Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (143)

Search Parameters:
Keywords = infrared heat flux

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 10047 KiB  
Article
Thermal Environment for Lunar Orbiting Spacecraft Based on Non-Uniform Planetary Infrared Radiation Model
by Xinqi Li, Liying Tan, Jing Ma and Xuemin Qian
Aerospace 2025, 12(8), 737; https://doi.org/10.3390/aerospace12080737 - 19 Aug 2025
Viewed by 103
Abstract
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. [...] Read more.
Accurate computation of external heat flux is critical for spacecraft thermal analysis and thermal control system design. The traditional method, which adopted the uniform planetary infrared radiation model (UPIRM), is inadequate for lunar orbital missions due to the extreme planetary surface temperature variations. This study proposes an external heat flux calculation method for lunar orbits by integrating a non-uniform lunar surface temperature model derived from Lunar Reconnaissance Orbiter (LRO) Diviner radiometric data. Specifically, the lunar surface temperature data were first fitted as functions of latitude (ψ) and position angles (ζ) through data regression analysis. Then, a comprehensive mathematical framework is established to analyze solar radiation, lunar albedo, and lunar infrared radiation components, incorporating orbital parameters such as beta angle (β), orbital inclination (i) and so on. Coordinate transformations and numerical integration techniques are employed to evaluate heat flux distributions across cuboidal orbiter surfaces. It is found that the lunar infrared radiation heat flux manifests pronounced fluctuation, peaking at 1023 W/m2 near the lunar noon region while plummeting to 20 W/m2 near the midnight region under the orbital parameters investigated in this study. This study demonstrates the essential role of the non-uniform planetary infrared radiation model (NUPIRM) in enhancing prediction accuracy by contrast, offering foundational references for thermal management in future lunar and deep-space exploration spacecraft. Full article
(This article belongs to the Special Issue Aerospace Human–Machine and Environmental Control Engineering)
Show Figures

Figure 1

15 pages, 2432 KiB  
Article
High-Temperature Thermal Camouflage Device Considering Radiative Thermal Transfer from the Target
by Zeyu Lin, Xiaohong Wang, Jiangtai Lin, Honghao Jiang, Guodong Xu, Tao Zeng and Tiande Wen
Micromachines 2025, 16(8), 840; https://doi.org/10.3390/mi16080840 - 22 Jul 2025
Viewed by 335
Abstract
Thermal camouflage technologies manipulate heat fluxes to conceal objects from thermographic detection, offering potential solutions for thermal management in high-power-density electronics. Most reported approaches are aimed at scenarios where the target is not a heat source; however, any target with a non-zero temperature [...] Read more.
Thermal camouflage technologies manipulate heat fluxes to conceal objects from thermographic detection, offering potential solutions for thermal management in high-power-density electronics. Most reported approaches are aimed at scenarios where the target is not a heat source; however, any target with a non-zero temperature emits thermal radiation described by the Stefan–Boltzmann law since the thermal radiation of an object is proportional to the fourth power of its temperature (T4). To address this issue, this study proposes a thermal camouflage device that considers the influence of radiative thermal transfer from the target. The underlying principle involves maintaining synchronous heat transfer separately along both the device and background surfaces. Numerical simulation confirms the feasibility of this proposed thermal camouflage strategy. Moreover, by altering some parameters related to the target such as geometry, location, temperature, and surface emissivity, excellent performance can be achieved using this device. This work advances thermal management strategies for high-power electronics and infrared-sensitive systems, with applications in infrared stealth, thermal diagnostics, and energy-efficient heat dissipation. Full article
(This article belongs to the Special Issue Thermal Transport and Management of Electronic Devices)
Show Figures

Figure 1

25 pages, 6368 KiB  
Article
Development of a Thermal Infrared Network for Volcanic and Environmental Monitoring: Hardware Design and Data Analysis Software Code
by Fabio Sansivero, Giuseppe Vilardo and Ciro Buonocunto
Sensors 2025, 25(13), 4141; https://doi.org/10.3390/s25134141 - 2 Jul 2025
Viewed by 330
Abstract
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work [...] Read more.
Thermal infrared (TIR) ground observations are a well-established method for investigating surface temperature variations in thermally anomalous areas. However, commercially available technical solutions are currently limited, often offering proprietary products with minimal customization options for establishing a permanent TIR monitoring network. This work presents the comprehensive development of a thermal infrared monitoring network, detailing everything from the hardware schematics of the remote monitoring station (RMS) to the code for the final data processing software. The procedures implemented in the RMS for managing TIR sensor operations, acquiring environmental data, and transmitting data remotely are thoroughly discussed, along with the technical solutions adopted. The processing of TIR imagery is carried out using ASIRA (Automated System of InfraRed Analysis), a free software package, now developed for GNU Octave. ASIRA performs quality filtering and co-registration, and applies various seasonal correction methodologies to extract time series of deseasoned surface temperatures, estimate heat fluxes, and track variations in thermally anomalous areas. Processed outputs include binary, Excel, and CSV formats, with interactive HTML plots for visualization. The system’s effectiveness has been validated in active volcanic areas of southern Italy, demonstrating high reliability in detecting anomalous thermal behavior and distinguishing endogenous geophysical processes. The aim of this work is to enable readers to easily replicate and deploy this open-source, low-cost system for the continuous, automated thermal monitoring of active volcanic and geothermal areas and environmental pollution, thereby supporting hazard assessment and scientific research. Full article
(This article belongs to the Special Issue Recent Advances in Infrared Thermography and Sensing Technologies)
Show Figures

Figure 1

21 pages, 3617 KiB  
Article
Numerical and Experimental Study of Enhanced Heat Dissipation Performance of Graphene-Coated Heating Cables
by Zhenzhen Chen, Chenchen Xu, Feilong Zhang and Tao Sun
Coatings 2025, 15(7), 777; https://doi.org/10.3390/coatings15070777 - 30 Jun 2025
Viewed by 400
Abstract
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This [...] Read more.
Low-temperature radiant heating systems utilizing heating cables face challenges including low heat dissipation efficiency and high energy consumption, hindering widespread application. Graphene coatings, characterized by high thermal conductivity and far-infrared radiation properties, offer a novel approach to enhance cable heat dissipation efficiency. This study systematically investigates the effects of coating position, thickness, and ambient temperature on cable heat dissipation using numerical simulations and experiments. A three-dimensional heat transfer model of the heating cable was established using Fluent software (2022R1). The radiation heat transfer equation was solved using the Discrete Ordinates (DO) model, and the coating position and thickness parameters were optimized. The reliability of the simulation results was validated using a temperature-rise experimental platform. The results indicate that graphene coatings significantly improve the heat dissipation performance of cables. Under optimal parameters (coating thickness: 100 μm, coating position: aluminum fin surface, initial temperature: 5 °C), the heat flux increased by approximately 26%, aluminum fin surface temperature decreased to 41.5 °C, and experimental temperature-rise efficiency improved by nearly 50%. The discrepancy between simulated and experimental results was within 8.5%. However, when coating thickness exceeded 100 μm, interfacial thermal resistance increased, reducing heat dissipation efficiency. Additionally, higher ambient temperatures suppressed heat dissipation. These findings provide a theoretical basis for optimizing the energy efficiency of low-temperature radiant heating systems. Full article
(This article belongs to the Section Surface Characterization, Deposition and Modification)
Show Figures

Figure 1

11 pages, 3385 KiB  
Article
Functional Polyacrylate Textile Coatings with N,N-Diethyl-3-methylbenzamide (DEET) Immobilized on Zirconia, Alumina and Silica Sorbents
by Sergei Zverev, Sergei Andreev, Ekaterina Anosova, Varvara Morenova, Maria Rakitina and Vladimir Vinokurov
Surfaces 2025, 8(2), 33; https://doi.org/10.3390/surfaces8020033 - 9 May 2025
Viewed by 537
Abstract
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect [...] Read more.
In this study, polymer films based on the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl with repellent N,N-diethyl-3-methylbenzamide were prepared and used as functional textile coatings. The high sorption activity of oxides with respect to N,N-diethyl-3-methylbenzamide (63–239 mg/g) allows for the use of these compounds as repellent carrier materials, and their mixture with polyacrylates allows for the formation of functional coatings–polymer films. Scanning electron microscopy and Fourier transform infrared spectroscopy results revealed that the inorganic sorbents Al2O3, ZrO2 and SiO2-phenyl were successfully anchored in the polyacrylate structure, and the FTIR spectra confirmed the presence of repellent molecules. The thermal diffusion parameters of N,N-diethyl-3-methylbenzamide were also calculated via thermogravimetric analysis and high-performance liquid chromatography with diode array detection. The highest thermal diffusion rates and concentrations were observed for the material with Al2O3 (up to 148.3∙10−9 mol at 200 °C), and lower values for ZrO2 and SiO2-phenyl (up to 15.2∙10−9 mol and 34.3∙10−9 mol at 200 °C, respectively). The heat flux parameter Jf was also calculated according to Onsager’s theory and Fourier’s law. The release of repellent from polymeric materials can be achieved by applying less heat than that required to reach the boiling point of N,N-diethyl-3-methylbenzamide. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Figure 1

28 pages, 12669 KiB  
Article
Paddy Field Scale Evapotranspiration Estimation Based on Two-Source Energy Balance Model with Energy Flux Constraints and UAV Multimodal Data
by Tian’ao Wu, Kaihua Liu, Minghan Cheng, Zhe Gu, Weihua Guo and Xiyun Jiao
Remote Sens. 2025, 17(10), 1662; https://doi.org/10.3390/rs17101662 - 8 May 2025
Cited by 7 | Viewed by 762
Abstract
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance [...] Read more.
Accurate evapotranspiration (ET) monitoring is important for making scientific irrigation decisions. Unmanned aerial vehicle (UAV) remote sensing platforms allow for the flexible and efficient acquisition of field data, providing a valuable approach for large-scale ET monitoring. This study aims to enhance the accuracy and reliability of ET estimation in rice paddies through two synergistic approaches: (1) integrating the energy flux diurnal variations into the Two-Source Energy Balance (TSEB) model, which considers the canopy and soil temperature components separately, for physical estimation and (2) optimizing the flight altitudes and observation times for thermal infrared (TIR) data acquisition to enhance the data quality. The results indicated that the energy flux in rice paddies followed a single-peak diurnal pattern dominated by net radiation (Rn). The diurnal variation in the ratio of soil heat flux (G) to Rn could be well fitted by the cosine function with a max value and peak time (R2 > 0.90). The optimal flight altitude and time (50 m and 11:00 am) for improved identification of temperature differentiation between treatments were further obtained through cross-comparison. These adaptations enabled the TSEB model to achieve a satisfactory accuracy in estimating energy flux compared to the single-source SEBAL model, with R2 values of 0.8501 for RnG and 0.7503 for latent heat (LE), as well as reduced rRMSE values. In conclusion, this study presents a reliable method for paddy field scale ET estimation based on a calibrated TSEB model. Moreover, the integration of ground and UAV multimodal data highlights its potential for precise irrigation practices and sustainable water resource management. Full article
Show Figures

Figure 1

19 pages, 9534 KiB  
Article
Temperature Effects on Wicking Dynamics: Experimental and Numerical Study on Micropillar-Structured Surfaces
by Yoomyeong Lee, Hyunmuk Park, Hyeon Taek Nam, Yong-Hyeon Kim, Jae-Hwan Ahn and Donghwi Lee
Micromachines 2025, 16(5), 512; https://doi.org/10.3390/mi16050512 - 27 Apr 2025
Viewed by 2488
Abstract
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), [...] Read more.
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), which represents the maximum heat flux a heated surface can sustain during boiling. CHF is primarily influenced by the wicking performance, which governs liquid supply to the surface. This study experimentally and numerically analyzed the wicking performance of micropillar structures at various temperatures (20–95 °C) using distilled water as the working fluid to provide fundamental data for CHF prediction. Infrared (IR) visualization was used to extract the wicking coefficient, and the experimental data were compared with computational fluid dynamics (CFD) simulations for validation. At room temperature (20 °C), the wicking coefficient increased with larger pillar diameters (D) and smaller gaps (G). Specifically, the highest roughness factor sample (D04G10, r = 2.51) exhibited a 117% higher wicking coefficient than the lowest roughness factor sample (D04G20, r = 1.51), attributed to enhanced capillary pressure and improved liquid supply. Additionally, for the same surface roughness factor, the wicking coefficient increased with temperature, showing a 49% rise at 95 °C compared to 20 °C due to reduced viscous resistance. CFD simulations showed strong agreement with experiments, with error within ±10%. These results confirm that the proposed numerical methodology is a reliable tool for predicting wicking performance near boiling temperatures. Full article
(This article belongs to the Special Issue MEMS Nano/Micro Fabrication, 2nd Edition)
Show Figures

Figure 1

23 pages, 18319 KiB  
Article
Low-Altitude, Overcooled Scree Slope: Insights into Temperature Distribution Using High-Resolution Thermal Imagery in the Romanian Carpathians
by Andrei Ioniță, Iosif Lopătiță, Petru Urdea, Oana Berzescu and Alexandru Onaca
Land 2025, 14(3), 607; https://doi.org/10.3390/land14030607 - 13 Mar 2025
Viewed by 706
Abstract
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was [...] Read more.
Advective heat fluxes (chimney effect) in porous debris facilitate ground cooling on scree slopes, even at low altitudes, and promote the occurrence of sporadic permafrost. The spatial distribution of ground surface temperature on an overcooled, low-altitude scree slope in the Romanian Carpathians was analyzed using UAV-based infrared thermography in different seasons. The analysis revealed significant temperature gradients within the scree slope, with colder, forest-insulated lower sections contrasting with warmer, solar-exposed upper regions. Across all surveyed seasons, this pattern remained evident, with the strongest temperature contrasts in December and April. February exhibited the most stable temperatures, with thermal readings primarily corresponding to snow surfaces rather than exposed rock. Rock surfaces displayed greater temperature variation than vent holes. Vent holes were generally cooler than rock surfaces, particularly in warmer periods. The persistent presence of ice and low temperatures at the end of the warm season suggested the potential existence of isolated permafrost. The results confirm the chimney effect, where cold air infiltrates the lower talus, gradually warms as it ascends, and outflows at higher elevations. UAV-based thermal imagery proved effective in detecting microclimatic variability and elucidating thermal processes governing talus slopes. This study provides valuable insights into extrazonal permafrost behavior, particularly in the context of global climate change. Full article
(This article belongs to the Special Issue Integration of Remote Sensing and GIS for Land Use Change Assessment)
Show Figures

Figure 1

26 pages, 10603 KiB  
Article
Laser Surface Texturing for the Intensification of Boiling Heat Transfer in a Minichannel
by Kinga Strąk and Magdalena Piasecka
Energies 2024, 17(24), 6481; https://doi.org/10.3390/en17246481 - 23 Dec 2024
Viewed by 921
Abstract
This study investigates the effects of using laser-textured surfaces in boiling heat transfer during cooling fluid flow in a minichannel. Several laser-textured surfaces, varied in roughness, were created on the heated plate surface that contacted FC-72 during flow in a single minichannel. Infrared [...] Read more.
This study investigates the effects of using laser-textured surfaces in boiling heat transfer during cooling fluid flow in a minichannel. Several laser-textured surfaces, varied in roughness, were created on the heated plate surface that contacted FC-72 during flow in a single minichannel. Infrared thermography was used to measure temperature changes on the untextured side of the plate, while two-phase flow patterns were observed through a glass pane. Three vibration-assisted laser surface textures, previously investigated by the authors, and five novel laser surface textures were tested experimentally. The results were presented as relationships between heated wall temperature, heat transfer coefficient and distance along the minichannel, boiling curves, and flow patterns. The main interest of the authors was to provide a comparative analysis of the heat transfer results at the same value of heat flux supplied to the minichannel heated wall when either a laser-textured surface or a smooth base one was applied. It was noticed that the use of the 90-degree dense grid pattern type 2 (shallow) surface in the research helped achieve the highest local heat transfer coefficient in the subcooled boiling region compared to other surfaces tested. Furthermore, the 90-degree dense grid pattern type 1, characterised by larger maximum depth and height surfaces, performed best in the saturated boiling region. The results obtained for the laser-textured heated plate surface were compared to those collected for the smooth base heated plate surface, generally indicating an intensification of heat transfer processes in boiling heat transfer during FC-72 flow in a minichannel. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

14 pages, 3496 KiB  
Article
Construction of Photothermal Intelligent Membranes for Point-of-Use Water Treatment
by Hong Jiang, Jiarong Wang, Ying Liang and Chuan Qiao
Molecules 2024, 29(23), 5733; https://doi.org/10.3390/molecules29235733 - 5 Dec 2024
Cited by 1 | Viewed by 957
Abstract
For the removal of waterborne pathogens in remote areas and disaster emergency situations, point-source water treatment methods are more suitable. Photothermal sterilization is ideal for point-of-use (POU) systems, as it effectively eliminates pathogens without secondary pollution or bacterial resistance issues. By combining photothermal [...] Read more.
For the removal of waterborne pathogens in remote areas and disaster emergency situations, point-source water treatment methods are more suitable. Photothermal sterilization is ideal for point-of-use (POU) systems, as it effectively eliminates pathogens without secondary pollution or bacterial resistance issues. By combining photothermal with membrane treatment, these membranes rapidly heat up under near-infrared (NIR) light, enabling both bacterial retention and sterilization. However, the decrease in membrane flux due to pore clogging during water treatment can significantly impact membrane efficiency. And adjusting the membrane pore size can significantly enhance flux recovery during cleaning, thereby restoring membrane efficiency. By synthesis multifunctional membranes that combine bacteria retention, sterilization, and flux recovery, it can meet the requirements of point-source water treatment: compact size, high efficiency, good safety, and easy maintenance. In this study, we developed an intelligent thermally responsive membrane (NIPAN@CNTs/PAN) by incorporating carbon nanotubes (CNTs) and forming a copolymer of N-isopropylacrylamide and polyacrylonitrile (NIPAN) coating into polyacrylonitrile membranes, offering dual functions of photothermal sterilization and self-cleaning. With 3% CNTs, the membrane achieves 100% sterilization within 6 min of NIR exposure, while the NIPAN layer’s added roughness boosts photothermal efficiency, achieving 100% sterilization within 4 min. Rinsing at 50 °C improved flux recovery from 50% to 87% and reduced irreversible fouling from 49.7% to 12.9%, demonstrating stable performance over multiple cycles and highlighting its potential for long-term use in practical POU applications. Full article
Show Figures

Graphical abstract

11 pages, 3194 KiB  
Article
Theoretical Design of Smart Bionic Skins with Self-Adaptive Temperature Regulation
by Yubo Wang, Yungui Ma and Rui Chen
Materials 2024, 17(22), 5580; https://doi.org/10.3390/ma17225580 - 15 Nov 2024
Viewed by 1171
Abstract
Thermal management presents a significant challenge in electric design, particularly in densely packed electronic systems. This study proposes a theoretical model for radiative bionic skin that emulates human skin, enabling the self-adaptive modulation of the thermal exhaustion rate to maintain homeostasis for objects [...] Read more.
Thermal management presents a significant challenge in electric design, particularly in densely packed electronic systems. This study proposes a theoretical model for radiative bionic skin that emulates human skin, enabling the self-adaptive modulation of the thermal exhaustion rate to maintain homeostasis for objects covered by the skin in fluctuating thermal environments. The proposed artificial skin consists of phase change material (VO2) nanoparticles embedded in a low-loss matrix situated on a metallic substrate with a minimal thickness of several micrometers. The findings from our theoretical analyses indicate that substantial alterations in thermal radiation power around the phase transition temperature of 340 K enable a silicone substrate to sustain a relatively stable temperature, with variations confined to ±6 K, despite external heat fluxes ranging from 150 to 450 W/m2. Furthermore, to improve the spectral resemblance to natural skin, a plasmonic surface composed of self-assembled silver nanocubes is incorporated, allowing for modifications to the visible light properties of the bionic skin while maintaining its infrared characteristics. This theoretical investigation offers a cost-effective and conformal approach to the design of ultra-compact, fully passive, and versatile thermal management solutions for robotic systems and related technologies. Full article
Show Figures

Figure 1

11 pages, 1965 KiB  
Article
The Influence of the Heat Flux of the Infrared Heater on the Charring Rate of Spruce Wood
by Alena Párničanová, Martin Zachar and Danica Kačíková
Polymers 2024, 16(18), 2657; https://doi.org/10.3390/polym16182657 - 20 Sep 2024
Viewed by 993
Abstract
The study investigates the determination of selected fire properties of spruce wood, specifically the charring rate, using a modified testing method described and registered at the Industrial Property Office of the Slovak Republic PUV 50121-2020, utility model no. 9373. The samples were exposed [...] Read more.
The study investigates the determination of selected fire properties of spruce wood, specifically the charring rate, using a modified testing method described and registered at the Industrial Property Office of the Slovak Republic PUV 50121-2020, utility model no. 9373. The samples were exposed to a square ceramic infrared heater, FTE-750W, with a power output of 750 W, using which we determined the heat flux as a function of voltage (V). Spruce wood specimens with dimensions of 75 mm × 75 mm × 50 mm (l × w × h) were subjected to thermal exposure under heat fluxes of 10, 15, 20, and 25 kW∙m−2. The charring rate was evaluated using two distinct approaches: the first method measured the thickness of the char layer formed after a duration of 1800 s, while the second method was based on reaching a temperature threshold of 300 °C. The findings demonstrated a positive correlation between the thermal load and the charring rate. The charring rates obtained using the first method ranged from 0.2397 to 0.6933 mm∙min−1, whereas those derived from the second method varied from 0 to 1.0344 mm∙min−1. This suggests that the 300 °C temperature criterion may not be a reliable parameter for calculating the charring rate. The precision of the results was corroborated through numerical simulations. Full article
(This article belongs to the Special Issue New Challenges in Wood and Wood-Based Materials III)
Show Figures

Figure 1

21 pages, 24381 KiB  
Article
Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano
by Fabio Sansivero and Giuseppe Vilardo
Remote Sens. 2024, 16(17), 3352; https://doi.org/10.3390/rs16173352 - 9 Sep 2024
Cited by 3 | Viewed by 1805
Abstract
Thermal infrared (TIR) time series images acquired by ground, proximal TIR stations provide valuable data to study evolution of surface temperature fields of diffuse degassing volcanic areas. This paper presents data processing results related to TIR images acquired since 2004 by six ground [...] Read more.
Thermal infrared (TIR) time series images acquired by ground, proximal TIR stations provide valuable data to study evolution of surface temperature fields of diffuse degassing volcanic areas. This paper presents data processing results related to TIR images acquired since 2004 by six ground stations in the permanent thermal infrared surveillance network at Campi Flegrei (TIRNet) set up by INGV-Osservatorio Vesuviano. These results are reported as surface temperature and heat flux time series. The processing methodologies, also discussed in this paper, allow for presentation of the raw TIR image data in a more comprehensible form, suitable for comparisons with other geophysical parameters. A preliminary comparison between different trends in the surface temperature and heat flux values recorded by the TIRNet stations provides evidence of peculiar changes corresponding to periods of intense seismicity at the Campi Flegrei caldera. During periods characterized by modest seismicity, no remarkable evidence of common temperature variations was recorded by the different TIRNet stations. Conversely, almost all the TIRNet stations exhibited common temperature variations, even on a small scale, during periods of significant seismic activity. The comparison between the seismicity and the variations in the surface temperature and heat flux trends suggests an increase in efficiency of heat transfer between the magmatic system and the surface when an increase in seismic activity was registered. This evidence recommends a deeper, multidisciplinary study of this correlation to improve understanding of the volcanic processes affecting the Campi Flegrei caldera. Full article
Show Figures

Figure 1

25 pages, 9257 KiB  
Article
Investigating Variations in Anthropogenic Heat Flux along Urban–Rural Gradients in 208 Cities in China during 2000–2016
by Ling Cui and Qiang Chen
Buildings 2024, 14(9), 2766; https://doi.org/10.3390/buildings14092766 - 3 Sep 2024
Viewed by 1208
Abstract
Anthropogenic heat emissions, which are quantified as anthropogenic heat flux (AHF), have attracted significant attention due to their pronounced impacts on urban thermal environments and local climates. However, there remains a notable gap in research regarding the distinctions in the distribution of anthropogenic [...] Read more.
Anthropogenic heat emissions, which are quantified as anthropogenic heat flux (AHF), have attracted significant attention due to their pronounced impacts on urban thermal environments and local climates. However, there remains a notable gap in research regarding the distinctions in the distribution of anthropogenic heat emissions (AHEs) along urban–rural gradients. To address this gap, the present study introduces a new concept—the anthropogenic urban heat island (ArUHI)—where the AHF within urban areas is higher than that in background areas. To quantitatively describe the magnitude and spatial extent of the ArUHI effect, two metrics—namely, ArUHI intensity (ArUHII) and ArUHI footprint (ArUHIFP)—are introduced. We conducted a comprehensive study across 208 cities in China to investigate the spatiotemporal patterns of AHF variations along urban–rural gradients during the period of 2000–2016. In addition, we explored how the complex interactions between land cover and building form components affect changes in the AHF along urban–rural gradients. Additionally, we analyzed how economic zones and city sizes alter the ArUHI intensity and ArUHI footprint. The results showed that 97% (201/208) of Chinese cities exhibited a significant ArUHI effect from 2000 to 2016. The modeled ArUHI intensity value exhibited a substantial increase of nearly fivefold, increasing from 5.55 ± 0.19 W/m2 to 26.84 ± 0.99 W/m2 over time. Regarding the spatial distribution of the ArUHI footprint, the analysis revealed that, for the majority of cities (86% or 179 out of 208), the ArUHI footprint ranged from 1.5 to 5.5 times that in urban areas. City sizes and economic zones yielded significant influences on the ArUHI intensity and ArUHI footprint values. Building forms were significantly positively correlated with AHF, with R2 values higher than 0.94. This study contributes to the understanding of ArUHI effects and their driving factors in China, providing valuable insights for urban climate studies and enhancing our understanding of surface urban heat island mechanisms. Full article
(This article belongs to the Section Architectural Design, Urban Science, and Real Estate)
Show Figures

Figure 1

12 pages, 3488 KiB  
Article
Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects
by Pavel Balabanov, Andrey Egorov, Alexander Divin, Sergey Ponomarev, Victor Yudaev, Sergey Baranov and Huthefa Abu Zetoonh
Computation 2024, 12(7), 148; https://doi.org/10.3390/computation12070148 - 17 Jul 2024
Cited by 1 | Viewed by 1460
Abstract
This paper proposes a method for determining the optimal parameters for the thermal testing of plant tissues of fruits and vegetables containing surface and subsurface defects in the form of areas of plant tissues with different thermophysical characteristics. Based on well-known mathematical models [...] Read more.
This paper proposes a method for determining the optimal parameters for the thermal testing of plant tissues of fruits and vegetables containing surface and subsurface defects in the form of areas of plant tissues with different thermophysical characteristics. Based on well-known mathematical models for objects of predominantly flat, cylindrical and spherical shapes containing flat, spherical and cylindrical regions of defects, numerical solutions of three-dimensional, non-stationary temperature fields were found, making it possible to measure the power and time of the thermal exposure of the sample surface to the radiation from infrared lamps using the finite element method. This made it possible to ensure the reliable detection of a temperature contrast of up to 4 °C between the defect and defect-free regions of the test object using modern thermal imaging cameras. In this case, subsurface defects can be detected at a depth of up to 3 mm from the surface. To determine the parameters of mathematical models of temperature fields, such as thermal conductivity and a coefficient of the thermal diffusivity of plant tissues, a new method of a pulsed heat flux from a flat heater is proposed; this differs in the method of processing experimental data and makes it possible to determine the required characteristics with high accuracy during the active stage of the experiment in a period not exceeding 1–3 min. Full article
(This article belongs to the Special Issue Mathematical Modeling and Study of Nonlinear Dynamic Processes)
Show Figures

Figure 1

Back to TopTop