Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics
Abstract
1. Introduction
2. Calculation Methods
2.1. Density Functional Theory Simulation
2.1.1. PMVE Model Construction
2.1.2. Calculation Method
2.2. Molecular Dynamics and Reaction Dynamics Simulation
2.2.1. PMVE/CO2 Model Construction
2.2.2. Calculation Method
2.3. First Principles Simulation
3. Results and Analysis
3.1. Molecular Structure and Properties of PMVE
3.1.1. Bond Strength Analysis
3.1.2. Charge Distribution
3.2. Insulating Performance Analysis of PMVE/CO2
3.3. Decomposition Process of PMVE/CO2 Mixture
3.3.1. Effect of Temperature on the Decomposition Process
3.3.2. Effect of CO2 Content on the Decomposition Process
3.4. Decomposition Mechanism of PMVE/CO2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monges, Y.; Cabañas, J.; Lopez, M.; Morel, S.; Chaparro, E. An integrated testbed IEC61850-IIoT for Gas Insulated SF6 Monitoring in SCADA systems. In Proceedings of the 2022 IEEE ANDESCON, Barranquilla, Colombia, 16–19 November 2022; pp. 1–6. [Google Scholar]
- Rokunohe, T.; Yagihashi, Y.; Aoyagi, K.; Oomori, T.; Endo, F. Development of SF6-Free 72.5 kV GIS. IEEE Trans. Power Deliv. 2007, 22, 1869–1876. [Google Scholar] [CrossRef]
- Kieffel, Y.; Irwin, T.; Ponchon, P.; Owens, J. Green gas to replace SF6 in electrical grids. IEEE Power Energy Mag. 2016, 14, 32–39. [Google Scholar] [CrossRef]
- Nechmi, H.E.; Beroual, A.; Girodet, A.; Vinson, P. Fluoronitriles/CO2 gas mixture as promising substitute to SF6 for insulation in high voltage applications. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2587–2593. [Google Scholar] [CrossRef]
- Xiao, S.; Zhang, X.; Tang, J.; Liu, S. A review on SF6 substitute gases and research status of CF3I gases. Energy Rep. 2018, 4, 486–496. [Google Scholar] [CrossRef]
- Aldy, J.E.; Stavins, R.N. Post-Kyoto International Climate Policy: Implementing Architectures for Agreement; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Stoller, P.; Doiron, C.; Tehlar, D.; Simka, P.; Ranjan, N. Mixtures of CO2 and C5F10O perfluoroketone for high voltage applications. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 2712–2721. [Google Scholar] [CrossRef]
- Beroual, A.; Haddad, A. Recent advances in the quest for a new insulation gas with a low impact on the environment to replace sulfur hexafluoride (SF6) gas in high-voltage power network applications. Energies 2017, 10, 1216. [Google Scholar] [CrossRef]
- Rabie, M.; Franck, C.M. Assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6. Environ. Sci. Technol. 2018, 52, 369–380. [Google Scholar] [CrossRef]
- Reilly, J.; Prinn, R.; Harnisch, J.; Fitzmaurice, J.; Jacoby, H.; Kicklighter, D.; Melillo, J.; Stone, P.; Sokolov, A.; Wang, C. Multi-gas assessment of the Kyoto Protocol. Nature 1999, 401, 549–555. [Google Scholar] [CrossRef]
- Kieffel, Y.; Biquez, F.; Vigouroux, D.; Ponchon, P.; Schlernitzauer, A.; Magous, R.; Cros, G.; Owens, J.G. Characteristics of g3–an alternative to SF6. CIRED 2017, 2017, 54–57. [Google Scholar] [CrossRef]
- Preve, C.; Maladen, R.; Piccoz, D. Method for validation of new eco-friendly insulating gases for medium voltage equipment. In Proceedings of the 2016 IEEE International Conference on Dielectrics (ICD), Montpellier, France, 3–7 July 2016; pp. 235–240. [Google Scholar]
- Zhang, X.; Li, Y.; Xiao, S.; Tang, J.; Tian, S.; Deng, Z. Decomposition mechanism of C5F10O: An environmentally friendly insulation medium. Environ. Sci. Technol. 2017, 51, 10127–10136. [Google Scholar] [CrossRef] [PubMed]
- Sinha, N.; Choi, H.; Song, M.-Y.; Jang, H.-J.; Oh, Y.-H.; Song, K.-D. Perfluoro-methyl-vinyl-ether as SF6 alternative in insulation applications: A DFT study on the physiochemical properties and decomposition pathways. Comput. Theor. Chem. 2023, 1225, 114159. [Google Scholar] [CrossRef]
- Park, Y.; Choi, Y.R.; Kim, D.-C.; Kim, Y.; Song, M.-Y.; Kim, Y.-W.; Cho, H.; Jang, H.-J.; Oh, Y.-H.; Song, K.-D. Total electron scattering cross section of C3F6O at the intermediate-energy region for developing an alternative insulation gas to SF6. Curr. Appl. Phys. 2022, 41, 111–115. [Google Scholar] [CrossRef]
- Sinha, N.; Song, M.-Y.; Chang, H.; Choi, H.; Jang, H.-J.; Oh, Y.-H.; Song, K.-D. Electron impact cross sections and transport studies of C3F6O. Appl. Sci. 2023, 13, 12612. [Google Scholar] [CrossRef]
- Xiao, S.; Chen, Y.; Tang, M.; Tian, S.; Xia, H.; Wang, Y.; Tang, J.; Li, Y.; Zhang, X. Characteristics of perfluoromethyl vinyl ether: A new eco-friendly alternative gas for SF6. High Volt. 2024, 9, 509–517. [Google Scholar] [CrossRef]
- Zhao, H.; Li, X.; Zhu, K.; Wang, Q.; Lin, H.; Guo, X. Study of the arc interruption performance of SF6-CO2 mixtures as a substitute for SF6. IEEE Trans. Dielectr. Electr. Insul. 2016, 23, 2657–2667. [Google Scholar] [CrossRef]
- Zhuang, X.; Zhi, L.; Huang, C. The resuming insulation discharge failure and conductor overheating failure judgment method of SF6 electrical equipment. Energy Power Eng. 2009, 1, 122. [Google Scholar] [CrossRef]
- Ono, R.; Oda, T. Measurement of gas temperature and OH density in the afterglow of pulsed positive corona discharge. J. Phys. D Appl. Phys. 2008, 41, 035204. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Zhang, X.; Xiao, S.; Tang, J. Insights on decomposition process of c-C4F8 and c-C4F8/N2 mixture as substitutes for SF6. R. Soc. Open Sci. 2018, 5, 181104. [Google Scholar] [CrossRef]
- Kondo, Y.; Ishikawa, K.; Hayashi, T.; Sekine, M.; Hori, M. Electron impact ionization of perfluoro-methyl-vinyl-ether C3F6O. Plasma Sources Sci. Technol. 2018, 27, 015009. [Google Scholar] [CrossRef]
- Yu, X.; Hou, H.; Wang, B. Prediction on dielectric strength and boiling point of gaseous molecules for replacement of SF6. J. Comput. Chem. 2017, 38, 721–729. [Google Scholar] [CrossRef]
- Sulbaek Andersen, M.P.; Kyte, M.; Andersen, S.T.; Nielsen, C.J.; Nielsen, O.J. Atmospheric Chemistry of (CF3)2CF–CN: A Replacement Compound for the Most Potent Industrial Greenhouse Gas, SF6. Environ. Sci. Technol. 2017, 51, 1321–1329. [Google Scholar] [CrossRef]
- Fu, Y.; Rong, M.; Yang, K.; Yang, A.; Wang, X.; Gao, Q.; Liu, D.; Murphy, A.B. Calculated rate constants of the chemical reactions involving the main byproducts SO2F, SOF2, SO2F2 of SF6 decomposition in power equipment. J. Phys. D Appl. Phys. 2016, 49, 155502. [Google Scholar] [CrossRef]
- Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Scalmani, G.; Barone, V.; Petersson, G.; Nakatsuji, H. Gaussian 16 Rev. C. 01, 2016; b) DJ Wales, JPK Doye. J. Phys. Chem. A 1997, 101, 5111–5116. [Google Scholar]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Kendall, R.A.; Dunning, T.H., Jr.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef]
- Rusakov, Y.Y.; Rusakovai, L. Getaway from the Geometry Factor Error in the Molecular Property Calculations: Efficient pecG-n (n = 1, 2) Basis Sets for the Geometry Optimization of Molecules Containing Light p Elements. J. Chem. Theory Comput. 2024, 20, 6661–6673. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Lu, T.; Chen, Q. Shermo: A general code for calculating molecular thermochemistry properties. Comput. Theor. Chem. 2021, 1200, 113249. [Google Scholar] [CrossRef]
- Van Duin, A.C.; Dasgupta, S.; Lorant, F.; Goddard, W.A. ReaxFF: A reactive force field for hydrocarbons. J. Phys. Chem. A 2001, 105, 9396–9409. [Google Scholar] [CrossRef]
- Zhao, D.; Yan, J.; He, R.; Geng, Y.; Liu, Z.; Wang, J. Decomposition mechanism of C4F7N/CO2 gas mixture based on molecular dynamics and effect of O2 content. J. Appl. Phys. 2024, 135, 024401. [Google Scholar] [CrossRef]
- Chenoweth, K.; Cheung, S.; Van Duin, A.C.; Goddard, W.A.; Kober, E.M. Simulations on the thermal decomposition of a poly (dimethylsiloxane) polymer using the ReaxFF reactive force field. J. Am. Chem. Soc. 2005, 127, 7192–7202. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, H.J.; Postma, J.v.; Van Gunsteren, W.F.; DiNola, A.; Haak, J.R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 1984, 81, 3684–3690. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef]
- Yang, W.; Parr, R.G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. USA 1985, 82, 6723–6726. [Google Scholar] [CrossRef] [PubMed]
- Zhan, C.-G.; Nichols, J.A.; Dixon, D.A. Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies. J. Phys. Chem. A 2003, 107, 4184–4195. [Google Scholar] [CrossRef]
No. | CO2 Content | PMVE | CO2 | Density (g/cm3) | Box Length (Å) |
---|---|---|---|---|---|
1 | 0% | 100 | 0 | 0.00690 | 214.1 |
2 | 30% | 100 | 160 | 0.00297 | 236.4 |
3 | 40% | 100 | 250 | 0.00217 | 276.4 |
4 | 50% | 100 | 380 | 0.00194 | 301.5 |
5 | 60% | 100 | 570 | 0.00177 | 339.4 |
CO2 Content | IP (eV) | EA (eV) | EX (eV) |
---|---|---|---|
0% | 5.29 | −0.42 | 5.16 |
30% | 5.75 | −1.28 | 5.06 |
40% | 11.72 | −0.85 | 5.03 |
50% | 6.16 | −2.27 | 5.06 |
60% | 7.04 | −2.43 | 5.10 |
No | Reaction Pathways | Reaction Enthalpy (KJ/mol) |
---|---|---|
A1 | C3F6O → C2F3 + COF3 | 433.91 |
A2 | C3F6O → C2OF3 + CF3 | 197.16 |
A3 | C3F6O → C3F5O + F | 488.14 |
B1 | C2F3 → C2F2 + F | 302.51 |
B2 | C2F3 + F → C2F4 | −506.77 |
B3 | C2F3 + CF3 → C3F6 | −431.58 |
C1 | CF3 + F → CF4 | −509.67 |
C2 | 2CF3 → C2F6 | −372.48 |
D1 | C3F5O → COF3 + C2F2 | 248.28 |
E1 | COF3 → COF2 + F | 93.90 |
E2 | COF2 → COF + F | 482.59 |
E3 | COF → CO + F | 155.29 |
F1 | CO2 → CO + O | 801.64 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, H.; Chu, H.; Zeng, W.; Liu, S.; Ye, W. Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics. Appl. Sci. 2025, 15, 9011. https://doi.org/10.3390/app15169011
Dong H, Chu H, Zeng W, Liu S, Ye W. Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics. Applied Sciences. 2025; 15(16):9011. https://doi.org/10.3390/app15169011
Chicago/Turabian StyleDong, Haibo, Haonan Chu, Wentian Zeng, Shicheng Liu, and Wenyu Ye. 2025. "Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics" Applied Sciences 15, no. 16: 9011. https://doi.org/10.3390/app15169011
APA StyleDong, H., Chu, H., Zeng, W., Liu, S., & Ye, W. (2025). Molecular Insights into the Insulating and Pyrolysis Properties of Environmentally Friendly PMVE/CO2 Mixtures: A Collaborative Analysis Based on Density Functional Theory and Reaction Kinetics. Applied Sciences, 15(16), 9011. https://doi.org/10.3390/app15169011