Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano
Abstract
:1. Introduction
2. The TIR Surveillance Network (TIRNet) in the Campi Flegrei Area
2.1. TIR Data Acquisition System
2.2. TIR Data Processing
3. The Products of TIRNet Data Processing
4. Discussion
4.1. De-Seasoned Surface Maximum Temperature Trends (TmaxSTL)
4.2. Radiative Heat Flux Trends (HFlux)
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
ANTN | Abbreviation for the Antiniana thermal infrared station targeting the via Antiniana area (Figure 1) |
ASIRA | Software developed by the TIRLab of INGV-Osservatorio Vesuviano (Automated System of InfraRed Analysis). ASIRA processes TIR images and generates continuous apparent temperature and heat flux time series [79]. |
BKG | Background |
FoV | Field of View of optical lenses. Defines the viewable area that can be framed by a lens system. |
HFlux | Heat flux |
INGV | National Institute of Geophysics and Volcanology (Italy) |
LOESS | Locally Estimated Scatterplot Smoothing [83] |
LOWTRAN | Low-resolution propagation model and computer code for predicting atmospheric transmittance and background radiance, used by FLIR TIR cameras for atmospheric correction of infrared images [78] |
LTE | Data transmission standard for wireless broadband communication for mobile devices and data terminals |
OBN | Abbreviation for the Olibano thermal infrared station targeting the southern slope of Mt. Olibano (Figure 1) |
PIS | Abbreviation for the Pisciarelli thermal infrared station targeting the western slope of the Pisciarelli hot mud pool (Figure 1) |
RoA | Region of Anomaly. Delimited area of the TIR images that is mainly composed of pixels characterized by thermal anomaly. |
SF1 | Abbreviation for the Solfatara 1 thermal infrared station targeting the northeastern side of the Solfatara crater (Figure 1, Bocca Grande and Bocca Nuova fumaroles) |
SF2 | Abbreviation for the Solfatara 2 thermal infrared station targeting the northern inner slope of the Solfatara crater (Figure 1, cryptodome area) |
SIFT Flow | SIFT flow algorithm matches pixel-to-pixel correspondences between TIR frames and a reference frame, finding the scene correspondence despite differences in spatial organization of the images [82]. It is used to align the pixels of the TIR image time series. |
SOB | Abbreviation for the thermal infrared station targeting the eastern rim of Solfatara crater (Figure 1) |
STH station | Seismic station of the permanent seismic monitoring network of INGV-Osservatorio Vesuviano, located near the area of Pisciarelli |
STL | Algorithm for Seasonal and Trend decomposition using Loess. STL decomposes TmaxRAW TS into three different time series (Figure 2b): Trend TS, representative of the smoothed general tendency of temperature values to move in a certain direction; Seasonality TS, the seasonal recurring temperature pattern due to exogenous factors; and Remainder TS, the remnant residual values after seasonality and trend removal. [83] |
STLp1 | Procedure of data analysis based on the STL algorithm which removes the seasonal component from TmaxRAW TS extracted from TIR frames in the time series acquired by TIRNet stations |
STLp2 | Procedure of data analysis based on the STL algorithm which removes the seasonal component from all temperature values of all the TIR frames in the time series acquired by TIRNet stations |
TIR | Thermal Infrared |
TIRLab | Thermal Infrared Laboratory (https://www.ov.ingv.it/ov/thermolab/index_eng.html, accessed on 1 June 2024) of INGV-Osservatorio Vesuviano |
TIRNet | Permanent Thermal Infrared Monitoring Network of INGV-Osservatorio Vesuviano at Campi Flegrei. It is composed of six stations: ANTN, OBN, PIS, SF1, SF2, SOB. |
TmaxRAW | Maximum temperature value extracted from a TIR frame without any correction |
TmaxSTL | Maximum temperature value extracted from a TIR frame with seasonal component removed using the STL algorithm |
TS | Time series |
UTM | Map projection system (Universal Transverse Mercator) used to assign coordinates to points on the surface of the Earth |
References
- Stefano Branca, A.C.; Cioni, R.; Conte, A.M.; Conticelli, S.; De Astis, G.; de Vita, S.; De Rosa, R.; Di Vito, M.A.; Donato, P.; Forni, F.; et al. The italian quaternary volcanism. Alp. Mediterr. Quat. 2023, 36, 221–284. [Google Scholar]
- Peccerillo, A. Plio-Quaternary Volcanism in Italy; Springer: Berlin/Heidelberg, Germany, 2005; Volume 365. [Google Scholar]
- Acocella, V. Activating and reactivating pairs of nested collapses during calderaforming eruptions: Campi Flegrei (Italy). Geophys. Res. Lett. 2008, 35, L17304. [Google Scholar] [CrossRef]
- Di Vito, M.A.; Acocella, V.; Aiello, G.; Barra, D.; Battaglia, M.; Carandente, A.; Del Gaudio, C.; de Vita, S.; Ricciardi, G.P.; Ricco, C.; et al. Magma transfer at Campi Flegrei caldera (Italy) before the 1538 AD eruption. Sci. Rep. 2016, 6, 32245. [Google Scholar] [CrossRef] [PubMed]
- Di Vito, M.A.; Isaia, R.; Orsi, G.; Southon, J.; de Vita, S.; D’Antonio, M.; Pappalardo, L.; Piochi, M. Volcanism and deformation since 12,000 years at the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 1999, 91, 221–246. [Google Scholar] [CrossRef]
- Isaia, R.; Marianelli, P.; Sbrana, R. Caldera unrest prior to intense volcanism in Campi Flegrei (Italy) at 4.0 ka B.P.: Implications for caldera dynamics and future eruptive scenarios. Geophys. Res. Lett. 2009, 36, L21303. [Google Scholar] [CrossRef]
- Orsi, G. Volcanic and Deformation History of the Campi Flegrei Volcanic Field, Italy. In Campi Flegrei. Active Volcanoes of the World; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Orsi, G.; Di Vito, M.A.; Isaia, R. Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 2004, 66, 514–530. [Google Scholar] [CrossRef]
- Smith, V.C.; Isaia, R.; Pearce, N.J.G. Tephrostratigraphy and glass compositions of post-15 kyr Campi Flegrei eruptions: Implications for eruption history and chronostratigraphic markers. Quat. Sci. Rev. 2011, 30, 3638–3660. [Google Scholar] [CrossRef]
- Torrente, M.M.; Milia, A.; Bellucci, F.; Rolandi, G. Extensional tectonics in the Campania Volcanic Zone (eastern Tyrrhenian Sea, Italy): New insights into the relationship between faulting and ignimbrite eruptions. Ital. J. Geosci. 2010, 129, 297–315. [Google Scholar]
- Trasatti, E.; Magri, C.; Acocella, V.; Del Gaudio, C.; Ricco, C.; Di Vito, M.A. Magma transfer at Campi Flegrei caldera (Italy) after the 1538 AD eruption. Geophys. Res. Lett. 2023, 50, e2022GL102437. [Google Scholar] [CrossRef]
- Vineberg, S.O.; Isaia, R.; Albert, P.G.; Brown, R.J.; Smith, V.C. Insights into the explosive eruption history of the Campanian volcanoes prior to the Campanian Ignimbrite eruption. J. Volcanol. Geotherm. Res. 2023, 443, 107915. [Google Scholar] [CrossRef]
- Del Gaudio, C.; Aquino, I.; Ricciardi, G.P.; Ricco, C.; Scandone, R. Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 2010, 195, 48–56. [Google Scholar] [CrossRef]
- De Martino, P.; Dolce, M.; Brandi, G.; Scarpato, G.; Tammaro, U. The ground deformation history of the neapolitan volcanic area (Campi Flegrei caldera, Somma–Vesuvius volcano, and Ischia island) from 20 years of continuous gps observations (2000–2019). Remote Sens. 2021, 13, 2725. [Google Scholar] [CrossRef]
- De Martino, P.; Guardato, S.; Donnarumma, G.P.; Dolce, M.; Trombetti, T.; Chierici, F.; Macedonio, G.; Beranzoli, L.; Iannaccone, G. Four Years of Continuous Seafloor Displacement Measurements in the Campi Flegrei Caldera. Front. Earth Sci. 2020, 8, 615178. [Google Scholar] [CrossRef]
- De Martino, P.; Tammaro, U.; Obrizzo, F. GPS time series at Campi Flegrei caldera (2000–2013). Ann. Geophys. 2014, 57, 213. [Google Scholar] [CrossRef]
- Falanga, M.; Aquino, I.; De Lauro, E.; Petrosino, S.; Ricco, C. New insights on ground deformation at Campi Flegrei caldera inferred from kinematics and dynamics investigation of borehole tilt. Earth Space Sci. 2023, 10, e2022EA002702. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Marturano, A.; Aiello, G.; Barra, D.; Ciarcia, S.; Iannuzzi, E.; Tramparulo, F.D.A. High-resolution geological investigations to reconstruct the long-term ground movements in the last 15 kyr at Campi Flegrei caldera (southern Italy). J. Volcanol. Geotherm. Res. 2019, 385, 143–158. [Google Scholar] [CrossRef]
- Mattei, G.; Caporizzo, C.; Cinque, A.; Pappone, G.; Sorrentino, A.; Troisi, S.; Aucelli, P.P.C. Historical vertical ground movements in the Campi Flegrei volcano: A new transect across the caldera rim. Geomorphology 2024, 446, 108997. [Google Scholar] [CrossRef]
- Perelli, F.L.; Di Maio, L.S.; De Gregorio, D.; Magliulo, G.; De Martino, P.; Zuccaro, G. Impact assessment caused by bradyseism phenomena in the Campi Flegrei area. Front. Built Environ. 2023, 9, 1129175. [Google Scholar] [CrossRef]
- Bellucci Sessa, E.; Castellano, M.; Ricciolino, P. GIS applications in volcano monitoring: The study of seismic swarms at the Campi Flegrei volcanic complex, Italy. Adv. Geosci. 2021, 52, 131–144. [Google Scholar] [CrossRef]
- Del Pezzo, E. Space distribution of the seismic source energy between 1-1-2000 and 3-7-2022 at Campi Flegrei caldera. Phys. Earth Planet. Inter. 2023, 336, 106986. [Google Scholar] [CrossRef]
- Ricciolino, P.; Lo Bascio, D. Cataloghi Sismici dei Vulcani Campani. Stazione STH Campi Flegrei dal 2000 al 2021 (CatSTH_2000_2021) (1.0) [Data set] 2021. Istituto Nazionale di Geofisica e Vulcanologia (INGV). Available online: https://www.ov.ingv.it/index.php/monitoraggio-sismico-e-vulcanico-2/banche-dati?id=217 (accessed on 1 June 2024).
- Giudicepietro, F.; Chiodini, G.; Avino, R.; Brandi, G.; Caliro, S.; De Cesare, W.; Galluzzo, D.; Esposito, A.; La Rocca, A.; Lo Bascio, D.; et al. Tracking episodes of seismicity and gas transport in Campi Flegrei caldera through seismic, geophysical, and geochemical measurements. Seismol. Res. Lett. 2021, 92, 965–975. [Google Scholar] [CrossRef]
- Tramelli, A.; Giudicepietro, F.; Ricciolino, P.; Chiodini, G. The seismicity of Campi Flegrei in the contest of an evolving long term unrest. Sci. Rep. 2022, 12, 2900. [Google Scholar] [CrossRef] [PubMed]
- Tramelli, A.; Godano, C.; Ricciolino, P.; Giudicepietro, F.; Caliro, S.; Orazi, M.; De Martino, P.; Chiodini, G. Statistics of seismicity to investigate the Campi Flegrei caldera unrest. Sci. Rep. 2021, 11, 7211. [Google Scholar] [CrossRef]
- Caliro, S.; Chiodini, G.; Paonita, A. Geochemical evidences of magma dynamics at Campi Flegrei (Italy). Geochim. Cosmochim. Acta 2014, 132, 1–15. [Google Scholar] [CrossRef]
- Cardellini, C.; Chiodini, G.; Frondini, F.; Avino, R.; Bagnato, E.; Caliro, S.; Lelli, M.; Rosiello, A. Monitoring diffuse volcanic degassing during volcanic unrests: The case of Campi Flegrei (Italy). Sci. Rep. 2017, 7, 6757. [Google Scholar] [CrossRef]
- Chiodini, G.; Granieri, D.; Avino, R.; Caliro, S.; Costa, A.; Werner, C. Carbon dioxide diffuse degassing and estimation of heat release from volcanic and hydrothermal systems. J. Geophys. Res. Solid Earth 2005, 110, 1–17. [Google Scholar] [CrossRef]
- Petrillo, Z.; Tripaldi, S.; Mangiacapra, A.; Scippacercola, S.; Caliro, S.; Chiodini, G. Principal component analysis on twenty years (2000–2020) of geochemical and geophysical observations at Campi Flegrei active caldera. Sci. Rep. 2023, 13, 18445. [Google Scholar] [CrossRef]
- Siniscalchi, A.; Tripaldi, S.; Romano, G.; Chiodini, G.; Improta, L.; Petrillo, Z.; D’Auria, L.; Caliro, S.; Avino, R. Reservoir structure and hydraulic properties of the Campi Flegrei geothermal system inferred by audiomagnetotelluric, geochemical, and seismicity study. J. Geophys. Res. Solid Earth 2019, 124, 5336–5356. [Google Scholar] [CrossRef]
- Isaia, R.; Di Giuseppe, M.G.; Natale, J.; Tramparulo, F.D.; Troiano, A.; Vitale, S. Volcano-tectonic setting of the Pisciarelli Fumarole field, Campi Flegrei Caldera, Southern Italy: Insights into fluid circulation patterns and hazard scenarios. Tectonics 2021, 40, 2020TC006227. [Google Scholar] [CrossRef]
- Isaia, R.; Vitale, S.; Di Giuseppe, M.G.; Iannuzzi, E.; D’Assisi Tramparulo, F.; Troiano, A. Stratigraphy, structure, and volcano-tectonic evolution of Solfatara maar-diatreme (Campi Flegrei, Italy). Geol. Soc. Am. Bull. 2015, 127, 1485–1504. [Google Scholar] [CrossRef]
- Tamburello, G.; Caliro, S.; Chiodini, G.; De Martino, P.; Avino, R.; Minopoli, C.; Carandente, A.; Rouwet, D.; Aiuppa, A.; Costa, A.; et al. Escalating CO2 degassing at the Pisciarelli fumarolic system, and implications for the ongoing Campi Flegrei unrest. J. Volcanol. Geotherm. Res. 2019, 384, 151–157. [Google Scholar] [CrossRef]
- Troiano, A.; Isaia, R.; Di Giuseppe, M.G.; Tramparulo, F.D.A.; Vitale, S. Deep electrical resistivity tomography for a 3D picture of the most active sector of Campi Flegrei caldera. Sci. Rep. 2019, 9, 15124. [Google Scholar] [CrossRef]
- Troiano, A.; Isaia, R.; Tramparulo, F.D.A.; Di Giuseppe, M.G. The Pisciarelli main fumarole mechanisms reconstructed by electrical resistivity and induced polarization imaging. Sci. Rep. 2021, 11, 18639. [Google Scholar] [CrossRef] [PubMed]
- Alberico, I.; Petrosino, P.; Lirer, L. Volcanic hazard and risk assessment in a multi-source volcanic area: The example of Napoli city (Southern Italy). Nat. Hazards Earth Syst. Sci. 2011, 11, 1057–1070. [Google Scholar] [CrossRef]
- Bevilacqua, A.; Isaia, R.; Neri, A.; Vitale, S.; Aspinal, W.P.; Bisson, M.; Flandoli, F.; Baxter, P.J.; Bertagnini, A.; Ongaro, T.E.; et al. Quantifying volcanic hazard at Campi Flegrei caldera (Italy) with uncertainty assessment: I. Vent opening maps. J. Geophys. Res. Solid Earth 2015, 120, 2309–2329. [Google Scholar] [CrossRef]
- Carlino, S. Brief history of volcanic risk in the Neapolitan area (Campania, southern Italy): A critical review. Nat. Hazards Earth Syst. Sci. 2021, 21, 3097–3112. [Google Scholar] [CrossRef]
- Charlton, D.; Kilburn, C.; Edwards, S. Volcanic unrest scenarios and impact assessment at Campi Flegrei caldera, Southern Italy. J. Appl. Volcanol. 2020, 9, 1–26. [Google Scholar] [CrossRef]
- De Siena, L.; Chiodini, G.; Vilardo, G.; Del Pezzo, E.; Castellano, M.; Colombelli, S.; Tisato, N.; Ventura, G. Source and dynamics of a volcanic caldera unrest: Campi Flegrei, 1983–1984. Sci. Rep. 2017, 7, 8099. [Google Scholar] [CrossRef]
- De Vivo, B.; Rolandi, G. Volcanological risk associated with Vesuvius and Campi Flegrei. In Vesuvius, Campi Flegrei, and Campanian Volcanism; Elsevier: Amsterdam, The Netherlands, 2020; pp. 471–493. [Google Scholar]
- Kilburn, C.R.; Carlino, S.; Danesi, S.; Pino, N.A. Potential for rupture before eruption at Campi Flegrei caldera, Southern Italy. Commun. Earth Environ. 2023, 4, 190. [Google Scholar] [CrossRef]
- Totaro, F.; Alberico, I.; Di Martire, D.; Nunziata, C.; Petrosino, P. The key role of hazard indices and hotspot in disaster risk management: The case study of Napoli and Pozzuoli municipalities (Southern Italy). J. Maps 2020, 16, 68–78. [Google Scholar] [CrossRef]
- Bollettini Settimanali di Monitoraggio Vulcanico dei Campi Flegrei—Osservatorio Vesuviano INGV. Available online: https://www.ov.ingv.it/index.php/bollettini/bollettini-di-monitoraggio/bollettini/settimanali-dei-campi-flegrei (accessed on 1 June 2024).
- Buono, G.; Paonita, A.; Pappalardo, L.; Caliro, S.; Tramelli, A.; Chiodini, G. New insights into the recent magma dynamics under Campi Flegrei caldera (Italy) from petrological and geochemical evidence. J. Geophys. Res. Solid Earth 2022, 127, e2021JB023773. [Google Scholar] [CrossRef]
- Chiodini, G.; Caliro, S.; Avino, R.; Bini, G.; Giudicepietro, F.; De Cesare, W.; Ricciolino, P.; Aiuppa, A.; Cardellini, C.; Petrillo, Z.; et al. Hydrothermal pressure-temperature control on CO2 emissions and seismicity at Campi Flegrei (Italy). J. Volcanol. Geotherm. Res. 2021, 414, 107245. [Google Scholar] [CrossRef]
- Danesi, S.; Pino, N.A.; Carlino, S.; Kilburn, C.R. Evolution in unrest processes at Campi Flegrei caldera as inferred from local seismicity. Earth Planet. Sci. Lett. 2024, 626, 118530. [Google Scholar] [CrossRef]
- Nespoli, M.; Tramelli, A.; Belardinelli, M.E.; Bonafede, M. The effects of hot and pressurized fluid flow across a brittle layer on the recent seismicity and deformation in the Campi Flegrei caldera (Italy). J. Volcanol. Geotherm. Res. 2023, 443, 107930. [Google Scholar] [CrossRef]
- Ball, M.; Pinkerton, H. Factors affecting the accuracy of thermal imaging cameras in volcanology. J. Geophys. Res. 2006, 111, B11203. [Google Scholar] [CrossRef]
- Blackett, M. An overview of infrared remote sensing of volcanic activity. J. Imaging 2017, 3, 13. [Google Scholar] [CrossRef]
- Bombrun, M.; Jessop, D.; Harris, A.; Barra, B. An algorithm for the detection and characterisation of volcanic plumes using thermal camera imagery. J. Volcanol. Geotherm. Res. 2018, 352, 26–37. [Google Scholar] [CrossRef]
- Calvari, S.; Lodato, L.; Steffke, A.; Cristaldi, A.; Harris, A.J.L.; Spampinato, L.; Boschi, E. The 2007 Stromboli eruption: Event chronology and effusion rates using thermal infrared data. J. Geophys. Res. 2010, 115, B04201. [Google Scholar] [CrossRef]
- Cerminara, M.; Esposti Ongaro, T.; Valade, S.; Harris, A.J.L. Volcanic plume vent conditions retrieved from infrared images: A forward and inverse modeling approach. J. Volcanol. Geotherm. Res. 2015, 300, 129–147. [Google Scholar] [CrossRef]
- Cirillo, F.; Avvisati, G.; Belviso, P.; Marotta, E.; Peluso, R.; Pescione, R.A. Clustering of Handheld Thermal Camera Images in Volcanic Areas and Temperature Statistics. Remote Sens. 2022, 14, 3789. [Google Scholar] [CrossRef]
- Della Seta, M.; Esposito, C.; Fiorucci, M.; Marmoni, G.M.; Martino, S.; Sottili, G.; Belviso, P.; Carandente, A.; de Vita, S.; Marotta, E.; et al. Thermal Monitoring to Infer Possible Interactions between Shallow Hydrothermal System and Slope-Scale Gravitational Deformation of Mt Epomeo (Ischia Island, Italy); Geological Society: London, UK, 2024; Special Publications 519.1: SP519-2020-131. [Google Scholar]
- Granieri, D.; Mazzarini, F.; Cerminara, M.; Calusi, B.; Scozzari, A.; Menichini, M.; Lelli, M. Shallow portion of an active geothermal system revealed by multidisciplinary studies: The case of Le Biancane (Larderello, Italy). Geothermics 2023, 108, 102616. [Google Scholar] [CrossRef]
- Harris, A. Thermal Remote Sensing of Active Volcanoes: A User’s Manual; Cambridge University Press: Cambridge, UK, 2013; ISBN 052185945X. [Google Scholar]
- Irmisch, P.; Ernst, I.; Baumbach, D.; Linkiewicz, M.M.; Unnithan, V.; Sohl, F.; Wohlfeil, J.; Grießbach, D. A Hand-Held Sensor System for Exploration and Thermal Mapping of Volcanic Fumarole Fields. In Geometry and Vision, Proceedings of the First International Symposium, ISGV 2021, Auckland, New Zealand, 28–29 January 2021; Revised Selected Papers 1; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 68–84. [Google Scholar]
- Lewis, A.; Hilley, G.E.; Lewicki, J.L. Integrated thermal infrared imaging and structure-from-motion photogrammetry to map apparent temperature and radiant hydrothermal heat flux at Mammoth Mountain, CA, USA. J. Volcanol. Geotherm. Res. 2015, 303, 16–24. [Google Scholar] [CrossRef]
- Platt, U.; Bobrowski, N.; Butz, A. Ground-Based Remote Sensing and Imaging of Volcanic Gases and Quantitative Determination of Multi-Species Emission Fluxes. Geosciences 2018, 8, 44. [Google Scholar] [CrossRef]
- Ramsey, M.S.; Harris, A.J. Volcanology 2020: How will thermal remote sensing of volcanic surface activity evolve over the next decade? J. Volcanol. Geotherm. Res. 2013, 249, 217–233. [Google Scholar] [CrossRef]
- Spampinato, L.; Calvari, S.; Oppenheimer, C.; Boschi, E. Volcano surveillance using infrared cameras. Earth Sci. Rev. 2011, 106, 63–91. [Google Scholar] [CrossRef]
- Stevenson, J.A.; Varley, N. Fumarole monitoring with a handheld infrared camera: Volcan de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 2008, 177, 911–924. [Google Scholar] [CrossRef]
- Ulusoy, I.; Diker, C.; Şen, E.; Çubukçu, H.E.; Gümüş, E. Multisource and temporal thermal infrared remote sensing of Hasandağ Stratovolcano (Central Anatolia, Turkey). J. Volcanol. Geotherm. Res. 2022, 428, 107579. [Google Scholar] [CrossRef]
- Vaughan, R.G.; Hungerford, J.D.; Keller, W. A newly emerging thermal area in Yellowstone. Front. Earth Sci. 2020, 8, 204. [Google Scholar] [CrossRef]
- Zhan, Y.; Le Mével, H.; Roman, D.C.; Girona, T.; Gregg, P.M. Modeling deformation, seismicity, and thermal anomalies driven by degassing during the 2005-2006 pre-eruptive unrest of Augustine Volcano, Alaska. Earth Planet. Sci. Lett. 2022, 585, 117524. [Google Scholar] [CrossRef]
- Caputo, T.; Sessa, E.B.; Silvestri, M.; Buongiorno, M.F.; Musacchio, M.; Sansivero, F.; Vilardo, G. Surface temperature multiscale monitoring by thermal infrared satellite and ground images at Campi Flegrei volcanic area (Italy). Remote Sens. 2019, 11, 1007. [Google Scholar] [CrossRef]
- Caputo, T.; Cusano, P.; Petrosino, S.; Sansivero, F.; Vilardo, G. Spectral analysis of ground thermal image temperatures: What we are learning at Solfatara volcano (Italy). Adv. Geosci. 2020, 52, 55–65. [Google Scholar] [CrossRef]
- Coltelli, M.; d’Aranno, P.J.; De Bonis, R.; Guerrero Tello, J.F.; Marsella, M.; Nardinocchi, C.; Pecora, E.; Proietti, C.; Scifoni, S.; Scutti, M.; et al. The use of surveillance cameras for the rapid mapping of lava flows: An application to Mount Etna Volcano. Remote Sens. 2017, 9, 192. [Google Scholar] [CrossRef]
- Patrick, R.M.; Orr, T.; Antolik, L.; Lopaka, L.; Kamibayashi, K. Continuous monitoring of Hawaiian volcanoes with thermal cameras. J. Appl. Volcanol. 2014, 3, 1. [Google Scholar] [CrossRef]
- Sansivero, F.; Scarpato, G.; Vilardo, G. The automated infrared thermal imaging system for the continuous long-term monitoring of the surface temperature of the Vesuvius crater. Ann. Geophys. 2013, 56, S0454. [Google Scholar] [CrossRef]
- Vásconez, F.; Moussallam, Y.; Harris, A.J.; Latchimy, T.; Kelfoun, K.; Bontemps, M.; Macías, C.; Hidalgo, S.; Córdova, J.; Battaglia, J.; et al. VIGIA: A thermal and visible imagery system to track volcanic explosions. Remote Sens. 2022, 14, 3355. [Google Scholar] [CrossRef]
- Bianco, F.; Caliro, S.; De Martino, P.; Orazi, M.; Ricco, C.; Vilardo, G.; Aquino, I.; Augusti, V.; Avino, R.; Bagnato, E.; et al. The Permanent Monitoring System of the Campi Flegrei Caldera, Italy. In Campi Flegrei. Active Volcanoes of the World; Orsi, G., D’Antonio, M., Civetta, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Vilardo, G.; Chiodini, G.; Augusti, V.; Granieri, D.; Caliro, S.; Minopoli, C.; Terranova, C. The Permanent Thermal Infrared Network for the Monitoring of Hydrothermal Activity at the Solfatara and Vesuvius Volcanoes. In Conception, Verification and Application of Innovative Techniques to Study Active Volcanoes; Marzocchi, W., Zollo, A., Eds.; DoppiaVoce: Naples, Italy, 2008; pp. 481–495. [Google Scholar]
- Vilardo, G.; Sansivero, F.; Chiodini, G. Long-term TIR imagery processing for spatiotemporal monitoring of surface thermal features in volcanic environment: A case study in the Campi Flegrei (Southern Italy). J. Geophys. Res. Solid Earth 2015, 120, 812–826. [Google Scholar] [CrossRef]
- Sansivero, F.; Vilardo, G. Ground-Based Thermal/IR Images Acquired by TIRNet Permanent Volcanic Surveillance Network. Istituto Nazionale di Geofisica e Vulcanologia (INGV), 2022. Online Web Database. Available online: https://www.ov.ingv.it/ov/thermolab/index_eng.html (accessed on 1 June 2024).
- Kneizys, F.; Shettle, E.; Gallery, W. Atmospheric transmittance and radiance—The LOWTRAN 5 code. Atmos. Transm. 1981, 277, 116–124. [Google Scholar]
- Sansivero, F.; Vilardo, G. Processing thermal infrared imagery time-series from volcano permanent ground-based monitoring network. Latest methodological improvements to characterize surface temperatures behavior of thermal anomaly areas. Remote Sens. 2019, 11, 553. [Google Scholar] [CrossRef]
- Merucci, L.; Bogliolo, M.P.; Buongiorno, M.F.; Teggi, S. Spectral emissivity and temperature maps of the Solfatara crater from DAIS hyperspectral images. Ann. Geophys. 2006, 49, 235–244. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G. Rock Emissivity Measurement for Infrared Thermography Engineering Geological Applications. Appl. Sci. 2021, 11, 3773. [Google Scholar] [CrossRef]
- Liu, C.; Yuen, J.; Torralba, A. SIFT Flow: Dense Correspondence across Scenes and its Applications. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 978–994. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, R.B.; Cleveland, W.S.; McRae, J.E.; Terpenning, I.J. STL: A seasonal-trend decomposition procedure based on loess. J. Off. Stat. 1990, 6, 3–73. [Google Scholar]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. J. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Cleveland, W.S.; Devlin, S.J. Locally-Weighted Regression: An Approach to Regression Analysis by Local Fit-ting. J. Am. Stat. Assoc. 1988, 83, 596–610. [Google Scholar] [CrossRef]
Station | Camera | 2004 | 2005 | 2006 | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | 2023 | 2024 | Working Period | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SF1 | NEC TS7302 | Oct 2004–Jan 2014 | |||||||||||||||||||||||||||||||||||
SF1 | FLIR SC325 | Apr 2014–Jan 2016 | |||||||||||||||||||||||||||||||||||
SF1 | FLIR SC655 | Jan 2016–present time | |||||||||||||||||||||||||||||||||||
PIS | NEC TS7302 | Oct 2006–Sept 2013 | |||||||||||||||||||||||||||||||||||
PIS | FLIR SC655 | Mar 2013–present time | |||||||||||||||||||||||||||||||||||
SF2 | FLIR SC655 | Jun 2013–present time | |||||||||||||||||||||||||||||||||||
OBN | FLIR SC655 | Mar 2015–present time | |||||||||||||||||||||||||||||||||||
SOB | FLIR SC655 | Jun 2016–present time | |||||||||||||||||||||||||||||||||||
ANTN | FLIR SC655 | Oct 2020–present time |
Camera Model | Resolution (Pixel) | Spectral Range | Accuracy | Thermal Sensitivity |
---|---|---|---|---|
NEC TS7302 | 320 × 240 | 8–14 µm | ±2 °C | 0.08 °C |
FLIR SC325 | 320 × 240 | 7.5–13 µm | ±2 °C | <0.05 °C |
FLIR SC655 | 640 × 480 | 7.5–13 µm | ±2 °C | <0.03 °C |
Remote Station | FoV | Data Transmission | Station UTM Coordinates (m) | Sensor–Target Average Distance | Average Pixel Size (cm) |
---|---|---|---|---|---|
SF1 | 25° × 19° | Wi-Fi | 40.82916, 14.13971 | 340 m | 23.1 |
SF2 | 15° × 11.9° | Wi-Fi | 40.82916, 14.13971 | 114 m | 4.6 |
PS1 | 15° × 11.9° | LTE mobile | 40.82890, 14.14705 | 140 m | 5.6 |
OBN | 25° × 19° | Wi-Fi | 40.82364, 14.14256 | 65 m | 4.2 |
SOB | 25° × 19° | Wi-Fi | 40.82675, 14.14391 | 90 m | 6.1 |
ANTN | 25° × 19° | LTE mobile | 40.82194, 14.15037 | 450 m | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sansivero, F.; Vilardo, G. Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano. Remote Sens. 2024, 16, 3352. https://doi.org/10.3390/rs16173352
Sansivero F, Vilardo G. Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano. Remote Sensing. 2024; 16(17):3352. https://doi.org/10.3390/rs16173352
Chicago/Turabian StyleSansivero, Fabio, and Giuseppe Vilardo. 2024. "Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano" Remote Sensing 16, no. 17: 3352. https://doi.org/10.3390/rs16173352
APA StyleSansivero, F., & Vilardo, G. (2024). Twenty Years of Thermal Infrared Observations (2004–2024) at Campi Flegrei Caldera (Italy) by the Permanent Surveillance Ground Network of INGV-Osservatorio Vesuviano. Remote Sensing, 16(17), 3352. https://doi.org/10.3390/rs16173352