Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,577)

Search Parameters:
Keywords = industrial sites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 8063 KiB  
Article
Concentration Characteristics, Source Analysis, and Health Risk Assessment of Water-Soluble Heavy Metals in PM2.5 During Winter in Taiyuan, China
by Qingyu Hu, Chao Zhang, Yang Chen, Nan Pei, Yufeng Zhao, Lijuan Sun, Jie Lan, Fengxian Liu, Ziyong Guo, Ling Mu, Jiancheng Wang and Xinhui Bi
Atmosphere 2025, 16(8), 980; https://doi.org/10.3390/atmos16080980 (registering DOI) - 17 Aug 2025
Abstract
To address the research gap on water-soluble heavy metals (WSHMs) in Taiyuan, China, we conducted a winter campaign (18–29 January 2019) at an urban site to measure fifteen WSHMs (Zn, Fe, Mn, Ba, Cu, Se, As, Sb, Sn, Pb, Ni, V, Ti, Cd, [...] Read more.
To address the research gap on water-soluble heavy metals (WSHMs) in Taiyuan, China, we conducted a winter campaign (18–29 January 2019) at an urban site to measure fifteen WSHMs (Zn, Fe, Mn, Ba, Cu, Se, As, Sb, Sn, Pb, Ni, V, Ti, Cd, and Co). The mean concentration of total WSHMs (∑WSHMs) in PM2.5 was 209.17 ± 187.21 ng m−3. Notably, the mass concentrations of ∑WSHMs on heavy pollution days (291.01 ± 170.64 ng m−3) were 224.8% higher than those on mild pollution days (89.61 ± 55.36 ng m−3). Principal component analysis (PCA) was applied in combination with absolute principal component score–multiple linear regression (APCS-MLR) to analyze pollution sources and their contributions. The results showed that the main sources of pollution were coal combustion and vehicle emissions (42.50%), along with the metallurgical industry and natural dust (34.47%). The carcinogenic and non-carcinogenic risks of WSHMs were assessed for both adults and children based on the United States Environmental Protection Agency’s (U.S. EPA) assessment guidelines and the International Agency for Research on Cancer (IARC) database. Children faced higher non-carcinogenic risks (hazard index = 2.37) than adults (hazard index = 0.30), exceeding the safety threshold (hazard index = 1). The total carcinogenic risk reached 2.20 × 10−5, exceeding the threshold value (1 × 10−6) for carcinogenic risk. Water-soluble arsenic (As) dominated both carcinogenic and non-carcinogenic risks in winter and was the riskiest element. These findings provide an essential basis for controlling PM2.5-bound WSHMs in industrialized areas. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

14 pages, 1466 KiB  
Article
Anti-Helicobacter pylori Compounds of Sambucus williamsii Hance Branch
by Woo-Jin Jeong, Dong-Min Kang, Atif Ali Khan Khalil, Bashu Dev Neupane, Seong-Joon Cho, Na-In Yang, Ki-Hyun Kim and Mi-Jeong Ahn
Plants 2025, 14(16), 2558; https://doi.org/10.3390/plants14162558 (registering DOI) - 17 Aug 2025
Abstract
Sambucus williamsii Hance (Viburnaceae), the Korean elderberry, is widely used in herbal medicine and in the food industry. It is known to have various pharmacological effects, including antitumor, antioxidant, anti-inflammatory, and antimicrobial activities. During our search for anti-Helicobacter pylori compounds from natural [...] Read more.
Sambucus williamsii Hance (Viburnaceae), the Korean elderberry, is widely used in herbal medicine and in the food industry. It is known to have various pharmacological effects, including antitumor, antioxidant, anti-inflammatory, and antimicrobial activities. During our search for anti-Helicobacter pylori compounds from natural resources, the methanol extract of the S. williamsii branch significantly inhibited the growth of H. pylori. Three phenolic and four lignan compounds were isolated from the methylene chloride fraction that had shown the most potent anti-H. pylori activity among the hexane, methylene chloride, ethyl acetate, butanol, and water fractions. The chemical structures were identified to be three phenolics of sylvopinol (1), dihydroconiferyl alcohol (2), and (7S,8R)-guaiacylglycerol (3) and four lignans of boehmenan (4), (7S,8S)-guaiacylglycerol β-coniferyl ether (6) and lawsonicin (7) with a new lignan, (7R,8R)-sambucanol (5), the structure of which was established by 1H- and 13C-NMR, and HRESI-MS, as well as quantum chemical electronic circular dichroism (ECD) calculations. Among the isolates, compounds 3 and 4 exhibited significant anti-H. pylori activity against strains 51 and 26695. Compound 3 displayed more potent antibacterial activity with MIC values of 3.13 and 6.25 μM, and MIC50 values of 28.5 and 56.8 μM against the two strains, respectively. Their inhibitory activities were higher than those of a positive control, quercetin. Furthermore, these two compounds showed moderate urease inhibitory activity. A molecular docking simulation revealed the high binding ability of 3 and 4 to the active site of H. pylori urease. These results will provide further insights into the design of more potent natural products for eradicating H. pylori. Full article
Show Figures

Figure 1

18 pages, 5597 KiB  
Article
Loading Eu2O3 Enhances the CO Oxidation Activity and SO2 Resistance of the Pt/TiO2 Catalyst
by Zehui Yu, Jianyu Cai, Yudong Meng, Jian Li, Wenjun Liang and Xing Fan
Catalysts 2025, 15(8), 783; https://doi.org/10.3390/catal15080783 (registering DOI) - 16 Aug 2025
Abstract
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the [...] Read more.
Pt/TiO2 and Pt-Eu2O3/TiO2 catalysts were prepared via the impregnation method for catalytic oxidation of CO. The Pt-2Eu2O3/TiO2 catalyst exhibited better CO oxidation activity as well as greater SO2 resistance than the Pt/TiO2 catalyst. For the inlet gas consisting of 0.8% CO, 5% O2, and balanced N2, the lowest complete conversion temperatures (T100) of CO were 120 °C and 140 °C for the Pt-2Eu2O3/TiO2 and Pt/TiO2 catalysts, respectively. During the 72 h SO2-resistance test at 200 °C under an inlet gas composition of 0.8% CO, 5% O2, 15% H2O, 50 ppm SO2, and balanced N2, the CO conversion on the Pt-2Eu2O3/TiO2 catalyst remained >99%, while that on the Pt/TiO2 catalyst gradually decreased to 77.8%. Pre-loading 2 wt% Eu2O3 on TiO2 enhanced the dispersion of Pt, increased the proportion of Pt0, and facilitated the adsorption and dissociation of H2O, all of which promoted CO oxidation. SO2 preferentially occupied the Eu2O3 sites by forming stable sulfates on the Pt-2Eu2O3/TiO2 catalyst, which protected the Pt active sites from poisoning. The OH* species produced from the dissociation of H2O played a significant role in promoting CO oxidation through the formation of COOH* as the key reaction intermediate. The developed Pt-2Eu2O3/TiO2 catalyst has great application potential in terms of the removal of CO from industrial flue gases. Full article
(This article belongs to the Special Issue Heterogeneous Catalysis in Air Pollution Control)
Show Figures

Figure 1

19 pages, 409 KiB  
Article
Assessing the Impact of Occupational Stress on Safety Practices in the Construction Industry: A Case Study of Saudi Arabia
by Wael Alruqi, Bandar Alqahtani, Nada Salem, Osama Abudayyeh, Hexu Liu and Shafayet Ahmed
Buildings 2025, 15(16), 2895; https://doi.org/10.3390/buildings15162895 - 15 Aug 2025
Viewed by 1
Abstract
Workplace health and safety issues have long plagued the construction industry. While safety efforts have traditionally focused on physical risks, increasing attention is being paid to mental health and work-related stressors, which can negatively affect both productivity and safety. In Saudi Arabia, the [...] Read more.
Workplace health and safety issues have long plagued the construction industry. While safety efforts have traditionally focused on physical risks, increasing attention is being paid to mental health and work-related stressors, which can negatively affect both productivity and safety. In Saudi Arabia, the construction sector presents a unique context because of its highly diverse, multinational workforce. Workers of different nationalities often operate on the same job site, leading to potential communication barriers, cultural misunderstandings, and inconsistent safety practices, all of which may amplify stress and safety risks. This research aims to investigate the influence of work-related stressors on construction workers’ safety in Saudi Arabia and identify which stressors most significantly contribute to the risk of injury. A structured questionnaire was distributed to 349 construction workers across 16 job sites in Saudi Arabia. The survey measures ten key stressors identified in the literature, including job site demand, job control, job certainty, skill demand, social support, harassment and discrimination, conflict with supervisors, interpersonal conflict, and job satisfaction. Data were analyzed using logistic regression and Pearson correlation to examine relationships between stressors and self-reported injuries. The findings indicated that work-related stressors significantly predict workplace injury. While the first regression model showed a modest effect size, it was statistically significant. The second model identified job site demand and job satisfaction as the most influential predictors of injury risk. Work-related stressors, particularly high job demands and low job satisfaction, substantially increase the likelihood of injury among construction workers. These findings emphasize the importance of incorporating psychosocial risk management into construction safety practices in Saudi Arabia. Future studies should adopt longitudinal designs to explore causal relationships over time and include qualitative methods such as interviews to gain a deeper understanding. Additionally, factors such as nationality, organizational policies, and management style should be investigated to better understand their moderating effects on the stress–injury relationship. Full article
Show Figures

Figure 1

17 pages, 9261 KiB  
Article
Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics
by Haibo Dong, Haonan Chu, Wentian Zeng, Shicheng Liu and Wenyu Ye
Appl. Sci. 2025, 15(16), 9011; https://doi.org/10.3390/app15169011 - 15 Aug 2025
Viewed by 46
Abstract
Perfluoromethyl vinyl ether (PMVE) has recently emerged as a promising environmentally friendly insulating gas with potential for practical applications in the power industry. When mixed with CO2, the PMVE/CO2 mixture exhibits an elevated liquefaction temperature and enhanced insulation performance, making [...] Read more.
Perfluoromethyl vinyl ether (PMVE) has recently emerged as a promising environmentally friendly insulating gas with potential for practical applications in the power industry. When mixed with CO2, the PMVE/CO2 mixture exhibits an elevated liquefaction temperature and enhanced insulation performance, making it suitable for engineering use. In this study, density functional theory (DFT) calculations were employed to investigate the reactive sites of PMVE molecules. The results indicate that the C2–O and C3–O bonds are the most susceptible to breakage, highlighting their high reactivity. The optimal insulation performance of the PMVE/CO2 mixture is achieved at a CO2 concentration of approximately 60%, with significant molecular decomposition observed at temperatures exceeding 2600 K. The primary decomposition products include C2F2, COF3, COF2, F, C2F3, CO, CF3, and C2F4. Both high temperature and elevated CO2 content accelerate the decomposition process. These findings provide valuable insights into the insulation properties and thermal stability of the PMVE/CO2 system, offering theoretical support for its potential application in eco-friendly high-voltage insulation technologies. Full article
Show Figures

Figure 1

16 pages, 7955 KiB  
Article
Development and Validation of a Computer Vision Dataset for Object Detection and Instance Segmentation in Earthwork Construction Sites
by JongHo Na, JaeKang Lee, HyuSoung Shin and IlDong Yun
Appl. Sci. 2025, 15(16), 9000; https://doi.org/10.3390/app15169000 - 14 Aug 2025
Viewed by 93
Abstract
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data [...] Read more.
Construction sites report the highest rate of industrial accidents, prompting the active development of smart safety management systems based on deep learning-based computer vision technology. To support the digital transformation of construction sites, securing site-specific datasets is essential. In this study, raw data were collected from an actual earthwork site. Key construction equipment and terrain objects primarily operated at the site were identified, and 89,766 images were processed to build a site-specific training dataset. This dataset includes annotated bounding boxes for object detection and polygon masks for instance segmentation. The performance of the dataset was validated using representative models—YOLO v7 for object detection and Mask R-CNN for instance segmentation. Quantitative metrics and visual assessments confirmed the validity and practical applicability of the dataset. The dataset used in this study has been made publicly available for use by researchers in related fields. This dataset is expected to serve as a foundational resource for advancing object detection applications in construction safety. Full article
(This article belongs to the Section Civil Engineering)
Show Figures

Figure 1

18 pages, 2913 KiB  
Article
At Home in Chinatown: Community-Based Art Activism and Cultural Placemaking for Neighborhood Stabilization
by Lily Song and Heang Leung Rubin
Arts 2025, 14(4), 95; https://doi.org/10.3390/arts14040095 - 14 Aug 2025
Viewed by 145
Abstract
Since the turn of the 21st century, urban studies and planning research has examined the strategic role of artists, arts organizations, and cultural activity as local and regional economic development catalysts. This article shifts the spotlight from the “creative class” and “creative industries” [...] Read more.
Since the turn of the 21st century, urban studies and planning research has examined the strategic role of artists, arts organizations, and cultural activity as local and regional economic development catalysts. This article shifts the spotlight from the “creative class” and “creative industries” as drivers of a “creative city” to study the role of art, culture, and creative practices in community-led, place-based efforts to stabilize neighborhoods and advance more hopeful, healthy, and equitable urban futures. It explores Boston’s Chinatown, where community-based art activism has a long history of addressing critical issues such as reclaiming land taken by interstate highway and urban renewal projects, as well as combating gentrification and displacement through site activation. The case study focuses on Residence Lab, a community-based arts residency program initiated by the Pao Arts Center and the Asian Community Development Corporation that brought together multimedia artists with residents to collectively preserve Boston’s Chinatown through creative and artistic activation of underutilized sites in the neighborhood from 2019 to 2022. We examine a selection of ResLab projects, which give form and meaning to the struggles and aspirations of being at home in Chinatown and embody the art activism of partner organizations and program participants, along with the ResLab’s impacts on participating residents and artists. The concluding discussion considers ResLab’s contributions and implications for the shifting ways in which urban, political, and artistic cultures have intersected and impacted one another in Chinatown along with the relationship between collective action and the preservation and transformation of culture in the urban frame. Full article
(This article belongs to the Special Issue The Arts and Urban Development)
Show Figures

Figure 1

25 pages, 3517 KiB  
Review
Mechanism, Modeling and Challenges of Geological Storage of Supercritical Carbon Dioxide
by Shun Wang, Kan Jin, Wei Zhao, Luojia Ding, Jingning Zhang and Di Xu
Energies 2025, 18(16), 4338; https://doi.org/10.3390/en18164338 - 14 Aug 2025
Viewed by 101
Abstract
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration [...] Read more.
CO2 geological storage (CGS) is critical for mitigating emissions in hard-to-abate industries under carbon neutrality. However, its implementation faces significant challenges. This paper examines CO2-trapping mechanisms and proposes key safety measures: the continuous monitoring of in situ CO2 migration and formation pressure dynamics to prevent remobilization, and pre-injection lithological analysis to assess mineral trapping potential. CO2 injection alters reservoir stresses, inducing surface deformation; understanding long-term rock mechanics (creep, damage) is paramount. Thermomechanical effects from supercritical CO2 injection pose risks to caprock integrity and fault reactivation, necessitating comprehensive, multi-scale, real-time monitoring for leakage detection. Geostatistical analysis of well log and seismic data enables realistic subsurface characterization, improving numerical model accuracy for risk assessment. This review synthesizes current CGS knowledge, analyzes technical challenges, and aims to inform future site selection, operations, and monitoring strategies. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Graphical abstract

26 pages, 3774 KiB  
Article
Low-Carbon Industrial Heating in the EU and UK: Integrating Waste Heat Recovery, High-Temperature Heat Pumps, and Hydrogen Technologies
by Pouriya H. Niknam
Energies 2025, 18(16), 4313; https://doi.org/10.3390/en18164313 - 13 Aug 2025
Viewed by 355
Abstract
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the [...] Read more.
This research introduces a two-stage, low-carbon industrial heating process, leveraging advanced waste heat recovery (WHR) technologies and exploiting waste heat (WH) to drive decentralised hydrogen production. This study is supported by a data-driven analysis of individual technologies, followed by 0D modelling of the integrated system for technical and feasibility assessment. Within 10 years, the EU industry will be supported by two main strategies to transition to low-carbon energy: (a) shifting from grid-mix electricity towards fully renewable sources, and (b) expanding low-carbon hydrogen infrastructure within industrial clusters. On the demand side, process heating in the industrial sector accounts for 70% of total energy consumption in industry. Almost one-fifth of the energy consumed to fulfil the process heat demand is lost as waste. The proposed heating solution is tailored for process heat in industry and stands apart from the dual-mode residential heating system (i.e., heat pump and gas boiler), as it is based on integrated and simultaneous operation to meet industry-level reliability at higher temperatures, focusing on WHR and low-carbon hydrogen. The solution uses a cascaded heating approach. Low- and medium-temperature WH are exploited to drive high-temperature heat pumps (HTHPs), followed by hydrogen burners fuelled by hydrogen generated on-site by electrolysers, which are powered by advanced WHR technologies. The results revealed that the deployment of the solution at scale could fulfil ~14% of the process heat demand in EU/UK industries by 2035. Moreover, with further availability of renewable energy sources and clean hydrogen, it could have a higher contribution to the total process heat demand as a low-carbon solution. The economic analysis estimates that adopting the combined heating solution—benefiting from the full capacity of WHR for the HTHP and on-site hydrogen production—would result in a levelised cost of heat of ~EUR 84/MWh, which is lower than that of full electrification of industrial heating in 2035. Full article
Show Figures

Figure 1

40 pages, 8276 KiB  
Article
Designing a Scalable Safety Cost Model for the Surveying Industry: A Dual Approach for Routine and High-Risk Projects
by Suk-Bae Lee, Sang-Hoon Lee, Tae-Hoon Kim and Seung-Jun Lee
Buildings 2025, 15(16), 2868; https://doi.org/10.3390/buildings15162868 - 13 Aug 2025
Viewed by 211
Abstract
The surveying industry, often operating in high-risk environments such as construction sites and transport corridors, currently lacks a standardized framework for estimating and allocating safety management costs. This study proposes a dual-mode safety cost framework designed to address this gap, combining a rate-based [...] Read more.
The surveying industry, often operating in high-risk environments such as construction sites and transport corridors, currently lacks a standardized framework for estimating and allocating safety management costs. This study proposes a dual-mode safety cost framework designed to address this gap, combining a rate-based model for routine projects with an actual-cost model for complex operations requiring detailed labor, equipment, and safety cost estimation. Employing a mixed-methods approach—comprising regulatory analysis, a nationwide survey (n = 63), and expert interviews (n = 4)—we assess the feasibility and institutional applicability of this framework. Our findings highlight persistent issues in safety budgeting practices, including inconsistent safety protocols, lack of designated safety personnel, and limited training programs. In response, we developed a draft guideline to standardize safety measures across project phases, with criteria for personnel allocation, safety equipment selection, and training schedules. Simulation analyses show that the rate-based model, when applied at 3.5% of the total project costs, simplifies budgeting for routine projects. In contrast, the actual-cost model offers more precise budgeting for high-risk projects, typically accounting for 6–7% of costs depending on complexity. This scalable and adaptable framework is particularly relevant for small and medium-sized enterprises (SMEs) and technical service contracts. More broadly, it offers a transferable foundation for integrating safety cost estimation into public infrastructure projects and digital construction workflows, providing a critical policy tool for contexts worldwide that lack formalized safety cost systems. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

21 pages, 1697 KiB  
Article
Coordinative Scheduling Method for Source–Load–Storage Integrated Systems Considering the Utilization of Energy-Intensive Industry Loads for Regulation
by Zhongzheng Li, Gaohang Zhang, Mengke Liao and Erbiao Zhou
Sustainability 2025, 17(16), 7321; https://doi.org/10.3390/su17167321 - 13 Aug 2025
Viewed by 224
Abstract
With the increasing penetration of renewable energy in power systems, it is vital to adopt methods to enhance the acceptance capacity of renewable energy. Energy-intensive loads have excellent potential for regulating the utilization of renewable energy. Existing studies have often overlooked the regulatory [...] Read more.
With the increasing penetration of renewable energy in power systems, it is vital to adopt methods to enhance the acceptance capacity of renewable energy. Energy-intensive loads have excellent potential for regulating the utilization of renewable energy. Existing studies have often overlooked the regulatory potential of energy-intensive industrial loads. The coordinated optimization of source, load, and storage can improve the matching degree between power supply and load demand and achieve on-site consumption of renewable energy. This paper proposes a coordinated optimization method for source–load–storage integrated systems, utilizing for regulation energy-intensive industrial loads such as electrolytic aluminum load and polysilicon load. The operational characteristics and regulatory ability of electrolytic aluminum load and polysilicon load were analyzed in the production process. Operation models of energy-intensive loads are proposed. A coordinated operation model of a source–load–storage integrated system is established. The operation schemes of thermal units, energy storage, and energy-intensive loads are jointly optimized to guarantee power supply capacity and renewable energy consumption. In addition, power purchase from the bulk power system and the time-of-use electricity price are considered to ensure a reliable power supply for energy-intensive loads. The case results showed that on the premise of ensuring that the production meets the requirements, the flexibility and economy of system operation were effectively improved. Reasonably rated power and capacity for the energy storage system can improve the regulation ability and reduce the operating costs of regional systems. Full article
Show Figures

Figure 1

37 pages, 3590 KiB  
Article
Efficient Simulation Algorithm and Heuristic Local Optimization Approach for Multiproduct Pipeline Networks
by András Éles and István Heckl
Logistics 2025, 9(3), 114; https://doi.org/10.3390/logistics9030114 - 12 Aug 2025
Viewed by 110
Abstract
Background: Managing multiproduct pipeline systems is a complex task of critical importance in the petroleum industry. Experts frequently rely on simulation tools to design and validate pumping operation schedules. However, existing tools are often problem-specific and too slow to be effectively used for [...] Read more.
Background: Managing multiproduct pipeline systems is a complex task of critical importance in the petroleum industry. Experts frequently rely on simulation tools to design and validate pumping operation schedules. However, existing tools are often problem-specific and too slow to be effectively used for optimization purposes. Methods: In this paper, a new scheduling model is introduced, which inherently eliminates all conflicts except for tank overflows and underflows. A Discrete-Event Simulation algorithm was developed, capable of handling mesh-like pipeline topologies, reverse flows, and interface tracking. The computational performance of the new method is demonstrated using three local search-based optimization variants, including a simulated annealing metaheuristic. Results: A case study was made involving four problems, with 4–6 sites and 5–7 products in mesh-like and straight topologies, respectively, and a large-scale instance. Scheduling horizons of 2–28 days were used. The proposed simulation algorithm significantly outperforms a prior approach in speed, and the optimization algorithms effectively converged to feasible, high-quality schedules for most instances. Conclusions: This paper proposes a novel simulation technique for multiproduct pipeline scheduling along with three local search algorithm variants that demonstrate optimization capabilities. Full article
Show Figures

Figure 1

17 pages, 1320 KiB  
Article
Yield and Survival of Shrub Willow Clones over Two Rotations Reveal Important Patterns About Selection for an Evapotranspiration Cover on a Former Industrial Site
by Hollis Burt, Mark H. Eisenbies, Karl Hallen and Timothy A. Volk
Forests 2025, 16(8), 1314; https://doi.org/10.3390/f16081314 - 12 Aug 2025
Viewed by 192
Abstract
Shrub willow (Salix spp.) is a promising candidate for evapotranspiration (ET) covers due to its rapid growth and high water use. This study assessed 30 willow clones over two three-year rotations on a former industrial waste site in Solvay, NY, with alkaline, [...] Read more.
Shrub willow (Salix spp.) is a promising candidate for evapotranspiration (ET) covers due to its rapid growth and high water use. This study assessed 30 willow clones over two three-year rotations on a former industrial waste site in Solvay, NY, with alkaline, low-organic substrates and intermittent hardpan. Survival was high after the first rotation (87.9% ± 1.7 SE), but yield was lower and more variable (6.55 Mg ha−1 y−1 ± 0.25 SE) than on mineral soils. In the second rotation, both survival (42.6% ± 3.0 SE) and yield (5.08 Mg ha−1 y−1 ± 0.38 SE) declined. Clone rankings shifted between rotations (Spearman ρ = 0.13, p = 0.48), suggesting that short-term trials poorly predict long-term performance on degraded sites. Survival emerged as the primary driver of yield, with a smaller interaction from hardpan. Clone 05X-295-014 showed notable resilience, maintaining strong performance despite widespread hardpan. Five clones from S. miyabeana and S. purpurea x S. miyabeana groups demonstrated sustained or increasing yield and survival above 60%. These findings emphasize the importance of selecting for survival alongside yield in multi-rotation trials to ensure effective long-term deployment for biomass and phytoremediation in challenging sites. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

16 pages, 916 KiB  
Article
Robust Quantum-Assisted Discrete Design of Industrial Smart Energy Utility Systems with Long-Term Operational Uncertainties: A Case Study of a Food and Cosmetic Industry in Germany
by Rushit Kansara, Loukas Kyriakidis and María Isabel Roldán Serrano
Energies 2025, 18(16), 4258; https://doi.org/10.3390/en18164258 - 11 Aug 2025
Viewed by 167
Abstract
The industrial sector is a major contributor to energy-related CO2 emissions in Europe, making the transition to renewable energy solutions essential. Decarbonization strategies integrate renewable energy sources, power-to-heat technologies, and energy storage systems into existing production sites to enhance sustainability and flexibility. [...] Read more.
The industrial sector is a major contributor to energy-related CO2 emissions in Europe, making the transition to renewable energy solutions essential. Decarbonization strategies integrate renewable energy sources, power-to-heat technologies, and energy storage systems into existing production sites to enhance sustainability and flexibility. However, a key challenge lies in designing energy systems that remain robust under long-term operational uncertainties. Usually the design of each energy system component is discrete, as it is manufactured in a predetermined size. Classical state-of-the-art coupled design and operational optimization methods are based on continuous design variables, which might give sub-optimal solutions. This study overcomes this limitation by employing novel, computationally efficient robust quantum-classical discrete-design methods. Traditional approaches often optimize operations for a single year due to the computational limitations of operational optimization algorithms, leading to designs that lack robustness. By incorporating long-term operational uncertainties, this approach ensures that selected energy-system configurations minimize both CO2 emissions and costs while maintaining resilience to variations in weather conditions and demand fluctuations. Robust discrete designs which consider operational uncertainties show 12% less global warming impact (GWI) with 27% higher total annualized cost (TAC) compared to designs based on operational optimization without uncertainty. A novel quantum-assisted non-dominated sorting genetic algorithm (QANSGA-II) shows accuracy up to 90%, which leads to 27% less computational effort than the NSGA-II algorithm. This novel method can help industries to search larger and more optimal robust discrete-design spaces for making decarbonization decisions. Full article
Show Figures

Figure 1

16 pages, 1119 KiB  
Article
An Integrated Synthesis Approach for Emergency Logistics System Optimization of Hazardous Chemical Industrial Parks
by Daqing Ma, Fuming Yang, Zhongwang Chen, Fengyi Liu, Haotian Ye and Mingshu Bi
Processes 2025, 13(8), 2513; https://doi.org/10.3390/pr13082513 - 9 Aug 2025
Viewed by 231
Abstract
The rapid clustering of Chemical Industrial Parks (CIPs) has escalated the risk of cascading disasters (e.g., toxic leaks and explosions), underscoring the need for resilient emergency logistics systems. However, traditional two-stage optimization models often yield suboptimal outcomes due to decoupled facility location and [...] Read more.
The rapid clustering of Chemical Industrial Parks (CIPs) has escalated the risk of cascading disasters (e.g., toxic leaks and explosions), underscoring the need for resilient emergency logistics systems. However, traditional two-stage optimization models often yield suboptimal outcomes due to decoupled facility location and routing decisions. To address this issue, we propose a unified mixed-integer nonlinear programming (MINLP) model that integrates site selection and routing decisions in a single framework. The model accounts for multi-source supply allocation, enforces minimum safety distance constraints, and incorporates heterogeneous economic factors (e.g., regional land costs) to ensure risk-aware, cost-efficient planning. Two deployment scenarios are considered: (1) incremental augmentation of an existing emergency network and (2) full network reconstruction after a systemic failure. Simulations on a regional CIP cluster (2400 × 2400 km) were conducted to validate the model. The integrated approach reduced facility and operational costs by 9.77% (USD 13.68 million saved) in the incremental scenario and achieved a 15.10% (USD 21.13 million saved) total cost reduction over decoupled planning in the reconstruction scenario while maintaining an 8 km minimum safety distance. This integrated approach can enhance cost-effectiveness and strengthen the resilience of high-risk industrial emergency response networks. Overall, the proposed modeling framework, which integrates spatial constraints, time-sensitive supply mechanisms, and disruption risk considerations, is not only tailored for hazardous chemical zones but also exhibits strong potential for adaptation to a variety of high-risk scenarios, such as natural disasters, industrial accidents, or critical infrastructure failures. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

Back to TopTop