Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (269)

Search Parameters:
Keywords = inflammasome-dependent

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4653 KiB  
Review
Curcumin as a Dual Modulator of Pyroptosis: Mechanistic Insights and Therapeutic Potential
by Dong Oh Moon
Int. J. Mol. Sci. 2025, 26(15), 7590; https://doi.org/10.3390/ijms26157590 - 6 Aug 2025
Abstract
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical [...] Read more.
Curcumin, a polyphenolic compound derived from Curcuma longa, has drawn significant attention for its pleiotropic pharmacological activities, including anti-inflammatory and anticancer effects. Pyroptosis, an inflammatory form of programmed cell death mediated by inflammasome activation and gasdermin cleavage, has emerged as a critical target in both chronic inflammatory diseases and cancer therapy. This review comprehensively explores the dual roles of curcumin in the regulation of NLRP3 inflammasome-mediated pyroptosis. Curcumin exerts inhibitory effects by suppressing NF-κB signaling, attenuating mitochondrial reactive oxygen species (ROS) and ER stress, preventing potassium efflux, and disrupting inflammasome complex assembly. Conversely, in certain cancer contexts, curcumin promotes pyroptosis by stabilizing NLRP3 through the inhibition of Smurf2-mediated ubiquitination. Molecular docking studies support curcumin’s direct binding to several pyroptosis-associated proteins, including NLRP3, AMPK, caspase-1, and Smurf2. These context-dependent regulatory effects underscore the therapeutic potential of curcumin as both an inflammasome suppressor in inflammatory diseases and a pyroptosis inducer in cancer. Full article
(This article belongs to the Collection Latest Review Papers in Bioactives and Nutraceuticals)
Show Figures

Figure 1

31 pages, 1512 KiB  
Review
Pathophysiology of Status Epilepticus Revisited
by Rawiah S. Alshehri, Moafaq S. Alrawaili, Basma M. H. Zawawi, Majed Alzahrany and Alaa H. Habib
Int. J. Mol. Sci. 2025, 26(15), 7502; https://doi.org/10.3390/ijms26157502 - 3 Aug 2025
Viewed by 106
Abstract
Status epilepticus occurs when a seizure lasts more than five minutes or when multiple seizures occur with incomplete return to baseline. SE induces a myriad of pathological changes involving synaptic and extra-synaptic factors. The transition from a self-limiting seizure to a self-sustaining one [...] Read more.
Status epilepticus occurs when a seizure lasts more than five minutes or when multiple seizures occur with incomplete return to baseline. SE induces a myriad of pathological changes involving synaptic and extra-synaptic factors. The transition from a self-limiting seizure to a self-sustaining one is established by maladaptive receptor trafficking, whereby GABAA receptors are progressively endocytosed while glutamatergic receptors (NMDA and AMPA) are transported to the synaptic membrane, causing excitotoxicity and alteration in glutamate-dependent downstream signaling. The subsequent influx of Ca2+ exposes neurons to increased levels of [Ca2+]i, which overwhelms mitochondrial buffering, resulting in irreversible mitochondrial membrane depolarization and mitochondrial injury. Oxidative stress resulting from mitochondrial leakage and increased production of reactive oxygen species activates the inflammasome and induces a damage-associated molecular pattern. Neuroinflammation perpetuates oxidative stress and exacerbates mitochondrial injury, thereby jeopardizing mitochondrial energy supply in a state of accelerated ATP consumption. Additionally, Ca2+ overload can directly damage neurons by activating enzymes involved in the breakdown of proteins, phospholipids, and nucleic acids. The cumulative effect of these effector pathways is neuronal injury and neuronal death. Surviving neurons undergo long-term alterations that serve as a substrate for epileptogenesis. This review highlights the multifaceted mechanisms underlying SE self-sustainability, pharmacoresistance, and subsequent epileptogenesis. Full article
(This article belongs to the Special Issue From Molecular Insights to Novel Therapies: Neurological Diseases)
Show Figures

Figure 1

17 pages, 7296 KiB  
Article
The Expression Pattern of the Splice Variants of Coxsackievirus and Adenovirus Receptor Impacts CV-B3-Induced Encephalitis and Myocarditis in Neonatal Mice
by Xinglong Zhang, Xin Zhang, Yifan Zhang, Heng Li, Huiwen Zheng, Jingjing Wang, Yun Liao, Li Yu, Dandan Li, Heng Zhao, Jiali Li, Zihan Zhang, Haijing Shi and Longding Liu
Int. J. Mol. Sci. 2025, 26(15), 7163; https://doi.org/10.3390/ijms26157163 - 24 Jul 2025
Viewed by 175
Abstract
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, [...] Read more.
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, we used young Balb/c mice at three developmental stages (7-, 14-, and 30-day-old mice) to investigate CV-B3 pathogenesis. Our findings revealed that 7-day-old mice exhibited substantial infection susceptibility and pathological severity compared to older mice. Critically, an age-dependent analysis showed a progressive decline in the expression of CV-B3-binding Coxsackievirus and Adenovirus Receptor (CAR) splice variants (CAR1 and CAR2) at both the transcriptional and translational levels as the mice matured from 7 to 30 days. These receptor isoforms demonstrated a direct correlation with viral replication efficiency in younger hosts. Concurrently, aging was associated with a rise in non-binding CAR variants (CAR3 and CAR4). During CV-B3 infection, the abundance of CAR1/CAR2 in young mice facilitated accelerated viral proliferation, coupled with the hyperactivation of the NLRP3 inflammasome and the expansion of IL-17-producing γδT cells (γδT17 cells). This cascade triggered excessive production of proinflammatory cytokines (IL-1β, IL-18, and IL-17), culminating in pronounced inflammatory infiltrates within cardiac and cerebral tissues. These findings establish NLRP3 inflammasome dysregulation as a critical determinant of CV-B3-induced tissue damage and provide novel insights into the heightened susceptibility to CV-B infection during early life and its associated severe disease rates. Full article
Show Figures

Figure 1

18 pages, 2018 KiB  
Article
Engineered Glibenclamide-Loaded Nanovectors Hamper Inflammasome Activation in an Ex Vivo Alzheimer’s Disease Model—A Novel Potential Therapy for Neuroinflammation: A Pilot Study
by Francesca La Rosa, Simone Agostini, Elisabetta Bolognesi, Ivana Marventano, Roberta Mancuso, Franca Rosa Guerini, Ambra Hernis, Lorenzo Agostino Citterio, Federica Piancone, Pietro Davide Trimarchi, Jorge Navarro, Federica Rossetto, Arianna Amenta, Pierfausto Seneci, Silvia Sesana, Francesca Re, Mario Clerici and Marina Saresella
Biomolecules 2025, 15(8), 1074; https://doi.org/10.3390/biom15081074 - 24 Jul 2025
Viewed by 285
Abstract
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this [...] Read more.
Background: Inflammasomes regulate the activation of caspases resulting in inflammation; inflammasome activation is dysregulated in Alzheimer’s disease (AD) and plays a role in the pathogenesis of this condition. Glibenclamide, an anti-inflammatory drug, could be an interesting way to down-modulate neuroinflammation. Methods: In this pilot study we verified with ex vivo experiments whether a glibenclamide-loaded nanovector (GNV) could reduce the NLRP3-inflammasome cascade in cells of AD patients. Monocytes isolated from healthy controls (HC) and AD patients were cultured in medium, alone or stimulated with LPS + nigericin in presence/absence of GNV. ASC-speck positive cells and inflammasome-related genes, proteins, and miRNAs expressions were measured. The polymorphisms of ApoE (Apolipoprotein E), specifically rs7412 and rs429358, as well as those of NLRP3, namely rs35829419, rs10733113, and rs4925663, were also investigated. Results: Results showed that ASC-speck+ cells and Caspase-1, IL-1β, and IL-18 production was significantly reduced (p < 0.005 in all cases) by GNV in LPS + nigericin-stimulated cells of both AD and HC. Notably, the NLRP3 rs10733113 AG genotype was associated with excessive inflammasome-related gene and protein expression. GNV significantly down-regulates inflammasome activation in primary monocytes, at least at protein levels, and its efficacy seems to partially depend on the presence of the NLRP3 rs10733113 genotype. Conclusions: All together, these results showed that GNV is able to dampen inflammation and NLRP-3 inflammasome activation in an ex vivo monocyte model, suggesting a possible role for GNV in controlling AD-associated neuroinflammation. Full article
Show Figures

Figure 1

18 pages, 8370 KiB  
Article
High-Fructose High-Fat Diet Renders the Retina More Susceptible to Blue Light Photodamage in Mice
by Meng-Wei Kao, Wan-Ju Yeh, Hsin-Yi Yang and Chi-Hao Wu
Antioxidants 2025, 14(8), 898; https://doi.org/10.3390/antiox14080898 - 22 Jul 2025
Viewed by 362
Abstract
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL [...] Read more.
Retinal degeneration is associated with dietary factors and environmental light exposure. This study investigated the effects of a high-fructose high-fat (HFHF) diet on susceptibility to blue light (BL)-induced retinal damage. Male ICR mice were randomized into three groups: control, BL alone, and BL plus HFHF diet (BL + HFHF). The BL + HFHF group consumed the HFHF diet for 40 weeks, followed by 8 weeks of low-intensity BL exposure (465 nm, 37.7 lux, 0.8 μW/cm2) for 6 h daily. The BL group underwent the same BL exposure while kept on a standard diet. Histopathological analysis showed that, under BL exposure, the HFHF diet significantly reduced the number of photoreceptor nuclei and the thickness of the outer nuclear layer and inner/outer segments compared to the BL group (p < 0.05). While BL exposure alone caused oxidative DNA damage, rhodopsin loss, and Müller cell activation, the combination with an HFHF diet significantly amplified the oxidative DNA damage and Müller cell activation. Moreover, the HFHF diet increased blood–retinal barrier permeability and triggered apoptosis under BL exposure. Mechanistically, the BL + HFHF group exhibited increased retinal advanced glycated end product (AGE) deposition, accompanied by the activation of the receptor for AGE (RAGE), NFκB, and the NLRP3 inflammasome-dependent IL-1β pathway. In conclusion, this study underscores that unhealthy dietary factors, particularly those high in fructose and fat, may intensify the hazard of BL and adversely impact visual health. Full article
(This article belongs to the Special Issue Oxidative Stress in Eye Diseases)
Show Figures

Graphical abstract

21 pages, 3526 KiB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 430
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

21 pages, 1384 KiB  
Article
Deep Proteomics Analysis Unravels the Molecular Signatures of Tonsillar B Cells in PFAPA and OSAS in the Pediatric Population
by Feras Kharrat, Nour Balasan, Blendi Ura, Valentina Golino, Pietro Campiglia, Giulia Peri, Erica Valencic, Mohammed Qaisiya, Ronald de Moura, Mariateresa Di Stazio, Barbara Bortot, Alberto Tommasini, Adamo Pio d’Adamo, Egidio Barbi and Domenico Leonardo Grasso
Int. J. Mol. Sci. 2025, 26(14), 6621; https://doi.org/10.3390/ijms26146621 - 10 Jul 2025
Viewed by 375
Abstract
Tonsils are secondary lymphoid organs that play a crucial role in the immunological response, with B cells being a major component involved in both innate and adaptive immunity. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome and obstructive sleep apnea syndrome (OSAS) [...] Read more.
Tonsils are secondary lymphoid organs that play a crucial role in the immunological response, with B cells being a major component involved in both innate and adaptive immunity. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis (PFAPA) syndrome and obstructive sleep apnea syndrome (OSAS) are both common pediatric conditions involving tonsillar pathology. In both syndromes, the molecular pathways dysregulated in tonsillar B cells are still to be understood. The study aimed to unravel and compare the proteomic profiles of tonsillar CD19+ B cells isolated from pediatric patients with PFAPA (n = 6) and OSAS (n = 6) to identify disease-specific molecular signatures. B cells were isolated from the tonsillar tissue using magnetic microbeads (with a purity of 93.50%). Proteomic analysis was performed by nanoLC-MS/MS with both data-dependent (DDA) and data-independent acquisition (DIA) methods, followed by comprehensive bioinformatic analysis. By merging DDA and DIA datasets, a total of 18.078 unique proteins were identified. Differential expression analysis revealed 83 proteins increased and 49 proteins decreased in OSAS B cells compared to PFAPA B cells (fold change ≥ 1.5 or ≤0.6, p < 0.05). Distinct pathway enrichments were highlighted, including alterations in the regulation of PTEN gene transcription, circadian gene expression, inflammasome pathways (IPAF and AIM2), and the metabolism of angiotensinogen to angiotensin. Specific proteins such as p53, Hdac3, RPTOR, MED1, Caspase-1, Cathepsin D, Chymase, and TLR2 (validated by WB) were shown to be differentially expressed. These findings reveal distinct proteomic signatures in tonsillar B cells from patients with PFAPA and OSAS, offering novel insights into the pathophysiology and potential avenues for biomarker discovery. Full article
(This article belongs to the Special Issue Role of Proteomics in Human Diseases and Infections)
Show Figures

Figure 1

20 pages, 2060 KiB  
Article
Involvement of Microglia in Retinal Ganglion Cell Injury Induced by IOP Elevation in a Rat Ex Vivo Acute Glaucoma Model
by Taimu Sato, Makoto Ishikawa, Yukitoshi Izumi, Naoya Shibata, Kota Sato, Michiko Ohno-Oishi, Hiroshi Tawarayama, Hiroshi Kunikata, Charles F. Zorumski and Toru Nakazawa
Biomedicines 2025, 13(7), 1670; https://doi.org/10.3390/biomedicines13071670 - 8 Jul 2025
Viewed by 461
Abstract
Background: An acute angle-closure attack (AAC) is an ocular emergency that results from a rapid increase in intraocular pressure (IOP). Sustained IOP elevation induces severe degeneration of retinal ganglion cells (RGCs) without treatment. Overactivated microglia, key participants in innate immune responses, have [...] Read more.
Background: An acute angle-closure attack (AAC) is an ocular emergency that results from a rapid increase in intraocular pressure (IOP). Sustained IOP elevation induces severe degeneration of retinal ganglion cells (RGCs) without treatment. Overactivated microglia, key participants in innate immune responses, have critical roles in the pathogenesis of IOP-induced RGC death, although precise mechanisms remain unclear. In the present study, we used a rat ex vivo acute glaucoma model to investigate the role of microglial signaling in RGC death and examined whether pharmacological depletion of microglia using a CSF-1R inhibitor, PLX5622, exerts neuroprotection against pressure-induced retinal injury. Methods: Ex vivo rat retinas were exposed to hydrostatic pressure (10 mmHg or 75 mmHg) for 24 h. Pressure-dependent changes in retinal microglia and RGCs were detected by immunofluorescence. Morphological changes in the retina and RGC apoptosis were examined using light microscopy and TUNEL staining, respectively. The expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β were examined using Western blotting. Effects of PLX5622, an agent that depletes microglia, were examined in morphology, apoptosis, and protein expression assays, while TAK-242, a TLR4 inhibitor, was examined against protein expression. Results: Pressure loading at 75 mmHg markedly increased activated microglia and apoptotic RGCs in the isolated retinas. Western blotting revealed increases in expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β at 75 mmHg compared to 10 mmHg. Inhibition of pressure-induced increases in NLRP3 by TAK-242 indicates that pressure elevation induces RGC death via activation of the TLR4–NLRP3 inflammasome cascade. PLX5622 depleted microglia at 75 mmHg and significantly decreased expression of NLRP3, active caspase-1, pro IL-1β, and IL-1β at 75 mmHg, resulting in preservation of RGCs. Conclusions: These results indicate that pressure elevation induces proliferation of inflammatory microglia and promotes IL-1β production via activation of the TLR4–NLRP3 inflammasome cascade, resulting in RGC death. Pharmacological depletion of microglia with PLX5622 could be a potential neuroprotective approach to preserve RGCs from inflammatory cytokines in AAC eyes. Full article
(This article belongs to the Special Issue Glaucoma: New Diagnostic and Therapeutic Approaches, 2nd Edition)
Show Figures

Figure 1

22 pages, 5021 KiB  
Article
Luteolin-Rich Extract from Harrisonia perforata (Blanco) Merr. Root Alleviates SARS-CoV-2 Spike Protein-Stimulated Lung Inflammation via Inhibition of MAPK/NLRP3 Inflammasome Signaling Pathways
by Warathit Semmarath, Punnida Arjsri, Kamonwan Srisawad, Sonthaya Umsumarng and Pornngarm Dejkriengkraikul
Life 2025, 15(7), 1077; https://doi.org/10.3390/life15071077 - 5 Jul 2025
Viewed by 415
Abstract
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need [...] Read more.
The COVID-19-related long-standing effect or Post-Acute Sequelae of COVID-19 (PASC) is often associated with NLRP3 inflammasome activation in pulmonary inflammation elicited by SARS-CoV-2 spike proteins. Spike proteins engage toll-like receptors (TLRs) in respiratory epithelial cells, leading to excessive cytokine production. Given the need for effective therapeutic strategies to mitigate spike protein-stimulated lung inflammation, we examined the anti-inflammatory properties of luteolin and ethanolic extract from Harrisonia perforata (Blanco) Merr. root. The ethanolic extract of H. perforata root (HPEE) contained a high concentration of luteolin flavonoid (143.53 ± 1.58 mg/g extract). Both HPEE (25–100 μg/mL) and luteolin (4.5–36 μM) significantly inhibited inflammation stimulated by the Wuhan (W) and Omicron (O) spike protein S1, as evidenced by a dose-dependent significant decrease in IL-6, IL-1β, and IL-18 secretion in A549 lung epithelial cells (p < 0.05). Furthermore, pretreatment with HPEE or luteolin prior to spike protein exposure (100 ng/mL) significantly, in a dose-dependent manner, repressed the inflammatory mRNA expression (p < 0.05). Mechanistic study revealed that HPEE and luteolin suppressed NLRP3 inflammasome signaling activation by reducing their machinery protein expressions. Additionally, they inhibited the ERK/JNK/p38 MAPK signaling activation, resulting in decreased inflammatory mRNA expression and cytokine release. These findings suggest that H. perforata root extract and its major flavonoid luteolin exert potent anti-inflammatory effects and may offer therapeutic potential against spike protein-induced lung inflammation. Full article
Show Figures

Figure 1

17 pages, 4232 KiB  
Article
NOX2/NLRP3-Inflammasome-Dependent Microglia Activation Promotes As(III)-Induced Learning and Memory Impairments in Developmental Rats
by Linlin Zhang, Yuyao Xiao, Dan Wang, Xuerong Han, Ruoqi Zhou, Huiying Zhang, Kexin Zhu, Junyao Wu, Xiance Sun and Shuangyue Li
Toxics 2025, 13(7), 538; https://doi.org/10.3390/toxics13070538 - 26 Jun 2025
Viewed by 320
Abstract
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the [...] Read more.
Inorganic arsenic [As(III) and As(V)] is a pervasive environmental contaminant in groundwater systems, early-life exposure to which is associated with an impaired cognitive ability and an increased risk of neurobehavioral disorders. Although the effect of As(III) on the neurons is well studied, the involvement of the microglia remains unclear. In this study, the effects of sodium arsenite (NaAsO2) on microglial activation and the underlying NLRP3 inflammasome mechanism were determined. Pregnant rats were gavaged with NaAsO2 (0, 1, 4, and 10 mg/kg body weight), which dissociates in aqueous solutions into bioactive arsenite species [As(OH)3], from gestational day 1 (GD1) to postnatal day 21 (PND21). The results showed that As(III) induces learning and memory impairments and microglial activation in the hippocampus of offspring rats (PND21). Increased expression of NLRP3, the activation of caspase-1, and the production of interleukin-1β were observed in both the hippocampus of As(III)-exposed offspring rats and As(III)-exposed microglial BV2 cells under culture conditions. Interestingly, blocking the NLRP3 inflammasome using MCC950 mitigated its activation. Furthermore, inhibition of NADPH oxidase 2 (NOX2) using apocynin or specific siRNA significantly reduced As(III)-induced microglial NLRP3 inflammasome activation. In addition, inactivation of the microglial NLRP3 inflammasome or NOX2 markedly rescued As(III)-induced neurotoxicity in the hippocampal HT22 cells. Taken together, this study reveals that NOX2/NLRP3-inflammasome-dependent microglial activation promotes As(III)-induced learning and memory impairments in developmental rats. Full article
Show Figures

Figure 1

12 pages, 2552 KiB  
Article
Investigating the Mechanism of Emodin in Rheumatoid Arthritis Through the HIF-1α/NLRP3 Pathway and Mitochondrial Autophagy
by Dehao Du, Linlan Zhou, Jiayu Tian, Lianying Cheng, Han Zhang, Yifu Tang, Zexuan Qiu, Tingdan Zhang and Xiaofeng Rong
Curr. Issues Mol. Biol. 2025, 47(7), 486; https://doi.org/10.3390/cimb47070486 - 25 Jun 2025
Viewed by 1214
Abstract
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including [...] Read more.
In this study, we investigated the inhibitory effects of emodin on pyroptosis in rheumatoid arthritis (RA) synovial cells by modulating the HIF-1α/NLRP3 inflammasome pathway and mitochondrial autophagy. By employing a chemically induced hypoxia model with CoCl2, we established experimental groups including normal control, model group, and emodin-treated groups at different concentrations (5 μM, 10 μM, and 20 μM). We optimized the CoCl2 concentration via CCK-8 assay to ensure cell viability. ELISA, Western blotting, transmission electron microscopy, and immunofluorescence were employed to assess HIF-1α, IL-1β, and IL-18 levels, pyroptosis-related proteins, autophagy markers, and NLRP3 fluorescence intensity. Statistical analysis revealed that increased CoCl2 concentrations led to a significant cell viability reduction (p < 0.05), with 300 μM CoCl2 causing ~50% inhibition at 24 h. Transmission electron microscopy confirmed autophagosome formation in emodin-treated groups, while Western blotting showed dose-dependent downregulation of HIF-1α, NLRP3, BNIP3, and related proteins. Immunofluorescence revealed reduced NLRP3 fluorescence intensity with increasing emodin doses (p < 0.05), alongside dose-dependent cell viability recovery (p < 0.05). Our findings demonstrate that emodin alleviates RA synovitis through dual mechanisms: inhibition of mitochondrial autophagy to regulate the balance between mitochondrial autophagy and pyroptosis, and suppression of HIF-1α/NLRP3-mediated pyroptosis signaling, thereby reducing IL-1β and IL-18 release and inhibiting synovial cell proliferation. This study provides innovative approaches for targeted RA therapy. Full article
Show Figures

Figure 1

23 pages, 8576 KiB  
Article
Pterostilbene Reduces Cyclophosphamide-Induced Interstitial Cystitis by Facilitating Nrf2 Activation and Suppressing the NLRP3 Inflammasome Pathway
by Jiong Zhang, Jipeng Wang, Xinhao Wang, Zehao Yan, Lingfeng Meng and Yaoguang Zhang
Int. J. Mol. Sci. 2025, 26(12), 5490; https://doi.org/10.3390/ijms26125490 - 8 Jun 2025
Viewed by 649
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) causes significant discomfort in patients and impairs the quality of urination. Pterostilbene (PTE), a natural polyphenol antioxidant, has demonstrated beneficial effects in mitigating inflammation, enhancing antioxidant capacity, and ameliorating organ dysfunction in various chronic nonspecific inflammatory conditions. The [...] Read more.
Interstitial cystitis/bladder pain syndrome (IC/BPS) causes significant discomfort in patients and impairs the quality of urination. Pterostilbene (PTE), a natural polyphenol antioxidant, has demonstrated beneficial effects in mitigating inflammation, enhancing antioxidant capacity, and ameliorating organ dysfunction in various chronic nonspecific inflammatory conditions. The aim of this study was to evaluate the efficacy of PTE in IC/BPS and elucidate its underlying mechanisms using a rat model of cyclophosphamide (CYP)-induced interstitial cystitis. In comparison, chronic pain progression, histopathological features, and cytokine levels demonstrated that PTE mitigated the severity of symptoms in CYP-induced rats by inhibiting the NLRP3 inflammasome in a dose-dependent manner. Further mechanistic investigations indicated that PTE intervention alleviated oxidative stress in CYP-induced IC in rats via activation of the Nrf2/HO-1 signaling pathway. Moreover, inhibitors of the Nrf2/HO-1 pathway effectively blocked PTE-mediated attenuation of oxidative stress. The suppression of NLRP3 inflammasome activation by PTE could also be reversed by inhibition of the Nrf2/HO-1 pathway. In vitro studies revealed that PTE enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and suppressed NLRP3 inflammasome activation in SV-HUC-1 cells exposed to lipopolysaccharide (LPS) and Adenosine Triphosphate (ATP). These findings collectively suggest that PTE treatment inhibits oxidative stress and suppresses NLRP3 inflammasome activation through modulation of the Nrf2/HO-1 pathway. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

22 pages, 4363 KiB  
Article
Porphyromonas gingivalis-Lipopolysaccharide Induced Caspase-4 Dependent Noncanonical Inflammasome Activation Drives Alzheimer’s Disease Pathologies
by Ambika Verma, Gohar Azhar, Pankaj Patyal, Xiaomin Zhang and Jeanne Y. Wei
Cells 2025, 14(11), 804; https://doi.org/10.3390/cells14110804 - 30 May 2025
Viewed by 1134
Abstract
Chronic periodontitis, driven by the keystone pathogen Porphyromonas gingivalis, has been increasingly associated with Alzheimer’s disease (AD) and AD-related dementias (ADRDs). However, the mechanisms through which P. gingivalis-lipopolysaccharide (LPS)-induced release of neuroinflammatory proteins contribute to the pathogenesis of AD and ADRD [...] Read more.
Chronic periodontitis, driven by the keystone pathogen Porphyromonas gingivalis, has been increasingly associated with Alzheimer’s disease (AD) and AD-related dementias (ADRDs). However, the mechanisms through which P. gingivalis-lipopolysaccharide (LPS)-induced release of neuroinflammatory proteins contribute to the pathogenesis of AD and ADRD remain inadequately understood. Caspase-4, a critical mediator of neuroinflammation, plays a pivotal role in these processes following exposure to P. gingivalis-LPS. In this study, we investigated the mechanistic role of caspase-4 in P. gingivalis-LPS-induced IL-1β production, neuroinflammation, oxidative stress, and mitochondrial alterations in human neuronal and microglial cell lines. Silencing of caspase-4 significantly attenuated IL-1β secretion by inhibiting the activation of the caspase-4-NLRP3-caspase-1-gasdermin D inflammasome pathway, confirming its role in neuroinflammation. Moreover, caspase-4 silencing reduced the activation of amyloid precursor protein and presenilin-1, as well as the secretion of amyloid-β peptides, suggesting a role for caspase-4 in amyloidogenesis. Caspase-4 inhibition also restored the expression of key neuroinflammatory markers, such as total tau, VEGF, TGF, and IL-6, highlighting its central role in regulating neuroinflammatory processes. Furthermore, caspase-4 modulated oxidative stress by regulating reactive oxygen species production and reducing oxidative stress markers like inducible nitric oxide synthase and 4-hydroxynonenal. Additionally, caspase-4 influenced mitochondrial membrane potential, mitochondrial biogenesis, fission, fusion, mitochondrial respiration, and ATP production, all of which were impaired by P. gingivalis-LPS but restored with caspase-4 inhibition. These findings provide novel insights into the role of caspase-4 in P. gingivalis-LPS-induced neuroinflammation, oxidative stress, and mitochondrial dysfunction, demonstrating caspase-4 as a potential therapeutic target for neurodegenerative conditions associated with AD and related dementias. Full article
Show Figures

Graphical abstract

20 pages, 1329 KiB  
Review
Mitochondrial Dysfunction: The Silent Catalyst of Kidney Disease Progression
by Nikola Pavlović, Marinela Križanac, Marko Kumrić, Katarina Vukojević and Joško Božić
Cells 2025, 14(11), 794; https://doi.org/10.3390/cells14110794 - 28 May 2025
Cited by 2 | Viewed by 2516
Abstract
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to [...] Read more.
Mitochondrial dysfunction is a pivotal driver in the pathogenesis of acute kidney injury (AKI), chronic kidney disease (CKD), and congenital anomalies of the kidney and urinary tract (CAKUT). The kidneys, second only to the heart in mitochondrial density, rely on oxidative phosphorylation to meet the high ATP demands of solute reabsorption and filtration. Disrupted mitochondrial dynamics, such as excessive fission mediated by Drp1, exacerbate tubular apoptosis and inflammation in AKI models like ischemia–reperfusion injury. In CKD, persistent mitochondrial dysfunction drives oxidative stress, fibrosis, and metabolic reprogramming, with epigenetic mechanisms (DNA methylation, histone modifications, non-coding RNAs) regulating genes critical for mitochondrial homeostasis, such as PMPCB and TFAM. Epigenetic dysregulation also impacts mitochondrial–ER crosstalk, influencing calcium signaling and autophagy in renal pathology. Mitophagy, the selective clearance of damaged mitochondria, plays a dual role in kidney disease. While PINK1/Parkin-mediated mitophagy protects against cisplatin-induced AKI by preventing mitochondrial fragmentation and apoptosis, its dysregulation contributes to fibrosis and CKD progression. For instance, macrophage-specific loss of mitophagy regulators like MFN2 amplifies ROS production and fibrotic responses. Conversely, BNIP3/NIX-dependent mitophagy attenuates contrast-induced AKI by suppressing NLRP3 inflammasome activation. In diabetic nephropathy, impaired mitophagy correlates with declining eGFR and interstitial fibrosis, highlighting its diagnostic and therapeutic potential. Emerging therapeutic strategies target mitochondrial dysfunction through antioxidants (e.g., MitoQ, SS-31), mitophagy inducers (e.g., COPT nanoparticles), and mitochondrial transplantation, which mitigates AKI by restoring bioenergetics and modulating inflammatory pathways. Nanotechnology-enhanced drug delivery systems, such as curcumin-loaded nanoparticles, improve renal targeting and reduce oxidative stress. Epigenetic interventions, including PPAR-α agonists and KLF4 modulators, show promise in reversing metabolic reprogramming and fibrosis. These advances underscore mitochondria as central hubs in renal pathophysiology. Tailored interventions—ranging from Drp1 inhibition to mitochondrial transplantation—hold transformative potential to mitigate kidney injury and improve clinical outcomes. Additionally, dietary interventions and novel regulators such as adenogens are emerging as promising strategies to modulate mitochondrial function and attenuate kidney disease progression. Future research should address the gaps in understanding the role of mitophagy in CAKUT and optimize targeted delivery systems for precision therapies. Full article
Show Figures

Figure 1

26 pages, 4306 KiB  
Article
Metformin-Induced Apoptosis Is Mediated Through Mitochondrial VDAC1
by Anna Shteinfer-Kuzmine, Meital M. Moyal, Aditya Karunanithi Nivedita, Sweta Trishna, Almog Nadir, Shubhandra Tripathi and Varda Shoshan-Barmatz
Pharmaceuticals 2025, 18(5), 757; https://doi.org/10.3390/ph18050757 - 20 May 2025
Viewed by 662
Abstract
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different [...] Read more.
Background: Besides diabetes mellitus, metformin has been identified as a potential therapeutic agent for treating various other conditions that include various cancers, cardiovascular diseases, neurodegenerative diseases, and aging. In cancer, metformin increased apoptotic cell death, while inhibiting it in neurodegenerative diseases. Thus, different modes of metformin action at the molecular level have been proposed. Methods: In this study, we present the mitochondria and the VDAC1 (voltage-dependent anion channel) as a potential target of metformin. Results: Metformin induces VDAC1 overexpression, its oligomerization, and subsequent apoptosis. Metformin analogs phenformin and buformin at much lower concentrations also induce VDAC1 overexpression, oligomerization, and cell death. We demonstrate the interaction of metformin with purified VDAC1, which inhibited its channel conduction in a voltage-dependent manner. Metformin bound to the synthetic VDAC1-N-terminal peptide and binding to this domain was also found by its molecular docking with VDAC1. Moreover, we demonstrated metformin binding to purified hexokinases (HK-I) with a 400-fold lower metformin concentration than that required for cell death induction. In cells, metformin induced HK-I detachment from the mitochondrial VDAC1. Lastly, metformin increased the expression of NLRP3 and ASC and induced their co-localization, suggesting inflammasome activation. Conclusions: The results suggest that VDAC1 is a target for metformin and its analogs, and this is associated with metformin’s adverse effects on many diseases. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

Back to TopTop