Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes
Abstract
1. Introduction
2. Hybrid Compact–WENO Scheme
Artificial Neural Network Discontinuous Detector
3. Rayleigh–Taylor Instability
3.1. Case 1: RTI in Two-Layer Fluid
3.2. Case 2: RTI in Three-Layer Fluid
3.3. Case 3: RTI in Four-Layer Fluid
4. Numerical Results
4.1. Results of Case 1
4.2. Results of Case 2
4.3. Results of Case 3
4.4. Comparison Between Case 2 and Case 3
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jiang, S. Recent progress of inertial confinement fusion experiments in China. Ser. G Phys. Mech. Astron. 2009, 39, 1571–1583. [Google Scholar]
- Rayleigh, L. Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density. Proc. Lond. Math. Soc. 1882, s1-14, 170–177. [Google Scholar] [CrossRef]
- Taylor, G. The formation of a blast wave by a very intense explosion. Math. Phys. Sci. 1950, 201, 159–174. [Google Scholar]
- Chandrasekhar, S.; Gillis, J. Hydrodynamic and hydromagnetic stability. Phys. Today 1962, 15, 58. [Google Scholar] [CrossRef]
- Ott, E. Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer. Phys. Rev. Lett. 1972, 29, 1429–1432. [Google Scholar] [CrossRef]
- Baker, G.R.; Mccrory, R.L.; Verdon, C.P.; Orszag, S.A. Rayleigh-Taylor instability of fluid layers. J. Fluid Mech. 1987, 178, 161–175. [Google Scholar] [CrossRef]
- Li, X.L.; Glimm, J.; Jin, B.X. Numerical study for the three dimensional Rayleigh-Taylor instability through the TVD/AC scheme and parallel computation. J. Comput. Phys. 1996, 126, 343–355. [Google Scholar] [CrossRef]
- Tang, W.J.; Zhang, J.L.; Li, X.L. The Ghost method for fluid interface instability in 3D. Chin. J. Comput. Phys. 2001, 02, 163–169. [Google Scholar]
- Ramaprabhu, P.; Dimonte, G.; Woodward, P. The late-time dynamics of the single-mode Rayleigh-Taylor instability. Phys. Fluids 2012, 24, 074107. [Google Scholar] [CrossRef]
- Wang, N.N.; Liu, H.H.; Zhang, C.H. Numerical simulation of Rayleigh-Taylor instability nased on lattice Boltzmann method. J. Eng. Thermophys. 2016, 37, 89–94. [Google Scholar]
- Sundaram, P.; Sengupta, A.; Sengupta, T. A non-overlapping high accuracy parallel subdomain closure for compact scheme: Onset of Rayleigh-Taylor instability by ultrasonic waves. J. Comput. Phys. 2022, 470, 111593. [Google Scholar] [CrossRef]
- Joshi, B.; Sengupta, A.; Ajanif, Y.; Lestandi, L. Spatio-temporal pulse propagation during highly-resolved onset of Rayleigh-Taylor and Kelvin-Helmholtz instabilities. arXiv 2025, arXiv:2505.07433. [Google Scholar]
- Jiang, G.-S.; Shu, C.-W. Efficient Implementation of Weighted ENO Schemes. J. Comput. Phys. 1996, 126, 202–228. [Google Scholar] [CrossRef]
- Shu, C.-W. Essentially Non-Oscillatory and Weighted ENO Schemes for Hyperbolic Conservation Laws. In Advanced Numerical Approximation of Nonlinear Hyperbolic Equations; Quarteroni, A., Ed.; Lecture Notes in Mathematics; Springer: Berlin/Heidelberg, Germany, 1998; Volume 1697, pp. 325–432. [Google Scholar]
- Shi, J.; Zhang, Y.T.; Shu, C.-W. Resolution of high order WENO schemes for complicated flow structures. J. Comput. Phys. 2003, 186, 690–696. [Google Scholar] [CrossRef]
- Han, S.; Li, M.; Guo, B. The high order finite volume weighted essentially non-oscillatory schemes to solve the Rayleigh-Taylor Instability. In Proceedings of the AISS ’21: 3rd International Conference on Advanced Information Science and System, Sanya, China, 26–28 November 2021; Volume 60, pp. 1–5. [Google Scholar]
- Costa, B.; Don, W.S. High order hybrid central-WENO finite difference scheme for conservation laws. J. Comput. Appl. Math. 2007, 204, 209–218. [Google Scholar] [CrossRef]
- Pirozzoli, S. Conservative hybrid compact–WENO schemes for shock-turbulence interaction. J. Comput. Phys. 2002, 178, 81–117. [Google Scholar] [CrossRef]
- Don, W.S.; Gao, Z.; Li, P.; Wen, X. Hybrid compact–WENO finite difference scheme with conjugate Fourier shock detection algorithm for hyperbolic conservation laws. Siam J. Sci. Comput. 2016, 38, A691–A711. [Google Scholar] [CrossRef]
- Ren, Y.X.; Liu, M.; Zhang, H. A characteristic-wise hybrid compact–WENO scheme for solving hyperbolic conservation laws. J. Comput. Phys. 2003, 192, 365–386. [Google Scholar] [CrossRef]
- Gao, Z.; Don, W.S. Mapped hybrid central-WENO finite difference scheme for detonation waves simulations. J. Comput. Sci. 2012, 55, 351–371. [Google Scholar] [CrossRef]
- Guo, Q.L.; Sun, D.; Li, C.; Liu, P.X.; Zhang, H.X. A new discontinuity indicator for hybrid WENO schemes. J. Comput. Sci. 2017, 83, 28. [Google Scholar] [CrossRef]
- Wu, X.S.; Zhao, Y.X. A high-resolution hybrid scheme for hyperbolic conservation laws. Int. J. Numer. Methods Fluids 2015, 78, 162–187. [Google Scholar]
- Li, G.; Lu, C.; Qiu, J. Hybrid well-balanced WENO schemes with different indicators for shallow water equations. J. Comput. Sci. 2012, 51, 527–559. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.B.; Qiu, J.X. A hybrid Hermite WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 2020, 405, 109175. [Google Scholar] [CrossRef]
- Wen, X.; Don, W.S.; Gao, Z.; Hesthaven, J.S. An edge detector based on artificial neural network with application to hybrid Compact–WENO finite difference scheme. J. Comput. Sci. 2020, 83, 49. [Google Scholar] [CrossRef]
- Gao, Z.; Wen, X.; Don, W.S. Enhanced robustness of the hybrid compact-WENO finite difference scheme for hyperbolic conservation laws with multi-resolution analysis and Tukey’s boxplot method. J. Comput. Sci. 2017, 73, 736–752. [Google Scholar] [CrossRef]
- Zhu, Q.Q.; Gao, Z.; Don, W.S.; Lv, X.Q. Well-balanced hybrid compact–WENO schemes for shallow water equations. Appl. Numer. Math. 2017, 112, 65–78. [Google Scholar] [CrossRef]
- Vasilyev, O.; Lund, T.; Moin, P. A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 1998, 146, 82–104. [Google Scholar] [CrossRef]
D | Parameter | Number | ||
---|---|---|---|---|
c | 20,000 | 0 | ||
- | 18,000 | 0 | ||
40,000 | 0 | |||
, | 40,000 | 0 | ||
10,000 | 1 | |||
80,000 | 1 |
N | WENO | Hybrid | SF | Percentage |
---|---|---|---|---|
50 × 200 | 120.6 | 91.98 | 1.31 | 22.1% |
100 × 400 | 882.3 | 482.1 | 1.83 | 12.8% |
200 × 800 | 6964 | 2966 | 2.35 | 10.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, X.; Chen, X.; Wang, F.; Feng, C. Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes. Processes 2025, 13, 2260. https://doi.org/10.3390/pr13072260
Wen X, Chen X, Wang F, Feng C. Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes. Processes. 2025; 13(7):2260. https://doi.org/10.3390/pr13072260
Chicago/Turabian StyleWen, Xiao, Xiutao Chen, Feng Wang, and Chen Feng. 2025. "Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes" Processes 13, no. 7: 2260. https://doi.org/10.3390/pr13072260
APA StyleWen, X., Chen, X., Wang, F., & Feng, C. (2025). Multiscale Modeling of Rayleigh–Taylor Instability in Stratified Fluids Using High-Order Hybrid Schemes. Processes, 13(7), 2260. https://doi.org/10.3390/pr13072260