Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (891)

Search Parameters:
Keywords = information security industry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2029 KiB  
Systematic Review
Exploring the Role of Industry 4.0 Technologies in Smart City Evolution: A Literature-Based Study
by Nataliia Boichuk, Iwona Pisz, Anna Bruska, Sabina Kauf and Sabina Wyrwich-Płotka
Sustainability 2025, 17(15), 7024; https://doi.org/10.3390/su17157024 - 2 Aug 2025
Viewed by 285
Abstract
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to [...] Read more.
Smart cities are technologically advanced urban environments where interconnected systems and data-driven technologies enhance public service delivery and quality of life. These cities rely on information and communication technologies, the Internet of Things, big data, cloud computing, and other Industry 4.0 tools to support efficient city management and foster citizen engagement. Often referred to as digital cities, they integrate intelligent infrastructures and real-time data analytics to improve mobility, security, and sustainability. Ubiquitous sensors, paired with Artificial Intelligence, enable cities to monitor infrastructure, respond to residents’ needs, and optimize urban conditions dynamically. Given the increasing significance of Industry 4.0 in urban development, this study adopts a bibliometric approach to systematically review the application of these technologies within smart cities. Utilizing major academic databases such as Scopus and Web of Science the research aims to identify the primary Industry 4.0 technologies implemented in smart cities, assess their impact on infrastructure, economic systems, and urban communities, and explore the challenges and benefits associated with their integration. The bibliometric analysis included publications from 2016 to 2023, since the emergence of urban researchers’ interest in the technologies of the new industrial revolution. The task is to contribute to a deeper understanding of how smart cities evolve through the adoption of advanced technological frameworks. Research indicates that IoT and AI are the most commonly used tools in urban spaces, particularly in smart mobility and smart environments. Full article
Show Figures

Figure 1

24 pages, 4753 KiB  
Article
A Secure Satellite Transmission Technique via Directional Variable Polarization Modulation with MP-WFRFT
by Zhiyu Hao, Zukun Lu, Xiangjun Li, Xiaoyu Zhao, Zongnan Li and Xiaohui Liu
Aerospace 2025, 12(8), 690; https://doi.org/10.3390/aerospace12080690 - 31 Jul 2025
Viewed by 169
Abstract
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both [...] Read more.
Satellite communications are pivotal to global Internet access, connectivity, and the advancement of information warfare. Despite these importance, the open nature of satellite channels makes them vulnerable to eavesdropping, making the enhancement of interception resistance in satellite communications a critical issue in both academic and industrial circles. Within the realm of satellite communications, polarization modulation and quadrature techniques are essential for information transmission and interference suppression. To boost electromagnetic countermeasures in complex battlefield scenarios, this paper integrates multi-parameter weighted-type fractional Fourier transform (MP-WFRFT) with directional modulation (DM) algorithms, building upon polarization techniques. Initially, the operational mechanisms of the polarization-amplitude-phase modulation (PAPM), MP-WFRFT, and DM algorithms are elucidated. Secondly, it introduces a novel variable polarization-amplitude-phase modulation (VPAPM) scheme that integrates variable polarization with amplitude-phase modulation. Subsequently, leveraging the VPAPM modulation scheme, an exploration of the anti-interception capabilities of MP-WFRFT through parameter adjustment is presented. Rooted in an in-depth analysis of simulation data, the anti-scanning capabilities of MP-WFRFT are assessed in terms of scale vectors in the horizontal and vertical direction. Finally, exploiting the potential of the robust anti-scanning capabilities of MP-WFRFT and the directional property of antenna arrays in DM, the paper proposes a secure transmission technique employing directional variable polarization modulation with MP-WFRFT. The performance simulation analysis demonstrates that the integration of MP-WFRFT and DM significantly outperforms individual secure transmission methods, improving anti-interception performance by at least an order of magnitude at signal-to-noise ratios above 10 dB. Consequently, this approach exhibits considerable potential and engineering significance for its application within satellite communication systems. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

25 pages, 3204 KiB  
Article
Assessing Spatial Digital Twins for Oil and Gas Projects: An Informed Argument Approach Using ISO/IEC 25010 Model
by Sijan Bhandari and Dev Raj Paudyal
ISPRS Int. J. Geo-Inf. 2025, 14(8), 294; https://doi.org/10.3390/ijgi14080294 - 28 Jul 2025
Viewed by 262
Abstract
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development [...] Read more.
With the emergence of Survey 4.0, the oil and gas (O & G) industry is now considering spatial digital twins during their field design to enhance visualization, efficiency, and safety. O & G companies have already initiated investments in the research and development of spatial digital twins to build digital mining models. Existing studies commonly adopt surveys and case studies as their evaluation approach to validate the feasibility of spatial digital twins and related technologies. However, this approach requires high costs and resources. To address this gap, this study explores the feasibility of the informed argument method within the design science framework. A land survey data model (LSDM)-based digital twin prototype for O & G field design, along with 3D spatial datasets located in Lot 2 on RP108045 at petroleum lease 229 under the Department of Resources, Queensland Government, Australia, was selected as a case for this study. The ISO/IEC 25010 model was adopted as a methodology for this study to evaluate the prototype and Digital Twin Victoria (DTV). It encompasses eight metrics, such as functional suitability, performance efficiency, compatibility, usability, security, reliability, maintainability, and portability. The results generated from this study indicate that the prototype encompasses a standard level of all parameters in the ISO/IEC 25010 model. The key significance of the study is its methodological contribution to evaluating the spatial digital twin models through cost-effective means, particularly under circumstances with strict regulatory requirements and low information accessibility. Full article
Show Figures

Figure 1

27 pages, 8383 KiB  
Article
A Resilience Quantitative Assessment Framework for Cyber–Physical Systems: Mathematical Modeling and Simulation
by Zhigang Cao, Hantao Zhao, Yunfan Wang, Chuan He, Ding Zhou and Xiaopeng Han
Appl. Sci. 2025, 15(15), 8285; https://doi.org/10.3390/app15158285 - 25 Jul 2025
Viewed by 152
Abstract
As cyber threats continue to grow in complexity and persistence, resilience has become a critical requirement for cyber–physical systems (CPSs). Resilience quantitative assessment is essential for supporting secure system design and ensuring reliable operation. Although various methods have been proposed for evaluating CPS [...] Read more.
As cyber threats continue to grow in complexity and persistence, resilience has become a critical requirement for cyber–physical systems (CPSs). Resilience quantitative assessment is essential for supporting secure system design and ensuring reliable operation. Although various methods have been proposed for evaluating CPS resilience, major challenges remain in accurately modeling the interaction between cyber and physical domains and in providing structured guidance for resilience-oriented design. This study proposes an integrated CPS resilience assessment framework that combines cyber-layer anomaly modeling based on Markov chains with mathematical modeling of performance degradation and recovery in the physical domain. The framework establishes a structured evaluation process through parameter normalization and cyber–physical coupling, enabling the generation of resilience curves that clearly represent system performance changes under adverse conditions. A case study involving an industrial controller equipped with a diversity-redundancy architecture is conducted to demonstrate the applicability of the proposed method. Modeling and simulation results indicate that the framework effectively reveals key resilience characteristics and supports performance-informed design optimization. Full article
Show Figures

Figure 1

35 pages, 3265 KiB  
Article
Cyber Edge: Current State of Cybersecurity in Aotearoa-New Zealand, Opportunities, and Challenges
by Md. Rajib Hasan, Nurul I. Sarkar, Noor H. S. Alani and Raymond Lutui
Electronics 2025, 14(14), 2915; https://doi.org/10.3390/electronics14142915 - 21 Jul 2025
Viewed by 396
Abstract
This study investigates the cybersecurity landscape of Aotearoa-New Zealand through a culturally grounded lens, focusing on the integration of Indigenous Māori values into cybersecurity frameworks. In response to escalating cyber threats, the research adopts a mixed-methods and interdisciplinary approach—combining surveys, focus groups, and [...] Read more.
This study investigates the cybersecurity landscape of Aotearoa-New Zealand through a culturally grounded lens, focusing on the integration of Indigenous Māori values into cybersecurity frameworks. In response to escalating cyber threats, the research adopts a mixed-methods and interdisciplinary approach—combining surveys, focus groups, and case studies—to explore how cultural principles such as whanaungatanga (collective responsibility) and manaakitanga (care and respect) influence digital safety practices. The findings demonstrate that culturally informed strategies enhance trust, resilience, and community engagement, particularly in rural and underserved Māori communities. Quantitative analysis revealed that 63% of urban participants correctly identified phishing attempts compared to 38% of rural participants, highlighting a significant urban–rural awareness gap. Additionally, over 72% of Māori respondents indicated that cybersecurity messaging was more effective when delivered through familiar cultural channels, such as marae networks or iwi-led training programmes. Focus groups reinforced this, with participants noting stronger retention and behavioural change when cyber risks were communicated using Māori metaphors, language, or values-based analogies. The study also confirms that culturally grounded interventions—such as incorporating Māori motifs (e.g., koru, poutama) into secure interface design and using iwi structures to disseminate best practices—can align with international standards like NIST CSF and ISO 27001. This compatibility enhances stakeholder buy-in and demonstrates universal applicability in multicultural contexts. Key challenges identified include a cybersecurity talent shortage in remote areas, difficulties integrating Indigenous perspectives into mainstream policy, and persistent barriers from the digital divide. The research advocates for cross-sector collaboration among government, private industry, and Indigenous communities to co-develop inclusive, resilient cybersecurity ecosystems. Based on the UTAUT and New Zealand’s cybersecurity vision “Secure Together—Tō Tātou Korowai Manaaki 2023–2028,” this study provides a model for small nations and multicultural societies to create robust, inclusive cybersecurity frameworks. Full article
(This article belongs to the Special Issue Intelligent Solutions for Network and Cyber Security)
Show Figures

Figure 1

17 pages, 992 KiB  
Article
Improving Vulnerability Management for Security-by-Design of Medical Devices
by Emanuele Raso, Francesca Nanni, Francesco Lestini, Lorenzo Bracciale, Giorgia Panico, Giuseppe Bianchi, Giancarlo Orengo, Gaetano Marrocco and Pierpaolo Loreti
Sensors 2025, 25(14), 4418; https://doi.org/10.3390/s25144418 - 16 Jul 2025
Viewed by 516
Abstract
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and [...] Read more.
The healthcare industry is witnessing a rapid rise in the adoption of wearable and implantable medical devices, including advanced electrochemical sensors and other smart diagnostic technologies. These devices are increasingly used to enable real-time monitoring of physiological parameters, allowing for faster diagnosis and more personalized care plans. Their growing presence reflects a broader shift toward smart connected healthcare systems aimed at delivering immediate and actionable insights to both patients and medical professionals. At the same time, the healthcare industry is increasingly targeted by cyberattacks, primarily due to the high value of medical information; in addition, the growing integration of ICT technologies into medical devices has introduced new vulnerabilities that were previously absent in this sector. To mitigate these risks, new international guidelines advocate the adoption of best practices for secure software development, emphasizing a security-by-design approach in the design and implementation of such devices. However, the vast and fragmented nature of the information required to effectively support these development processes poses a challenge for the numerous stakeholders involved. In this paper, we demonstrate how key features of the Malware Information Sharing Platform (MISP) can be leveraged to systematically collect and structure vulnerability-related information for medical devices. We propose tailored structures, objects, and taxonomies specific to medical devices, facilitating a standardized data representation that enhances the security-by-design development of these devices. Full article
(This article belongs to the Special Issue Wearable and Implantable Electrochemical Sensors)
Show Figures

Figure 1

36 pages, 1120 KiB  
Article
Triple-Shield Privacy in Healthcare: Federated Learning, p-ABCs, and Distributed Ledger Authentication
by Sofia Sakka, Nikolaos Pavlidis, Vasiliki Liagkou, Ioannis Panges, Despina Elizabeth Filippidou, Chrysostomos Stylios and Anastasios Manos
J. Cybersecur. Priv. 2025, 5(3), 45; https://doi.org/10.3390/jcp5030045 - 12 Jul 2025
Viewed by 496
Abstract
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and [...] Read more.
The growing influence of technology in the healthcare industry has led to the creation of innovative applications that improve convenience, accessibility, and diagnostic accuracy. However, health applications face significant challenges concerning user privacy and data security, as they handle extremely sensitive personal and medical information. Privacy-Enhancing Technologies (PETs), such as Privacy-Attribute-based Credentials, Differential Privacy, and Federated Learning, have emerged as crucial tools to tackle these challenges. Despite their potential, PETs are not widely utilized due to technical and implementation obstacles. This research introduces a comprehensive framework for protecting health applications from privacy and security threats, with a specific emphasis on gamified mental health apps designed to manage Attention Deficit Hyperactivity Disorder (ADHD) in children. Acknowledging the heightened sensitivity of mental health data, especially in applications for children, our framework prioritizes user-centered design and strong privacy measures. We suggest an identity management system based on blockchain technology to ensure secure and transparent credential management and incorporate Federated Learning to enable privacy-preserving AI-driven predictions. These advancements ensure compliance with data protection regulations, like GDPR, while meeting the needs of various stakeholders, including children, parents, educators, and healthcare professionals. Full article
(This article belongs to the Special Issue Data Protection and Privacy)
Show Figures

Figure 1

18 pages, 1184 KiB  
Article
A Confidential Transmission Method for High-Speed Power Line Carrier Communications Based on Generalized Two-Dimensional Polynomial Chaotic Mapping
by Zihan Nie, Zhitao Guo and Jinli Yuan
Appl. Sci. 2025, 15(14), 7813; https://doi.org/10.3390/app15147813 - 11 Jul 2025
Viewed by 304
Abstract
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide [...] Read more.
The deep integration of smart grid and Internet of Things technologies has made high-speed power line carrier communication a key communication technology in energy management, industrial monitoring, and smart home applications, owing to its advantages of requiring no additional wiring and offering wide coverage. However, the inherent characteristics of power line channels, such as strong noise, multipath fading, and time-varying properties, pose challenges to traditional encryption algorithms, including low key distribution efficiency and weak anti-interference capabilities. These issues become particularly pronounced in high-speed transmission scenarios, where the conflict between data security and communication reliability is more acute. To address this problem, a secure transmission method for high-speed power line carrier communication based on generalized two-dimensional polynomial chaotic mapping is proposed. A high-speed power line carrier communication network is established using a power line carrier routing algorithm based on the minimal connected dominating set. The autoregressive moving average model is employed to determine the degree of transmission fluctuation deviation in the high-speed power line carrier communication network. Leveraging the complex dynamic behavior and anti-decoding capability of generalized two-dimensional polynomial chaotic mapping, combined with the deviation, the communication key is generated. This process yields encrypted high-speed power line carrier communication ciphertext that can resist power line noise interference and signal attenuation, thereby enhancing communication confidentiality and stability. By applying reference modulation differential chaotic shift keying and integrating the ciphertext of high-speed power line carrier communication, a secure transmission scheme is designed to achieve secure transmission in high-speed power line carrier communication. The experimental results demonstrate that this method can effectively establish a high-speed power line carrier communication network and encrypt information. The maximum error rate obtained by this method is 0.051, and the minimum error rate is 0.010, confirming its ability to ensure secure transmission in high-speed power line carrier communication while improving communication confidentiality. Full article
Show Figures

Figure 1

23 pages, 651 KiB  
Article
Digital Transformation and ESG Performance—Empirical Evidence from Chinese Listed Companies
by Hantao Liu, Xiaoyun Zhang and Yang He
Sustainability 2025, 17(13), 6165; https://doi.org/10.3390/su17136165 - 4 Jul 2025
Viewed by 794
Abstract
The rapid advancement and broad adoption of digital technologies have infused ESG practices with new dimensions and significance. Drawing on panel data from Chinese A-share listed companies spanning from 2012 to 2023, this paper aims to explain the impact of digital transformation on [...] Read more.
The rapid advancement and broad adoption of digital technologies have infused ESG practices with new dimensions and significance. Drawing on panel data from Chinese A-share listed companies spanning from 2012 to 2023, this paper aims to explain the impact of digital transformation on corporate ESG performance, explore its mechanisms and external regulatory effects, and provide systematic ideas and methods for improving corporate ESG performance from the perspective of digital transformation. The key findings of this study are summarized as follows: (1) Digital transformation (DT) has a significant positive effect on corporate ESG performance, and this association remains statistically robust following multiple robustness tests and a correction for potential endogeneity. (2) An analysis of the entire operational process reveals that DT improves ESG performance through enhancing environmental information disclosure quality, strengthening the integration of digital and physical industry technologies, and bolstering supply chain resilience. (3) The implementation of the “Broadband China” strategy exerts a positive moderating effect on the linkage between DT and ESG performance. (4) A heterogeneity analysis shows that the positive impact of DT on ESG performance is more significant and stable in non-state-owned enterprises, eastern regions, less-polluted areas, and growth stage enterprises. These findings offer theoretical and empirical insights for understanding ESG performance drivers. However, the focus on Chinese A-share firms and the use of Sino-Securities ratings may limit generalizability, warranting further improvement. Full article
Show Figures

Figure 1

21 pages, 1097 KiB  
Article
An Industry Application of Secure Augmentation and Gen-AI for Transforming Engineering Design and Manufacturing
by Dulana Rupanetti, Corissa Uberecken, Adam King, Hassan Salamy, Cheol-Hong Min and Samantha Schmidgall
Algorithms 2025, 18(7), 414; https://doi.org/10.3390/a18070414 - 4 Jul 2025
Viewed by 403
Abstract
This paper explores the integration of Large Language Models (LLMs) and secure Gen-AI technologies within engineering design and manufacturing, with a focus on improving inventory management, component selection, and recommendation workflows. The system is intended for deployment and evaluation in a real-world industrial [...] Read more.
This paper explores the integration of Large Language Models (LLMs) and secure Gen-AI technologies within engineering design and manufacturing, with a focus on improving inventory management, component selection, and recommendation workflows. The system is intended for deployment and evaluation in a real-world industrial environment. It utilizes vector embeddings, vector databases, and Approximate Nearest Neighbor (ANN) search algorithms to implement Retrieval-Augmented Generation (RAG), enabling context-aware searches for inventory items and addressing the limitations of traditional text-based methods. Built on an LLM framework enhanced by RAG, the system performs similarity-based retrieval and part recommendations while preserving data privacy through selective obfuscation using the ROT13 algorithm. In collaboration with an industry sponsor, real-world testing demonstrated strong results: 88.4% for Answer Relevance, 92.1% for Faithfulness, 80.2% for Context Recall, and 83.1% for Context Precision. These results demonstrate the system’s ability to deliver accurate and relevant responses while retrieving meaningful context and minimizing irrelevant information. Overall, the approach presents a practical and privacy-aware solution for manufacturing, bridging the gap between traditional inventory tools and modern AI capabilities and enabling more intelligent workflows in design and production processes. Full article
(This article belongs to the Section Evolutionary Algorithms and Machine Learning)
Show Figures

Figure 1

21 pages, 4241 KiB  
Article
Federated Learning-Driven Cybersecurity Framework for IoT Networks with Privacy Preserving and Real-Time Threat Detection Capabilities
by Milad Rahmati and Antonino Pagano
Informatics 2025, 12(3), 62; https://doi.org/10.3390/informatics12030062 - 4 Jul 2025
Cited by 1 | Viewed by 832
Abstract
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework [...] Read more.
The rapid expansion of the Internet of Things (IoT) ecosystem has transformed industries but also exposed significant cybersecurity vulnerabilities. Traditional centralized methods for securing IoT networks struggle to balance privacy preservation with real-time threat detection. This study presents a Federated Learning-Driven Cybersecurity Framework designed for IoT environments, enabling decentralized data processing through local model training on edge devices to ensure data privacy. Secure aggregation using homomorphic encryption supports collaborative learning without exposing sensitive information. The framework employs GRU-based recurrent neural networks (RNNs) for anomaly detection, optimized for resource-constrained IoT networks. Experimental results demonstrate over 98% accuracy in detecting threats such as distributed denial-of-service (DDoS) attacks, with a 20% reduction in energy consumption and a 30% reduction in communication overhead, showcasing the framework’s efficiency over traditional centralized approaches. This work addresses critical gaps in IoT cybersecurity by integrating federated learning with advanced threat detection techniques. It offers a scalable, privacy-preserving solution for diverse IoT applications, with future directions including blockchain integration for model aggregation traceability and quantum-resistant cryptography to enhance security. Full article
Show Figures

Figure 1

22 pages, 557 KiB  
Article
Using Blockchain Ledgers to Record AI Decisions in IoT
by Vikram Kulothungan
IoT 2025, 6(3), 37; https://doi.org/10.3390/iot6030037 - 3 Jul 2025
Viewed by 867
Abstract
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In [...] Read more.
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In our approach, each AI inference comprising key inputs, model ID, and output is logged to a permissioned blockchain ledger, ensuring that every decision is traceable and auditable. IoT devices and edge gateways submit cryptographically signed decision records via smart contracts, resulting in an immutable, timestamped log that is tamper-resistant. This decentralized approach guarantees non-repudiation and data integrity while balancing transparency with privacy (e.g., hashing personal data on-chain) to meet data protection norms. Our design aligns with emerging regulations, such as the EU AI Act’s logging mandate and GDPR’s transparency requirements. We demonstrate the framework’s applicability in two domains: healthcare IoT (logging diagnostic AI alerts for accountability) and industrial IoT (tracking autonomous control actions), showing its generalizability to high-stakes environments. Our contributions include the following: (1) a novel architecture for AI decision provenance in IoT, (2) a blockchain-based design to securely record AI decision-making processes, and (3) a simulation informed performance assessment based on projected metrics (throughput, latency, and storage) to assess the approach’s feasibility. By providing a reliable immutable audit trail for AI in IoT, our framework enhances transparency and trust in autonomous systems and offers a much-needed mechanism for auditable AI under increasing regulatory scrutiny. Full article
(This article belongs to the Special Issue Blockchain-Based Trusted IoT)
Show Figures

Figure 1

19 pages, 1839 KiB  
Article
South African Consumer Attitudes Towards Plant Breeding Innovation
by Mohammed Naweed Mohamed, Magdeleen Cilliers, Jhill Johns and Jan-Hendrik Groenewald
Sustainability 2025, 17(13), 6089; https://doi.org/10.3390/su17136089 - 3 Jul 2025
Viewed by 434
Abstract
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly [...] Read more.
South Africa’s bioeconomy strategy identifies bio-innovation as a key driver of economic growth and social development, with plant breeding playing a central role in improving food security through the development of high-yielding, resilient, and high-quality crops. However, consumer perceptions of recent advances, particularly new breeding techniques (NBTs), remain underexplored. This study examines South African consumer attitudes towards plant breeding innovations, using a mixed-methods approach. The initial focus group interviews informed the development of a structured quantitative survey examining familiarity, perceptions, and acceptance of plant breeding technologies. Consumer awareness of plant breeding principles was found to be limited, with 67–68% of respondents unfamiliar with both conventional and modern plant breeding procedures. Despite this information gap, consumers expressed conditional support for modern breeding techniques, especially when associated with actual benefits like increased nutritional value, environmental sustainability, and crop resilience. When favourable effects were outlined, support for general investment in modern breeding practices climbed from 45% to 74%. Consumer purchase decisions emphasised price, product quality, and convenience over manufacturing techniques, with sustainability ranked last among the assessed factors. Trust in the sources of food safety information varied greatly, with medical experts and scientists being ranked highly, while government sources were viewed more sceptically. The results further suggest that targeted education could improve customer confidence, as there is a significant positive association (R2 = 0.938) between familiarity and acceptance. These findings emphasise the significance of open communication strategies and focused consumer education in increasing the adoption of plant breeding breakthroughs. The study offers useful insights for policymakers, researchers, and industry stakeholders working on engagement strategies to facilitate the ethical growth and application of agricultural biotechnology in support of food security and quality in South Africa. This study contributes to a better understanding of South African consumers’ perceptions of plant breeding innovations and food safety. The research findings offer valuable insights for policymakers, researchers, and industry stakeholders in developing effective engagement and communication strategies that address consumer concerns and promote the adoption of products derived from diverse plant breeding technologies. Full article
Show Figures

Figure 1

24 pages, 798 KiB  
Article
ICRSSD: Identification and Classification for Railway Structured Sensitive Data
by Yage Jin, Hongming Chen, Rui Ma, Yanhua Wu and Qingxin Li
Future Internet 2025, 17(7), 294; https://doi.org/10.3390/fi17070294 - 30 Jun 2025
Viewed by 263
Abstract
The rapid growth of the railway industry has resulted in the accumulation of large structured data that makes data security a critical component of reliable railway system operations. However, existing methods for identifying and classifying often suffer from limitations such as overly coarse [...] Read more.
The rapid growth of the railway industry has resulted in the accumulation of large structured data that makes data security a critical component of reliable railway system operations. However, existing methods for identifying and classifying often suffer from limitations such as overly coarse identification granularity and insufficient flexibility in classification. To address these issues, we propose ICRSSD, a two-stage method for identification and classification in terms of the railway domain. The identification stage focuses on obtaining the sensitivity of all attributes. We first divide structured data into canonical data and semi-canonical data at a finer granularity to improve the identification accuracy. For canonical data, we use information entropy to calculate the initial sensitivity. Subsequently, we update the attribute sensitivities through cluster analysis and association rule mining. For semi-canonical data, we calculate attribute sensitivity by using a combination of regular expressions and keyword lists. In the classification stage, to further enhance accuracy, we adopt a dynamic and multi-granularity classified strategy. It considers the relative sensitivity of attributes across different scenarios and classifies them into three levels based on the sensitivity values obtained during the identification stage. Additionally, we design a rule base specifically for the identification and classification of sensitive data in the railway domain. This rule base enables effective data identification and classification, while also supporting the expiry management of sensitive attribute labels. To improve the efficiency of regular expression generation, we developed an auxiliary tool with the help of large language models and a well-designed prompt framework. We conducted experiments on a real-world dataset from the railway domain. The results demonstrate that ICRSSD significantly improves the accuracy and adaptability of sensitive data identification and classification in the railway domain. Full article
Show Figures

Figure 1

27 pages, 1746 KiB  
Article
From Regulation to Reality: A Framework to Bridge the Gap in Digital Health Data Protection
by Davies C. Ogbodo, Irfan-Ullah Awan, Andrea Cullen and Fatima Zahrah
Electronics 2025, 14(13), 2629; https://doi.org/10.3390/electronics14132629 - 29 Jun 2025
Viewed by 477
Abstract
This study addresses the urgent challenge of safeguarding sensitive health data in today’s digital age by proposing a novel, integrated data protection framework that synthesises six critical pillars—technology, policy, cybersecurity, legal frameworks, governance, and risk assessment—into a unified socio-technical model. Unlike existing piecemeal [...] Read more.
This study addresses the urgent challenge of safeguarding sensitive health data in today’s digital age by proposing a novel, integrated data protection framework that synthesises six critical pillars—technology, policy, cybersecurity, legal frameworks, governance, and risk assessment—into a unified socio-technical model. Unlike existing piecemeal approaches, this framework is designed to bridge the gap between regulatory requirements and practical implementation through measurable, engineering-based solutions. Healthcare organisations face persistent difficulties in aligning innovation with secure and compliant practices due to fragmented governance and reactive cybersecurity measures. This paper aims to empirically validate the effectiveness of the proposed framework by quantitatively analysing causal relationships between its components (such as between governance and compliance) using advanced statistical methods, including exploratory factor analysis (EFA) and Partial Least Squares Structural Equation Modelling (PLS-SEM). A survey of healthcare professionals across multiple countries revealed significant gaps between regulatory expectations and operational realities, underscoring the need for harmonised strategies. The results demonstrate strong causal linkages between governance, cybersecurity practices, and compliance, validating the framework’s robustness. This research contributes to the fields of digital health, information systems, industrial engineering, and electronic governance by offering a scalable, empirically tested model for socio-technical data protection. The findings provide actionable strategies for policymakers, system architects, and digital infrastructure designers. Full article
Show Figures

Figure 1

Back to TopTop