Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (47)

Search Parameters:
Keywords = inertial fusion energy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1622 KB  
Article
A Battery-Aware Sensor Fusion Strategy: Unifying Magnetic-Inertial Attitude and Power for Energy-Constrained Motion Systems
by Raphael Diego Comesanha e Silva, Thiago Martins, João Paulo Bedretchuk, Victor Noster Kürschner and Anderson Wedderhoff Spengler
Sensors 2026, 26(3), 856; https://doi.org/10.3390/s26030856 - 28 Jan 2026
Viewed by 111
Abstract
Extended Kalman Filters (EKFs) are widely employed for attitude estimation using Magnetic and Inertial Measurement Units (MIMUs) in battery-powered sensing systems. In such applications, energy availability influences system operation, yet battery state information is commonly treated by external supervisory mechanisms rather than being [...] Read more.
Extended Kalman Filters (EKFs) are widely employed for attitude estimation using Magnetic and Inertial Measurement Units (MIMUs) in battery-powered sensing systems. In such applications, energy availability influences system operation, yet battery state information is commonly treated by external supervisory mechanisms rather than being integrated into the estimation process. This work presents an EKF-based formulation in which the battery State of Charge (SOC) is explicitly included as a state variable, allowing joint estimation of attitude and energy state within a single filtering framework. SOC dynamics are modeled using a low-complexity estimator based on terminal voltage and current measurements, while attitude estimation is performed using a Simplified Extended Kalman Filter (SEKF) tailored for embedded MIMU-based applications. The proposed approach was evaluated through numerical simulations under constant and time-varying load profiles representative of low-power electronic devices. The results indicate that the inclusion of SOC estimation does not affect the attitude estimation performance of the original SEKF, while SOC estimation errors remain below 8% for the evaluated load conditions with power consumption of approximately 0.1 W, consistent with wearable and small autonomous electronic platforms. By incorporating energy state estimation directly into the filtering structure, rather than treating it as an external supervisory task, the proposed formulation offers a unified estimation approach suitable for embedded MIMU-based systems with limited computational and energy resources. Full article
(This article belongs to the Special Issue Inertial Sensing System for Motion Monitoring)
Show Figures

Figure 1

35 pages, 2688 KB  
Review
Measurement Uncertainty and Traceability in Upper Limb Rehabilitation Robotics: A Metrology-Oriented Review
by Ihtisham Ul Haq, Francesco Felicetti and Francesco Lamonaca
J. Sens. Actuator Netw. 2026, 15(1), 8; https://doi.org/10.3390/jsan15010008 - 7 Jan 2026
Viewed by 430
Abstract
Upper-limb motor impairment is a major consequence of stroke and neuromuscular disorders, imposing a sustained clinical and socioeconomic burden worldwide. Quantitative assessment of limb positioning and motion accuracy is fundamental to rehabilitation, guiding therapy evaluation and robotic assistance. The evolution of upper-limb positioning [...] Read more.
Upper-limb motor impairment is a major consequence of stroke and neuromuscular disorders, imposing a sustained clinical and socioeconomic burden worldwide. Quantitative assessment of limb positioning and motion accuracy is fundamental to rehabilitation, guiding therapy evaluation and robotic assistance. The evolution of upper-limb positioning systems has progressed from optical motion capture to wearable inertial measurement units (IMUs) and, more recently, to data-driven estimators integrated with rehabilitation robots. Each generation has aimed to balance spatial accuracy, portability, latency, and metrological reliability under ecological conditions. This review presents a systematic synthesis of the state of measurement uncertainty, calibration, and traceability in upper-limb rehabilitation robotics. Studies are categorised across four layers, i.e., sensing, fusion, cognitive, and metrological, according to their role in data acquisition, estimation, adaptation, and verification. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol was followed to ensure transparent identification, screening, and inclusion of relevant works. Comparative evaluation highlights how modern sensor-fusion and learning-based pipelines achieve near-optical angular accuracy while maintaining clinical usability. Persistent challenges include non-standard calibration procedures, magnetometer vulnerability, limited uncertainty propagation, and absence of unified traceability frameworks. The synthesis indicates a gradual transition toward cognitive and uncertainty-aware rehabilitation robotics in which metrology, artificial intelligence, and control co-evolve. Traceable measurement chains, explainable estimators, and energy-efficient embedded deployment emerge as essential prerequisites for regulatory and clinical translation. The review concludes that future upper-limb systems must integrate calibration transparency, quantified uncertainty, and interpretable learning to enable reproducible, patient-centred rehabilitation by 2030. Full article
Show Figures

Figure 1

38 pages, 6136 KB  
Article
Extreme Ion Beams Produced by a Multi-PW Femtosecond Laser: Acceleration Mechanisms, Properties and Prospects for Applications
by Jan Badziak and Jarosław Domański
Photonics 2026, 13(1), 45; https://doi.org/10.3390/photonics13010045 - 3 Jan 2026
Viewed by 482
Abstract
Laser-driven ion acceleration is a rapidly developing branch of plasma physics and laser science whose primary practical goal is to provide a physical and technological basis for the construction and development of new types of ion accelerators. Laser-driven accelerators can be less complex [...] Read more.
Laser-driven ion acceleration is a rapidly developing branch of plasma physics and laser science whose primary practical goal is to provide a physical and technological basis for the construction and development of new types of ion accelerators. Laser-driven accelerators can be less complex and more compact than currently used RF-driven accelerators, while the intensities, fluences, and powers of laser-accelerated ion beams can potentially exceed those achieved in RF accelerators. This paper focuses on the generation of very intense ion beams driven by a multi-PW femtosecond laser. The acceleration mechanisms enabling the generation of such beams are characterized, and the properties of multi-PW laser-driven uranium ion beams are discussed in detail based on the results of advanced particle-in-cell numerical simulations. The feasibility of generating sub-picosecond, multi-GeV, mono-charge uranium beams with extreme intensities (~>1020 W/cm2) and fluences (~>GJ/cm2) is demonstrated, and methods for controlling the beam parameters are identified. It is shown that using such beams, extreme states of matter with parameters unattainable with ion beams from conventional accelerators can be created. The prospects for applications of ultra-intense laser-driven ion beams in high-energy density physics, inertial confinement nuclear fusion, and in certain areas of nuclear physics are outlined. Full article
(This article belongs to the Special Issue High-Power Ultrafast Lasers: Development and Applications)
Show Figures

Figure 1

12 pages, 2330 KB  
Article
Enhanced Energy Transfer in Resonating Gold Doped Matter Irradiated by Infrared Laser
by Konstantin Zsukovszki and Istvan Papp
Particles 2025, 8(4), 104; https://doi.org/10.3390/particles8040104 - 18 Dec 2025
Viewed by 280
Abstract
Laser-driven ion acceleration in dense, hydrogen-rich media can be significantly enhanced by embedding metallic nanoantennas that support localized surface plasmon (LSP) resonances. Using large-scale particle-in-cell (PIC) simulations with the EPOCH code, we investigate how nanoantenna geometry and laser pulse parameters influence proton acceleration [...] Read more.
Laser-driven ion acceleration in dense, hydrogen-rich media can be significantly enhanced by embedding metallic nanoantennas that support localized surface plasmon (LSP) resonances. Using large-scale particle-in-cell (PIC) simulations with the EPOCH code, we investigate how nanoantenna geometry and laser pulse parameters influence proton acceleration in gold-doped polymer targets. The study covers dipole, crossed, and advanced 3D-cross antenna configurations under laser intensities of 1017–1019 W/cm2 and pulse durations from 2.5 to 500 fs, corresponding to experimental conditions at the ELI laser facility. Results show that the dipole antennas exhibit resonance-limited proton energies of ~0.12 MeV, with optimal acceleration at the intensities 4 × 1017–1 × 1018 W/cm2 and pulse durations around 100–150 fs. This energy is higher by roughly three orders of magnitude than the proton energy for the same field and same polymer without dopes: ~1–2 × 10−4 MeV. Crossed antennas achieve higher energies (~0.2 MeV) due to dual-mode plasmonic coupling that sustains local fields longer. Advanced 3D and Yagi-like geometries further enhance field localization, yielding proton energies up to 0.4 MeV and larger high-energy proton populations. For dipole antennas, experimental data from ELI exists and our results agree with it. We find that moderate pulses preserve plasmonic resonance for longer and improve energy transfer efficiency, while overly intense pulses disrupt the resonance early. These findings reveal that plasmonic field enhancement and its lifetime govern energy transfer efficiency in laser–matter interaction. Crossed and 3D geometries with optimized spacing enable multimode resonance and sequential proton acceleration, overcoming the saturation limitations of simple dipoles. The results establish clear design principles for tailoring nanoantenna geometry and pulse characteristics to optimize compact, high-energy proton sources for inertial confinement fusion and high-energy-density applications. Full article
Show Figures

Figure 1

15 pages, 1288 KB  
Article
Magnetic Field Effects on Energy Coupling in Scaled Laser-Driven Magnetized Liner Inertial Fusion
by Xuming Feng, Guozhuang Li, Hua Zhang, Shijia Chen, Liangwen Chen, Yong Sun, Rui Cheng, Jie Yang, Lei Yang and Zhiyu Sun
Electronics 2025, 14(21), 4226; https://doi.org/10.3390/electronics14214226 - 29 Oct 2025
Viewed by 546
Abstract
In scaled laser-driven magnetized liner inertial fusion (MagLIF), externally applied magnetic fields improve energy coupling by suppressing electron thermal conduction, enhancing Joule heating, and increasing α-particle energy deposition. However, confinement can be significantly degraded by magnetic flux transport, dominated by resistive diffusion, [...] Read more.
In scaled laser-driven magnetized liner inertial fusion (MagLIF), externally applied magnetic fields improve energy coupling by suppressing electron thermal conduction, enhancing Joule heating, and increasing α-particle energy deposition. However, confinement can be significantly degraded by magnetic flux transport, dominated by resistive diffusion, and more critically, the Nernst effect. One-dimensional magnetohydrodynamic simulations demonstrate that increasing the applied field generally enhances neutron yield, but when the Nernst effect is included, the benefit of stronger magnetization diminishes. Stagnation is achieved at 2.72 ns, yielding a peak temperature of 2.17 keV and a neutron production of 1.2×1012. When the Nernst effect is taken into account, the neutron yield decreases by 57.3% compared with the case without it under an initial magnetic field of 10 T. During the implosion, the magnetic field in the fuel gradually diffuses outward into the outer liner. By stagnation, the magnetic flux of fuel has decreased by 33.8%. Based on the characteristics of the Nernst effect, an optimized initial magnetic field of approximately 6 T is identified, which yields an about 2.5 times higher neutron yield than the unmagnetized case. These findings emphasize the key role of magnetic–energy coupling in target performance and provide guidance for the design and scaling of magnetized targets. Full article
(This article belongs to the Special Issue Emerging Trends in Ultra-Stable Semiconductor Lasers)
Show Figures

Figure 1

12 pages, 1196 KB  
Article
The Opacity Project: R-Matrix Calculations for Opacities of High-Energy-Density Astrophysical and Laboratory Plasmas
by Anil K. Pradhan and Sultana N. Nahar
Atoms 2025, 13(10), 85; https://doi.org/10.3390/atoms13100085 - 20 Oct 2025
Cited by 1 | Viewed by 631
Abstract
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze [...] Read more.
Accurate determination of opacity is critical for understanding radiation transport in both astrophysical and laboratory plasmas. We employ atomic data from R-Matrix calculations to investigate radiative properties in high-energy-density (HED) plasma sources, focusing on opacity variations under extreme plasma conditions. Specifically, we analyze environments such as the base of the convective zone (BCZ) of the Sun (2×106 K, Ne=1023/cc), and radiative opacity data collected using the inertial confinement fusion (ICF) devices at the Sandia Z facility (2.11×106 K, Ne=3.16×1022/cc) and the Lawrence Livermore National Laboratory National Ignition Facility. We calculate Rosseland Mean Opacities (RMO) within a range of temperatures and densities and analyze how they vary under different plasma conditions. A significant factor influencing opacity in these environments is line and resonance broadening due to plasma effects. Both radiative and collisional broadening modify line shapes, impacting the absorption and emission profiles that determine the RMO. In this study, we specifically focus on electron collisional and Stark ion microfield broadening effects, which play a dominant role in HED plasmas. We assume a Lorentzian profile factor to model combined broadening and investigate its impact on spectral line shapes, resonance behavior, and overall opacity values. Our results are relevant to astrophysical models, particularly in the context of the solar opacity problem, and provide insights into discrepancies between theoretical calculations and experimental measurements. In addition, we investigate the equation-of-state (EOS) and its impact on opacities. In particular, we examine the “chemical picture” Mihalas–Hummer–Däppen EOS with respect to level populations of excited levels included in the extensive R-matrix calculations. This study should contribute to improving opacity models of HED sources such as stellar interiors and laboratory plasma experiments. Full article
(This article belongs to the Special Issue Electronic, Photonic and Ionic Interactions with Atoms and Molecules)
Show Figures

Figure 1

10 pages, 2134 KB  
Article
Evaluation of Plasma Dynamic Parameters of a Multi-Layer MIF Target Under Exposure to External Broadband Radiation
by Victor V. Kuzenov, Sergei V. Ryzhkov and Artem G. Polyanskiy
Appl. Sci. 2025, 15(20), 11155; https://doi.org/10.3390/app152011155 - 17 Oct 2025
Viewed by 369
Abstract
This work presents a numerical investigation into broadband radiation effects (with energy flux densities q < 1014 W/cm2) on a magneto–inertial fusion (MIF) target. The calculation results demonstrate the impact of intense energy fluxes on a multi-layer cylindrical target that [...] Read more.
This work presents a numerical investigation into broadband radiation effects (with energy flux densities q < 1014 W/cm2) on a magneto–inertial fusion (MIF) target. The calculation results demonstrate the impact of intense energy fluxes on a multi-layer cylindrical target that provides more uniform and homogeneous compression. All principal dynamic parameters (plasma dynamics and radiative) of the compressed target plasma have been determined. The work performed allows us to draw the following initial conclusion: it is advisable to create compact neutron generators based on the MIF scheme on a multi-layer version of the target (made of “heavy” chemical elements). Full article
(This article belongs to the Special Issue Advances in Fusion Engineering and Design Volume II)
Show Figures

Figure 1

8 pages, 749 KB  
Communication
Numerical Investigation on the Effect of Smoothing by Spectral Dispersion on Transverse Stimulated Raman Scattering Gain in KDP Crystals
by Xinmin Fan, Chunhong Wang, Yan Wang, Jianxin Zhang, Yong Shang, Shun Li, Fuyong Qin, Zaifa Du and Chunyan Wang
Photonics 2025, 12(9), 843; https://doi.org/10.3390/photonics12090843 - 24 Aug 2025
Cited by 1 | Viewed by 908
Abstract
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam [...] Read more.
In inertial confinement fusion (ICF) laser drivers, large-aperture high-intensity third-harmonic (3ω, central wavelength 351 nm) laser pulses passing through KDP crystals (potassium dihydrogen phosphate) can produce strong transverse stimulated Raman scattering (TSRS). TSRS not only depletes the energy of the 3ω laser beam but also damages the KDP crystal, thus significantly limiting the enhancement of ICF laser driver capabilities. Therefore, effectively suppressing TSRS in KDP crystals is a critical issue in the design and construction of ICF laser driver systems. This paper first proposes that SSD has the ability to suppress TSRS through theoretical analysis of the characteristics of SSD beams. Secondly, through numerical simulations, it presents the influence of variations in three key parameters—modulation amplitude, modulation frequency, and grating dispersion coefficient—on the TSRS gain. The results show that the Stokes gain decreases with increasing modulation amplitude and modulation frequency; specifically, the suppression capability of SSD for TSRS gradually strengthens as modulation bandwidth increases. In addition, previous reports have demonstrated that SSD can significantly suppress stimulated rotational Raman scattering (SRRS) in air, which highlights the potential value of applying SSD in large laser facilities such as ICF driver systems. Full article
Show Figures

Figure 1

15 pages, 1695 KB  
Article
Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes
by Xiao Wen, Xiutao Chen, Feng Wang and Chen Feng
Processes 2025, 13(7), 2260; https://doi.org/10.3390/pr13072260 - 15 Jul 2025
Viewed by 723
Abstract
Inertial confinement fusion (ICF) stands as one of the approaches to achieve controlled thermonuclear fusion, capable of supplying humans with abundant, economical, and safe energy. In this study, the high-order hybrid compact–WENO scheme is employed to simulate Rayleigh–Taylor instability (RTI) phenomena, one of [...] Read more.
Inertial confinement fusion (ICF) stands as one of the approaches to achieve controlled thermonuclear fusion, capable of supplying humans with abundant, economical, and safe energy. In this study, the high-order hybrid compact–WENO scheme is employed to simulate Rayleigh–Taylor instability (RTI) phenomena, one of the challenges hindering the realization of ICF, and to investigate the interaction of RTI phenomena in a multi-layer fluid system. To ensure a more reasonable comparison, the corresponding initial and boundary conditions for three-layer and four-layer fluids are derived based on the same Atwood number. Numerical results show that with the development of RTI phenomena, the interaction between interfaces can be gradually observed. The number of fluid layers exhibits an inhibitory effect on the development of RTI phenomena. When a pair of spike and bubble at two adjacent interfaces reach the same height, the evolution of the spike–bubble gap changes significantly. Full article
Show Figures

Figure 1

12 pages, 2832 KB  
Article
Dual-Color and High-Energy X-Ray Kirkpatrick–Baez Microscope for Laser Plasma Research
by Mingtao Li, Jiapeng Shi, Mingxun Wang, Jie Xu, Xin Wang, Baozhong Mu, Jianjun Dong, Kuan Ren, Wei Liu, Xing Zhang and Dong Yang
Photonics 2025, 12(7), 630; https://doi.org/10.3390/photonics12070630 - 20 Jun 2025
Viewed by 819
Abstract
High-energy X-ray diagnostic systems are crucial for understanding hotspot high-density area asymmetry, fuel mixing, and other phenomena in inertial confinement fusion. To meet the demand for hotspot electron temperature measurements, we developed a high-energy dual-channel Kirkpatrick–Baez microscope. This microscope is characterized by a [...] Read more.
High-energy X-ray diagnostic systems are crucial for understanding hotspot high-density area asymmetry, fuel mixing, and other phenomena in inertial confinement fusion. To meet the demand for hotspot electron temperature measurements, we developed a high-energy dual-channel Kirkpatrick–Baez microscope. This microscope is characterized by a dual high-energy response and high spatial resolution, enabling the observation of fine structures in high-density regions of a hotspot. Spectral drift was effectively mitigated by optimizing the grazing incidence angle, and the spatial and spectral domains were coupled through experimental alignment. Herein, we describe the optical design of the proposed microscope. Furthermore, we performed simulations and backlight imaging to validate the performance of the proposed system. The results show that the spatial resolution was better than 3 μm in the center and better than 6.5 μm in a field of view of 300 μm. The spectral response efficiencies at 11.4 and 17.48 keV were 7.41 × 10−8 and 5.77 × 10−8 sr, which deviate from the theoretical values by 3.01% and 6.79%, respectively. Full article
(This article belongs to the Section Lasers, Light Sources and Sensors)
Show Figures

Figure 1

14 pages, 488 KB  
Article
A Theoretical Study of the Ionization States and Electrical Conductivity of Tantalum Plasma
by Shi Chen, Qishuo Zhang, Qianyi Feng, Ziyue Yu, Jingyi Mai, Hongping Zhang, Lili Huang, Chengjin Huang and Mu Li
Plasma 2025, 8(2), 16; https://doi.org/10.3390/plasma8020016 - 28 Apr 2025
Viewed by 1507
Abstract
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization [...] Read more.
Tantalum is extensively used in inertial confinement fusion research for targets in radiation transport experiments, hohlraums in magnetized fusion experiments, and lining foams for hohlraums to suppress wall motions. To comprehend the physical processes associated with these applications, detailed information regarding the ionization composition and electrical conductivity of tantalum plasma across a wide range of densities and temperatures is essential. In this study, we calculate the densities of ionization species and the electrical conductivity of partially ionized, nonideal tantalum plasma based on a simplified theoretical model that accounts for high ionization states up to the atomic number of the element and the lowering of ionization energies. A comparison of the ionization compositions between tantalum and copper plasmas highlights the significant role of ionization energies in determining species populations. Additionally, the average electron–neutral momentum transfer cross-section significantly influences the electrical conductivity calculations, and calibration with experimental measurements offers a method for estimating this atomic parameter. The impact of electrical conductivity in the intermediate-density range on the laser absorption coefficient is discussed using the Drude model. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

20 pages, 6823 KB  
Article
Hybrid Heading Estimation Approach for Micro Coaxial Drones Based on Motion-Adaptive Stabilization and APEKF
by Haoming Yang, Xukai Ding, Liye Zhao and Xingyu Chen
Drones 2025, 9(4), 255; https://doi.org/10.3390/drones9040255 - 27 Mar 2025
Viewed by 1072
Abstract
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic [...] Read more.
Coaxial drones have garnered popularity owing to their energy efficiency and compact design. However, the precise navigation of these drones in complex and dynamic flight scenarios is limited by inaccuracies in heading/yaw estimation. Conventional heading estimation methods rely on magnetometers and real-time kinematic Global Navigation Satellite Systems (RTK-GNSS), which directly measure heading angle. However, the small size of microdrones restricts the placement of magnetometers away from magnetic interference and prevents the use of directional antennas. Moreover, single-antenna alignment algorithms are highly susceptible to errors caused by nonlinearity, leading to significant inaccuracies in heading estimation. To address these challenges, this paper proposes a hybrid heading estimation approach that integrates Motion-Adaptive Stabilization with an Angle-Parameterized Extended Kalman Filter (APEKF). This method utilizes low-cost GNSS, a magnetometer, and an Inertial Measurement Unit (IMU). Heading is initialized based on the drone’s static attitude, with an adaptive threshold established during takeoff to account for varying flight conditions. As the drone reaches higher altitudes, heading estimation is further stabilized. GNSS velocity observations enhance estimation accuracy through horizontal maneuvering alignment achieved by incorporating multiple sub-filter techniques and residual-based fusion. In the simulations and onboard experiments in this study, the proposed heading estimation method demonstrated a precision of approximately 1.01° post-takeoff, with the alignment speed enhanced by 43%. Moreover, the method outperformed existing estimation techniques and, owing to its low computational overhead, can serve as a reliable full-stage backup across various drone applications. Full article
Show Figures

Figure 1

16 pages, 465 KB  
Article
Improved Ionization Potential Depression Model Incorporating Dynamical Structure Factors and Electron Degeneracy for Non-Ideal Plasma Composition
by Yeldos Seitkozhanov, Karlygash Dzhumagulova and Erik Shalenov
Entropy 2025, 27(3), 253; https://doi.org/10.3390/e27030253 - 27 Feb 2025
Cited by 2 | Viewed by 1675
Abstract
In this work, we present an improved model for ionization potential depression (IPD) in dense plasmas that builds upon the approach introduced by Lin et al., which utilizes a dynamical structure factor (SF) to account for ionic microfield fluctuations. The main refinements include [...] Read more.
In this work, we present an improved model for ionization potential depression (IPD) in dense plasmas that builds upon the approach introduced by Lin et al., which utilizes a dynamical structure factor (SF) to account for ionic microfield fluctuations. The main refinements include the following: (1) replacing the Wigner–Seitz radius with an ion-sphere radius, thereby treating individual ionization events as dynamically independent; (2) incorporating electron degeneracy through a tailored interpolation between Debye–Hückel and Thomas–Fermi screening lengths. Additionally, we solve the Saha equation iteratively, ensuring self-consistent determination of the ionization balance and IPD corrections. These modifications yield significantly improved agreement with recent high-density and high-temperature experimental data on warm dense aluminum, especially in regimes where strong coupling and partial degeneracy are crucial. The model remains robust over a broad parameter space, spanning temperatures from 1 eV up to 1 keV and pressures beyond the Mbar range, thus making it suitable for applications in high-energy-density physics, inertial confinement fusion, and astrophysical plasma research. Our findings underscore the importance of accurately capturing ion microfield fluctuations and electron quantum effects to properly describe ionization processes in extreme environments. Full article
(This article belongs to the Section Statistical Physics)
Show Figures

Figure 1

55 pages, 11197 KB  
Review
State-of-the-Art Navigation Systems and Sensors for Unmanned Underwater Vehicles (UUVs)
by Md Mainuddin Sagar, Menaka Konara, Nate Picard and Kihan Park
Appl. Mech. 2025, 6(1), 10; https://doi.org/10.3390/applmech6010010 - 2 Feb 2025
Cited by 7 | Viewed by 8818
Abstract
Researchers are currently conducting several studies in the field of navigation systems and sensors. Even in the past, there was a lot of research regarding the field of velocity sensors for unmanned underwater vehicles (UUVs). UUVs have various services and significance in the [...] Read more.
Researchers are currently conducting several studies in the field of navigation systems and sensors. Even in the past, there was a lot of research regarding the field of velocity sensors for unmanned underwater vehicles (UUVs). UUVs have various services and significance in the military, scientific research, and many commercial applications due to their autonomy mechanism. So, it’s very crucial for the proper maintenance of the navigation system. Reliable navigation of unmanned underwater vehicles depends on the quality of their state determination. There are so many navigation systems available, like position determination, depth information, etc. Among them, velocity determination is now one of the most important navigational criteria for UUVs. The key source of navigational aids for different deep-sea research projects is water currents. These days, many different sensors are available to monitor the UUV’s velocity. In recent times, there have been five primary types of sensors utilized for UUV velocity forecasts. These include Doppler Velocity Logger sensors, paddlewheel sensors, optical sensors, electromagnetic sensors, and ultrasonic sensors. The most popular sensing sensor for estimating velocity at the moment is the Doppler Velocity Logger (DVL) sensor. DVL sensor is the most fully developed sensor for UUVs in recent years. In this work, we offer an overview of the field of navigation systems and sensors (especially velocity) developed for UUVs with respect to their use with tidal current sensing in the UUV setting, including their history, evolution, current research initiatives, and anticipated future. Full article
Show Figures

Figure 1

13 pages, 1268 KB  
Article
Simulation and Analysis of Imaging Process of Phosphor Screens for X-Ray Imaging of Streak Tube Using Geant4-Based Monte Carlo Method
by Zichen Wang, Riyi Lin, Yuxiang Liao, Lin Tang, Zhenhua Wu, Diwei Liu, Renbin Zhong and Kaichun Zhang
Sensors 2025, 25(3), 881; https://doi.org/10.3390/s25030881 - 31 Jan 2025
Cited by 1 | Viewed by 1822
Abstract
Ultrafast diagnostic technology has caused breakthroughs in fields such as inertial confinement fusion, particle accelerator research, and laser-induced phenomena. As the most widely used tool for ultrafast diagnostic technology, investigating the characteristics of streak cameras in the imaging process and streak tubes’ complex [...] Read more.
Ultrafast diagnostic technology has caused breakthroughs in fields such as inertial confinement fusion, particle accelerator research, and laser-induced phenomena. As the most widely used tool for ultrafast diagnostic technology, investigating the characteristics of streak cameras in the imaging process and streak tubes’ complex physical processes is significant for its overall development. In this work, the imaging process of a streak camera is modeled and simulated using Geant4-based Monte Carlo simulations. Based on the selected phosphor screen P43 (Gd2O2S: Tb) and charged coupled device (CCD) sensor parameters, Monte Carlo simulation models of phosphor screens and CCD sensors (We refer to the sensor parameters of the US company onsemi’s KAF-50100 sensor, but some adjustments are made during the simulation), implemented with the toolkit Geant4, are used to study the electron beam to generate fluorescence on phosphor and photoelectrons on CCD sensors. The physical process of a high-energy electron beam hitting a phosphor screen and imaging on the CCD camera is studied. Meanwhile, merits such as the luminous efficiency of the selected phosphor, spatial resolution of the phosphor screen, and spatial resolution of the selected CCD sensor are analyzed. The simulation results show that the phosphor screen and CCD sensor simulation models can accurately simulate the selected components’ performance parameters with the imaging process’ simulation results precisely reflecting the distribution of output electrons in the streak image tube. References for simulation and device selection in the subsequent research on streak cameras can be provided. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

Back to TopTop