Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects
Abstract
:1. Introduction
2. Materials and Methods
2.1. A Mathematical Model of the Temperature Field of a Spherical Object with Defects
2.2. A Mathematical Model of the Temperature Field in a Flat Sample When Exposed to a Pulsed Heat Source
- is a special function that is an integral of the function
- is Gaussian error function.
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samanian, N.; Mohebbi, M. Thermography a New Approach in Food Science Studies: A Review. MOJ Food Process. Technol. 2016, 2, 110–119. [Google Scholar] [CrossRef]
- Ballester, C.; Jiménez-Bello, M.A.; Castel, J.R.; Intrigliolo, D.S. Usefulness of thermography for plant water stress detection in citrus and persimmon trees. Agric. For. Meteorol. 2013, 168, 120–129. [Google Scholar] [CrossRef]
- Zhao, L.; Gray, D.M.; Male, D.H. Numerical analysis of simultaneous heat and mass transfer during infiltration into frozen ground. J. Hydrol. 1997, 200, 345–363. [Google Scholar] [CrossRef]
- Lykov, A.V. Theory of Thermal Conductivity; Vysshaya Shkola: Moscow, Russia, 1967; p. 600. (In Russian) [Google Scholar]
- Zarubin, V.S.; Rodikov, A.V. Mathematical simulation of the temperature state of an inhomogeneous body. High Temp. 2007, 45, 243–254. [Google Scholar] [CrossRef]
- Kurmachev, Y.U.F. Mathematical Modeling of the Thermal Field of a Multilayer Inhomogeneous Ball in an Unsteady Mode; Science & Education Scientific Edition of Bauman; MSTU: Murfreesboro, TN, USA, 2007; Available online: https://cyberleninka.ru/article/n/matematicheskoe-modelirovanie-teplovogo-polya-mnogosloynogo-neodnorodnogo-shara-pri-nestatsionarnom-rezhime/viewer (accessed on 5 July 2024).
- Sinitsyn, N.N.; Shestakov, I.V. Mathematical modeling of the temperature field of mixer armor taking into account a defect on the inner surface. Cherepovets State Univ. Bull. 2008, 4, 118–120. [Google Scholar]
- Sinitsyn, N.N.; Makonkov, A.V.; Belozor, M.Y. Modeling of a non-stationary temperature field of asphalt pavement with rubber filler. In Modern Materials, Equipment and Technology, Proceedings of the 4th International Scientific and Practical Conference, Kursk, Russia, 25–26 December 2014; University Book Closed Joint Stock Company: Kursk, Russia, 2014; pp. 400–403. [Google Scholar]
- Stankevich, I.V. Mathematical modeling of the temperature state of spatial rod structures made of inhomogeneous materials. Symb. Sci. 2016, 13, 53–57. [Google Scholar]
- Li, J.; Yang, Y.; Liu, M. Research progress in the prediction of heat transfer properties of fabrics based on structural characteristics. Adv. Text. Technol. 2022, 30, 18–25. [Google Scholar] [CrossRef]
- Kotel’nikov, V.V. Mathematical modeling of the process of formation of a temperature field on a defect in the form of a crack in the region of a stress raiser. Occup. Saf. Ind. 2008, 5, 51–58. (In Russian) [Google Scholar]
- Rittel, D. Thermomechanical aspects of dynamic crack initiation. Int. J. Fract. 1999, 99, 201–212. [Google Scholar] [CrossRef]
- Zvyagin, A.V.; Udalov, A.S.; Shamina, A.A. Numerical modeling of heat conduction in bodies with cracks. Acta Astronaut. 2024, 214, 196–201. [Google Scholar] [CrossRef]
- Esfarjani, A.A.; Nazari, M.B.; Bayat, S.H. Dynamic crack propagation in variable stiffness composite laminates under thermal shock. Theor. Appl. Fract. Mech. 2024, 130, 104325. [Google Scholar] [CrossRef]
- Salman, M.; Schmauder, S. Multiscale modeling of shape memory polymers foams nanocomposites. Comput. Mater. Sci. 2024, 232, 112658. [Google Scholar] [CrossRef]
- Jin, L.; Zhang, R.; Du, X. Characterisation of temperature-dependent heat conduction in heterogeneous concrete. Mag. Concr. Res. 2018, 70, 325–339. [Google Scholar] [CrossRef]
- She, Z.; Wang, K.; Li, P. Hybrid Trefftz polygonal elements for heat conduction problems with inclusions/voids. Comput. Math. Appl. 2019, 78, 1978–1992. [Google Scholar] [CrossRef]
- Marin, M.; Hobiny, A.; Abbas, I. The effects of fractional time derivatives in porothermoelastic materials using finite element method. Mathematics 2021, 9, 1606. [Google Scholar] [CrossRef]
- Chen, Y.; Sandhofer, S.N.; Wong, B.M. SHORYUKEN: An open-source software package for calculating nonlocal exchange interactions in nanowires. Comput. Phys. Commun. 2024, 300, 109197. [Google Scholar] [CrossRef]
- Zhou, L.; Zhu, Z.; Que, X. Simulation of non-fourier heat conduction in discontinuous heterogeneous materials based on the peridynamic method. Therm. Sci. 2023, 27, 917–931. [Google Scholar] [CrossRef]
- Wei, S.; Wang, Z.; Wang, F.; Xie, W.; Chen, P.; Yang, D. Simulation and experimental studies of heat and mass transfer in corn kernel during hot air drying. Food Bioprod. Process. 2019, 117, 170–182. [Google Scholar] [CrossRef]
- Hii, C.L.; Law, C.L.; Law, M.C. Simulation of heat and mass transfer of cocoa beans under stepwise drying conditions in a heat pump dryer. Appl. Therm. Eng. 2013, 54, 264–271. [Google Scholar] [CrossRef]
- Heshmati, M.K.; Khiavi, H.D.; Dehghannya, J.; Baghban, H. 3D simulation of momentum, heat and mass transfer in potato cubes during intermittent microwave-convective hot air drying. Heat Mass Transf. 2023, 59, 239–254. [Google Scholar] [CrossRef]
- Divin, A.G.; Karpov, S.V. Using Laser Point Scanning Thermography for Quality Monitoring of Products Made of Composite Materials. Eng. Technol. Syst. 2024, 34, 145–163. [Google Scholar] [CrossRef]
- Divin, A.G.; Ponomarev, S.V. Application of Laser Scannung Thermography and Regression Analysis to Determine Characteristics of Defects in Polymer Composite Materials. Russ. J. Nondestruct. Test. 2024, 60, 40–48. [Google Scholar] [CrossRef]
- Nikolaev, A.A. Mathematical Modeling in Problems of Thermal Diagnostics and Forecasting the Durability of Composite Structural Elements with Defects. Tver: Ph.D. Diss. in Phys. and Math. Sci.: 05.13.18 Mathematical Modeling, Numerical Methods and Software Packages. 2010, p. 148. (In Russian). Available online: https://www.dissercat.com/content/matematicheskoe-modelirovanie-v-zadachakh-teplovoi-diagnostiki-i-prognozirovaniya-dolgovechn (accessed on 5 July 2024).
- Savatorova, V.L.; Talonov, A.V.; Vlasov, A.N. Homogenization of thermoelasticity processes in composite materials with periodic structure of heterogeneities. ZAMM Zeitschrift Angew. Math. Mech. 2013, 93, 575–596. [Google Scholar] [CrossRef]
- Vlasov, A.N.; Savatorova, V.L.; Talonov, A.V. Asymptotic averaging technique for heat conduction problems with phase transitions in layered media. J. Appl. Mech. Tech. Phys. 1995, 36, 773–780. [Google Scholar] [CrossRef]
- Savatorova, V.L.; Talonov, A.V. Heat transfer in a composite material with structural hierarchy. Compos. Mech. Comput. Appl. 2021, 12, 45–59. [Google Scholar] [CrossRef]
- Donsì, G.; Ferrari, G.; Nigro, R. Experimental determination of thermal conductivity of apple and potato at different moisture contents. J. Food Eng. 1996, 30, 263–268. [Google Scholar] [CrossRef]
- Muniandy, A.; Benyathiar, P.; Mishra, D.K.; Ozadali, F. Dynamic thermal properties estimation using sensitivity coefficients for rapid heating process. Foods 2021, 10, 1954. [Google Scholar] [CrossRef] [PubMed]
- Sablani, S.S.; Rahman, M.S. Using neural networks to predict thermal conductivity of food as a function of moisture content, temperature and apparent porosity. Food Res. Int. 2003, 36, 617–623. [Google Scholar] [CrossRef]
- Carslaw, H.S.; Jaeger, J.C. Conduction of Heat in Solids; Clarendon Press: Oxford, UK, 1984; p. 532. [Google Scholar]
- Polyanin, A.D. Handbook of Linear Partial Differential Equations for Engineers and Scientists; Chapman & Hall/CRC: Boca Raton, FL, USA, 2002; p. 735. [Google Scholar] [CrossRef]
- Ponomarev, S.V.; Divin, A.G.; Ponomareva, E.S. Mathematical Models of Temperature Fields of Potato Tubers with Surface and Internal Defects. Adv. Mater. Technol. 2017, 4, 65–75. [Google Scholar] [CrossRef]
Test Sample | λ, W/(m·K) | a, (×107) m2/s | cρ, (×103) kJ/(m3·K) |
---|---|---|---|
M (healthy tissue) | 0.507 | 1.417 | 3.56 |
D (healthy tissue) | 0.010 | 0.022 | 0.011 |
M (late blight tissue) | 0.550 | 1.420 | 3.800 |
D (late blight tissue) | 0.009 | 0.046 | 0.017 |
M (dry rot tissue) | 0.384 | 1.272 | 3.015 |
D (dry rot tissue) | 0.007 | 0.053 | 0.178 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balabanov, P.; Egorov, A.; Divin, A.; Ponomarev, S.; Yudaev, V.; Baranov, S.; Abu Zetoonh, H. Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects. Computation 2024, 12, 148. https://doi.org/10.3390/computation12070148
Balabanov P, Egorov A, Divin A, Ponomarev S, Yudaev V, Baranov S, Abu Zetoonh H. Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects. Computation. 2024; 12(7):148. https://doi.org/10.3390/computation12070148
Chicago/Turabian StyleBalabanov, Pavel, Andrey Egorov, Alexander Divin, Sergey Ponomarev, Victor Yudaev, Sergey Baranov, and Huthefa Abu Zetoonh. 2024. "Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects" Computation 12, no. 7: 148. https://doi.org/10.3390/computation12070148
APA StyleBalabanov, P., Egorov, A., Divin, A., Ponomarev, S., Yudaev, V., Baranov, S., & Abu Zetoonh, H. (2024). Mathematical Modeling of the Heat Transfer Process in Spherical Objects with Flat, Cylindrical and Spherical Defects. Computation, 12(7), 148. https://doi.org/10.3390/computation12070148