the Perspective of Urbanity
by Huiqiong Tian, Zhendong Wang and Cheng Liu
Buildings 2026, 16(3), 561; https://doi.org/10.3390/buildings16030561 - 29 Jan 2026
Viewed by 79
Abstract
As a dominant typology of urban development and a critical component of public infrastructure, super high-rise buildings have transitioned from a speed-driven expansion model to one that emphasizes a balanced approach between development pace and quality. Within the context of urban stock renewal, [...] Read more.
As a dominant typology of urban development and a critical component of public infrastructure, super high-rise buildings have transitioned from a speed-driven expansion model to one that emphasizes a balanced approach between development pace and quality. Within the context of urban stock renewal, numerous super high-rise buildings now face pressing needs for retrofitting to enhance their sustainability and urban integration. This study establishes “urbanity”—defined as the capacity of the built environment to foster vibrant, inclusive, and sustainable urban life—as a core evaluation criterion for assessing the retrofitting and renewal of super high-rise buildings. Based on a comprehensive literature review and field investigations, 21 representative indicators were identified, and the key factors influencing the upgrading of such buildings were determined. Subsequently, 20 super high-rise buildings in Shanghai were selected as case studies, and their urbanity performance was assessed using a fuzzy comprehensive evaluation model (FCEM). The findings reveal common challenges, including architectural homogenization, functional singularity, limited vitality in near-ground spaces, weak integration with surrounding infrastructure, and inefficient utilization of urban landscape resources. Furthermore, the study analyzes urbanity-oriented enhancement strategies implemented in the selected cases and proposes targeted improvement measures across five key dimensions: building morphology, functional configuration, near-ground space, infrastructure, and urban landscape. The research contributes to the body of knowledge on sustainable urban regeneration by providing a practical evaluation framework and actionable strategies for retrofitting super high-rise buildings. The findings aim to support more livable, inclusive, and resilient urban environments, with implications for both Chinese and global cities facing similar challenges in high-density urban contexts. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
21 pages, 3411 KB  
Article
A Performance-Based Design Framework for Coupled Optimization of Urban Morphology and Thermal Comfort in High-Density Districts: A Case Study of Shenzhen
by Junhan Zhang, Juanli Guo, Weihao Liang and Hao Chang
Buildings 2026, 16(3), 496; https://doi.org/10.3390/buildings16030496 - 26 Jan 2026
Viewed by 169
Abstract
With accelerating urbanization and climate change, outdoor thermal comfort (OTC) in high-intensity urban blocks presents a critical challenge. While existing studies have established the general correlation between morphology and microclimate, most remain descriptive and lack a systematic framework to quantitatively integrate the non-linear [...] Read more.
With accelerating urbanization and climate change, outdoor thermal comfort (OTC) in high-intensity urban blocks presents a critical challenge. While existing studies have established the general correlation between morphology and microclimate, most remain descriptive and lack a systematic framework to quantitatively integrate the non-linear coupled effects between multi-dimensional morphological variables and green infrastructure. To address this, this study proposes an automated performance-based design (PBD) framework for urban morphology optimization in Shenzhen. Unlike traditional simulation-based analysis, this framework serves as a generative tool for urban renewal planning. It integrates a multi-dimensional design element system with a genetic algorithm (GA) workflow. Analysis across four urban typologies demonstrated that the Full Enclosure layout is the most effective strategy for mitigating thermal stress, achieving a final optimized UTCI of 37.15 °C. Crucially, this study reveals a non-linear synergistic mechanism: the high street aspect ratios (H/W) of enclosed forms act as a “radiation shelter”, which amplifies the cooling efficiency of green infrastructure (contributing an additional 1.79 °C reduction). This research establishes a significant, strong negative correlation between UTCI and the combined factors of building density and green shading coverage. The results provide quantifiable guidelines for retrofitting existing high-density districts, suggesting that maximizing structural shading is prioritized over ventilation in ultra-high-density, low-wind climates. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

12 pages, 4093 KB  
Article
Monitoring and Retrofitting of Reinforced Concrete Beam Incorporating Refuse-Derived Fuel Fly Ash Through Piezoelectric Sensors
by Jitendra Kumar, Dayanand Sharma, Tushar Bansal and Se-Jin Choi
Materials 2026, 19(2), 432; https://doi.org/10.3390/ma19020432 - 22 Jan 2026
Viewed by 109
Abstract
This paper presents an experimental framework that allows damage identification and retrofitting assessment in reinforced concrete (RC) beam with implemented piezoelectric lead zirconate titanate (PZT) sensors embedded into the concrete matrix. The study was conducted with concrete prepared from 30% refuse-derived fuel (RDF) [...] Read more.
This paper presents an experimental framework that allows damage identification and retrofitting assessment in reinforced concrete (RC) beam with implemented piezoelectric lead zirconate titanate (PZT) sensors embedded into the concrete matrix. The study was conducted with concrete prepared from 30% refuse-derived fuel (RDF) fly ash and 70% cement as part of research on sustainable materials for structural health monitoring (SHM). Electromechanical impedance (EMI) was employed for detecting structural degradation, with progressive damage and evaluation of recovery effects made using root-mean-square deviation (RMSD) and conductance changes. Concrete beam specimens with dimensions of 700 mm × 150 mm × 150 mm and embedded with 10 mm × 10 mm × 0.2 mm PZT sensors were cast and later subjected to three damage stages: concrete chipping (Damage I), 50% steel bar cutting (Damage II), and 100% steel bar cutting (Damage III). Three retrofitting stages were adopted: reinforcement welding (Retrofitting I and II), and concrete patching (Retrofitting III). The results demonstrated that the embedded PZT sensors with EMI and RMSD analytics represent a powerful technique for early damage diagnosis, reserved retrofitting assessment, and proactive infrastructure maintenance. The combination of SHM systems and sustainable retrofitting strategies can be a promising path toward resilient and smart civil infrastructure. Full article
Show Figures

Graphical abstract

33 pages, 11044 KB  
Article
Monitoring the Sustained Environmental Performances of Nature-Based Solutions in Urban Environments: The Case Study of the UPPER Project (Latina, Italy)
by Riccardo Gasbarrone, Giuseppe Bonifazi and Silvia Serranti
Sustainability 2026, 18(2), 864; https://doi.org/10.3390/su18020864 - 14 Jan 2026
Viewed by 194
Abstract
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, [...] Read more.
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, the research evaluates persistent improvements in vegetation health, soil moisture dynamics, and overall environmental quality over multiple years. Building upon the initial monitoring framework, this case study incorporates updated data and refined techniques to quantify temporal changes and assess the ecological performance of NbS interventions. In more detail, ground-based data from meteo-climatic, air quality stations and remote satellite data from the Sentinel-2 mission are adopted. Ground-based measurements such as temperature, humidity, radiation, rainfall intensity, PM10 and PM2.5 are carried out to monitor the overall environmental quality. Updated satellite imagery from Sentinel-2 is analyzed using advanced band ratio indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). Comparative temporal analysis revealed consistent enhancements in vegetation health, with NDVI values significantly exceeding baseline levels (NDVI 2022–2024: +0.096, p = 0.024), demonstrating successful vegetation establishment with larger gains in green areas (+27.0%) than parking retrofits (+11.4%, p = 0.041). However, concurrent NDWI decline (−0.066, p = 0.063) indicates increased vegetation water stress despite irrigation infrastructure. NDMI improvements (+0.098, p = 0.016) suggest physiological adaptation through stomatal regulation. Principal Component Analysis (PCA) of meteo-climatic variables reveals temperature as the dominant environmental driver (PC2 loadings > 0.8), with municipality-wide NDVI-temperature correlations of r = −0.87. These multi-scale findings validate sustained NbS effectiveness in enhancing vegetation density and ecosystem services, yet simultaneously expose critical water-limitation trade-offs in Mediterranean semi-arid contexts, necessitating adaptive irrigation management and continued monitoring for long-term urban climate resilience. The integrated monitoring approach underscores the critical role of continuous, multi-scale assessment in ensuring long-term success and adaptive management of NbS-based interventions. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

42 pages, 18956 KB  
Article
Three-Dimensional Scanning-Based Retrofitting of Ballast Water Treatment Systems for Enhanced Marine Environmental Protection
by Zoe Kanetaki, Athanasios Iason Giakouvakis, Panagiotis Karvounis, Gerasimos Theotokatos, Evangelos Boulougouris and Constantinos Stergiou
J. Mar. Sci. Eng. 2026, 14(2), 154; https://doi.org/10.3390/jmse14020154 - 11 Jan 2026
Viewed by 224
Abstract
This study investigates the integration of 3D laser scanning technology in the retrofitting of Ballast Water Treatment Systems (BWTS) on existing commercial vessels, addressing the global challenge of invasive aquatic species. The methodology combines a bibliometric analysis of keywords—indicating recent trends and knowledge [...] Read more.
This study investigates the integration of 3D laser scanning technology in the retrofitting of Ballast Water Treatment Systems (BWTS) on existing commercial vessels, addressing the global challenge of invasive aquatic species. The methodology combines a bibliometric analysis of keywords—indicating recent trends and knowledge gaps, a feasibility study, and detailed engineering design with on-site supervision. A case study is presented on a crude oil tanker, employing a multi-station 3D scanning strategy across the engine and pump rooms—performed using 63 and 45 scan positions, respectively. These data were processed with removal filters and integrated into specialized CAD software for detailed piping design. The implementation of high-fidelity point clouds served as the digital foundation for modeling the vessel’s existing piping infrastructure and retrofitting with the installation of an electrolysis-based BWTS. Results confirm that 3D scanning enables precise spatial analysis, minimizes retrofitting errors, reduces installation time, and ensures regulatory compliance with the IMO Ballast Water Management Convention. By digitally capturing complex onboard environments, the approach enhances accuracy, safety, and cost-effectiveness in maritime engineering projects. This work underscores the transition toward point cloud-based digital twins as a standard for sustainable and efficient ship conversions in the global shipping industry. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 3862 KB  
Review
Unlocking the Potential of Digital Twin Technology for Energy-Efficient and Sustainable Buildings: Challenges, Opportunities, and Pathways to Adoption
by Muhyiddine Jradi
Sustainability 2026, 18(1), 541; https://doi.org/10.3390/su18010541 - 5 Jan 2026
Viewed by 535
Abstract
Digital Twin technology is transforming how buildings are designed, operated, and optimized, serving as a key enabler of smarter, more energy-efficient, and sustainable built environments. By creating dynamic, data-driven virtual replicas of physical assets, Digital Twins support continuous monitoring, predictive maintenance, and performance [...] Read more.
Digital Twin technology is transforming how buildings are designed, operated, and optimized, serving as a key enabler of smarter, more energy-efficient, and sustainable built environments. By creating dynamic, data-driven virtual replicas of physical assets, Digital Twins support continuous monitoring, predictive maintenance, and performance optimization across a building’s lifecycle. This paper provides a structured review of current developments and future trends in Digital Twin applications within the building sector, particularly highlighting their contribution to decarbonization, operational efficiency, and performance enhancement. The analysis identifies major challenges, including data accessibility, interoperability among heterogeneous systems, scalability limitations, and cybersecurity concerns. It emphasizes the need for standardized protocols and open data frameworks to ensure seamless integration across Building Management Systems (BMSs), Building Information Models (BIMs), and sensor networks. The paper also discusses policy and regulatory aspects, noting how harmonized standards and targeted incentives can accelerate adoption, particularly in retrofit and renovation projects. Emerging directions include Artificial Intelligence integration for autonomous optimization, alignment with circular economy principles, and coupling with smart grid infrastructures. Overall, realizing the full potential of Digital Twins requires coordinated collaboration among researchers, industry, and policymakers to enhance building performance and advance global decarbonization and urban resilience goals. Full article
Show Figures

Figure 1

19 pages, 5926 KB  
Article
Full-Scale Collision Behavior of a Polyurea-Coated RC Intrusion Protection Wall for High-Speed Train Derailment
by Luong Ngoc Nguyen, Dong Hwi Im, Kwang Soo Youm, Jung Joong Kim and Nam Hyoung Lim
Buildings 2026, 16(1), 227; https://doi.org/10.3390/buildings16010227 - 4 Jan 2026
Viewed by 374
Abstract
High-speed train derailments can cause severe vehicle collisions with rail bridges and adjacent infrastructure; however, full-scale evidence for the collision response of trackside intrusion-protection walls and for material measures that limit concrete fragmentation remains scarce. This study addresses this safety-driven knowledge gap by [...] Read more.
High-speed train derailments can cause severe vehicle collisions with rail bridges and adjacent infrastructure; however, full-scale evidence for the collision response of trackside intrusion-protection walls and for material measures that limit concrete fragmentation remains scarce. This study addresses this safety-driven knowledge gap by reporting a full-scale collision test of a polyurea-coated reinforced concrete (RC) wall and by clarifying its governing response mechanisms and coating benefits. The inverted T-shaped RC wall was post-anchored to an existing deck and spray-coated with approximately 5 mm polyurea on the collision face and across the wall-footing junction. A 17.68 t container wagon was propelled to 34.59 km/h to reproduce the normal kinetic energy of a representative 68 t KTX car derailing at 300 km/h with a 3° collision angle. High-speed video tracking and post-test mapping captured displacements, rotations, and damage. The wall contained the container wagon without climb-over and without severe local crushing at the collision face; the response was dominated by stable wall-footing rocking, with a peak top displacement of 0.571 m, peak rotation of 19.9°, and residual inclination of approximately 15–17°. The peak collision-force estimate was approximately 1.17 MN, and most input energy (approximately 647–816 kJ) was dissipated through inelastic rocking and sliding while the anchors remained intact. The polyurea layer restrained spalling and fragment release and promoted a more global, repairable rocking-dominated damage state. These results provide rare full-scale benchmarks and mechanistic insight to support performance-based design and retrofit of derailment intrusion-protection walls for improved rail-bridge safety. Full article
Show Figures

Figure 1

23 pages, 7586 KB  
Article
Mainshock–Aftershock Fragility Assessments of Corroded Reinforced Concrete Structures Considering FRP Retrofitting Effect
by Wei-Qiang Xu, Wei-Zhen Xu, Ze-Bang Guo, Da-Peng Yao, Shuai Li, Kuang-Yu Dai and Zhou Zhou
Buildings 2025, 15(24), 4483; https://doi.org/10.3390/buildings15244483 - 11 Dec 2025
Viewed by 326
Abstract
Corrosion in reinforced concrete (RC) structures increases seismic fragility by reducing strength, ductility, and bond integrity, which becomes critical in aging infrastructure. This study provides a systematic fragility comparison of intact, corroded, and FRP-strengthened structures across multiple corrosion levels under sequential earthquakes. The [...] Read more.
Corrosion in reinforced concrete (RC) structures increases seismic fragility by reducing strength, ductility, and bond integrity, which becomes critical in aging infrastructure. This study provides a systematic fragility comparison of intact, corroded, and FRP-strengthened structures across multiple corrosion levels under sequential earthquakes. The seismic fragility of corroded RC frames, with and without fiber-reinforced polymer (FRP) retrofitting, is investigated under both mainshock and aftershock loading conditions. A total of 508 real recorded mainshock–aftershock ground motion sequences are selected as seismic inputs to ensure the representation of earthquake demands. Nonlinear time history analyses are carried out to establish fragility curves for four limit states based on probabilistic demand–capacity relationships. The results show that corrosion significantly decreases the collapse prevention capacity (LS4), with the maximum reduction reaching about 62%. FRP retrofitting restores seismic performance to varying degrees depending on corrosion severity. For the structure with a 10% corrosion rate, FRP retrofitting enhances the collapse capacity beyond that of the intact case. For the structure with a 20% corrosion rate, FRP retrofitting recovers approximately two-thirds of the lost capacity caused by reduced ductility. The consideration of aftershock effects further increases the fragility of corroded structures, yet FRP retrofitting continues to provide improvement by reducing cumulative damage and improving deformation capacity. The study confirms that the FRP confinement effectively enhances the seismic resilience of aging RC structures and provides a practical basis for performance-based retrofit strategies under sequential earthquake events. Full article
Show Figures

Figure 1

20 pages, 465 KB  
Article
Methanol Production Pathways in Nova Scotia: Opportunities and Challenges for Carbon Capture, Utilization, and Storage
by Augustine Okafor and Larry Hughes
Energies 2025, 18(24), 6415; https://doi.org/10.3390/en18246415 - 8 Dec 2025
Viewed by 320
Abstract
Producing methanol through carbon capture and utilization presents a sustainable alternative to traditional methods. This study explores two main production pathways, which are further divided into four distinct scenarios. In Nova Scotia, methanol could be produced by combining green hydrogen with either biogenic [...] Read more.
Producing methanol through carbon capture and utilization presents a sustainable alternative to traditional methods. This study explores two main production pathways, which are further divided into four distinct scenarios. In Nova Scotia, methanol could be produced by combining green hydrogen with either biogenic or fossil-derived carbon dioxide sources. The four scenarios differ in scale, carbon source, and methanol output. Scenario 1, a small biomass plant, captures 0.033 Mt CO2/yr and produces 0.024 Mt methanol, but uses only 3% of the green hydrogen. Scenario 2, a natural gas plant, captures 0.90 Mt CO2/yr and produces 0.66 Mt methanol with 69% hydrogen use. Scenario 3, a coal plant, captures 2.30 Mt CO2/yr, converting 57% to 0.94 Mt methanol. Scenario 4, a proposed BECCS plant, captures 2.46 Mt CO2/yr, converts 53% to 0.94 Mt green methanol, and delivers the highest net-negative emissions, making it the most climate-friendly option. While Scenarios 1, 2, and 3 could benefit from retrofitting existing plants, Scenario 4 would require significant infrastructure investment to make it a reality. The study concludes that while Nova Scotia possesses the resources to support renewable and non-renewable methanol production, challenges related to CO2 availability, green hydrogen production, biomass supply, energy requirement, and public perception must be addressed. Full article
Show Figures

Figure 1

35 pages, 2154 KB  
Article
Real-Time Digital Twins for Building Energy Optimization Through Blind Control: Functional Mock-Up Units, Docker Container-Based Simulation, and Surrogate Models
by Cristina Nuevo-Gallardo, Iker Landa del Barrio, Markel Flores Iglesias, Juan B. Echeverría Trueba and Carlos Fernández Bandera
Appl. Sci. 2025, 15(24), 12888; https://doi.org/10.3390/app152412888 - 6 Dec 2025
Viewed by 748
Abstract
The transition toward energy-efficient and smart buildings requires Digital Twins (DTs) that can couple real-time data with physics-based Building Energy Models (BEMs) for predictive and adaptive operation. Yet, despite rapid digitalisation, there remains a lack of practical guidance and real-world implementations demonstrating how [...] Read more.
The transition toward energy-efficient and smart buildings requires Digital Twins (DTs) that can couple real-time data with physics-based Building Energy Models (BEMs) for predictive and adaptive operation. Yet, despite rapid digitalisation, there remains a lack of practical guidance and real-world implementations demonstrating how calibrated BEMs can be effectively integrated into Building Management Systems (BMSs). This study addresses that gap by presenting a complete and reproducible end-to-end framework for embedding physics-based BEMs into operational DTs using two setups: (i) encapsulation as Functional Mock-up Units (FMUs) and (ii) containerisation via Docker. Both approaches were deployed and tested in a real educational building in Cáceres (Spain), equipped with a LoRaWAN-based sensing and actuation infrastructure. A systematic comparison highlights their respective trade-offs: FMUs offer faster execution but limited weather inputs and higher implementation effort, whereas Docker-based workflows provide full portability, scalability, and native interoperability with Internet of Things (IoT) and BMS architectures. To enable real-time operation, a surrogate modelling framework was embedded within the Docker architecture to replicate the optimisation logic of the calibrated BEM and generate predictive blind control schedules in milliseconds—bypassing simulation overhead and enabling continuous actuation. The combined Docker + surrogate setup achieved 10–15% heating energy savings during winter operation without any HVAC retrofit. Beyond the case study, this work provides a step-by-step, in-depth guideline for practitioners to integrate calibrated BEMs into real-time control loops using existing toolchains. The proposed approach demonstrates how hybrid physics- and data-driven DTs can transform building management into a scalable, energy-efficient, and operationally deployable reality. Full article
Show Figures

Figure 1

40 pages, 10216 KB  
Article
Blue–Green Infrastructure Strategies for Improvement of Outdoor Thermal Comfort in Post-Socialist High-Rise Residential Areas: A Case Study of Niš, Serbia
by Ivana Bogdanović Protić, Ljiljana Vasilevska and Nemanja Petrović
Sustainability 2025, 17(23), 10876; https://doi.org/10.3390/su172310876 - 4 Dec 2025
Viewed by 709
Abstract
Urban densification in post-socialist cities has drastically reduced open and green spaces in high-rise housing areas (HRHAs), intensifying heat stress and degrading outdoor thermal comfort (OTC). These neighborhoods—shaped by socialist-era planning and, later, market-led infill—combine high built density, low greenery, and limited ventilation, [...] Read more.
Urban densification in post-socialist cities has drastically reduced open and green spaces in high-rise housing areas (HRHAs), intensifying heat stress and degrading outdoor thermal comfort (OTC). These neighborhoods—shaped by socialist-era planning and, later, market-led infill—combine high built density, low greenery, and limited ventilation, making them critical testbeds for climate-adaptive regeneration. This study presents the first empirically validated ENVI-met assessment of blue–green infrastructure (BGI) performance in a post-socialist HRHA, using a representative courtyard in Niš, Serbia, during the 14 August 2024 heatwave. A 24 h field campaign (air temperature, humidity, wind speed, and mean radiant temperature) validated the model with high accuracy (R2 = 0.92, RMSE = 1.1 °C for air temperature; R2 = 0.88, RMSE = 3.5 K for Physiological Equivalent Temperature (PET). Four retrofit scenarios were simulated: S0 (existing), S1 (grass), S2 (grass + trees), and S3 (S2 + shallow pool). Across all scenarios, daytime PET indicated strong–extreme heat stress, peaking at 61.9 °C (16:00 h). The best configuration (S3) reduced PET by 2.68 °C (10:00 h) but <1 °C at peak hours, with acceptable comfort limited to 04:00–07:00 h. The results confirm that small-scale surface-level greening provides negligible thermal relief under a dense HRHA morphology. Urban morphological reform—optimizing height, spacing, ventilation, and integrated greening—is more effective for heat mitigation. Future work should include multi-seasonal field monitoring and human thermal-perception surveys to link microclimate improvement with exposure and health risk. Full article
(This article belongs to the Special Issue A Systems Approach to Urban Greenspace System and Climate Change)
Show Figures

Figure 1

Back to TopTop