Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (241)

Search Parameters:
Keywords = indoor air contamination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1288 KiB  
Review
Counteracting the Harms of Microplastics on Humans: An Overview from the Perspective of Exposure
by Kuok Ho Daniel Tang
Microplastics 2025, 4(3), 47; https://doi.org/10.3390/microplastics4030047 - 1 Aug 2025
Viewed by 369
Abstract
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. [...] Read more.
Microplastics are pervasive environmental pollutants that pose risks to human health through ingestion and inhalation. This review synthesizes current practices to reduce exposure and toxicity by examining major exposure routes and dietary interventions. More than 130 papers were analyzed to achieve this aim. The findings show that microplastics contaminate a wide range of food products, with particular concern over seafood, drinking water, plastic-packaged foods, paper cups, and tea filter bags. Inhalation exposure is mainly linked to indoor air quality and smoking, while dermal contact poses minimal risk, though the release of additives from plastics onto the skin remains an area of concern. Recommended strategies to reduce dietary exposure include consuming only muscle parts of seafood, moderating intake of high-risk items like anchovies and mollusks, limiting canned seafood liquids, and purging mussels in clean water before consumption. Avoiding plastic containers, especially for hot food or microwaving, using wooden cutting boards, paper tea bags, and opting for tap or filtered water over bottled water are also advised. To mitigate inhalation exposure, the use of air filters with HyperHEPA systems, improved ventilation, regular vacuuming, and the reduction of smoking are recommended. While antioxidant supplementation shows potential in reducing microplastic toxicity, further research is needed to confirm its effectiveness. This review provides practical, evidence-based recommendations for minimizing daily microplastic exposure. Full article
Show Figures

Figure 1

25 pages, 11397 KiB  
Article
Impact of Airflow Disturbance from Human Motion on Contaminant Control in Cleanroom Environments: A CFD-Based Analysis
by Abiyeva Guldana, Sayat Niyetbay, Arman Zhanguzhinov, Gulbanu Kassabekova, Dilyara Jartayeva, Kulyash Alimova, Gulnaz Zhakapbayeva and Khalkhabay Bostandyk
Buildings 2025, 15(13), 2264; https://doi.org/10.3390/buildings15132264 - 27 Jun 2025
Viewed by 410
Abstract
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of [...] Read more.
The growing demands for sanitary regulations in medical facilities, particularly operating rooms, highlight the importance of ensuring high air quality and minimizing airborne hospital-acquired infections. Improperly designed ventilation systems may lead to contamination of up to 90–95% of patients, especially in light of evolving threats, such as COVID-19. This study focuses on enhancing the energy efficiency and performance of air conditioning and ventilation systems for cleanrooms, where air recirculation is not permissible. A novel energy-efficient direct-flow air treatment scheme is proposed, integrating a heat pump system with adjustable thermal output. A computational fluid dynamics CFD model of a clean operating room was developed to assess the impact of inlet air velocity on aerosol particle removal and airflow stabilization time. The model also considers the effect of personnel movement. The results supported optimized air distribution, reducing microbial contamination risks, with less than 10 CFU/m3, and improved thermal performance. The proposed system was evaluated for energy and cost efficiency compared to conventional setups. Findings can inform the design and operation of cleanroom ventilation in surgical environments and other high-tech applications. This research contributes to improving indoor air quality and reducing infection risks while enhancing sustainability in healthcare infrastructure. Full article
Show Figures

Figure 1

19 pages, 3174 KiB  
Article
Comprehensive Assessment and Mitigation of Indoor Air Quality in a Commercial Retail Building in Saudi Arabia
by Wael S. Al-Rashed and Abderrahim Lakhouit
Sustainability 2025, 17(13), 5862; https://doi.org/10.3390/su17135862 - 25 Jun 2025
Viewed by 585
Abstract
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring [...] Read more.
The acceleration of industrialization and urbanization worldwide has dramatically improved living standards but has also introduced serious environmental and public health challenges. One of the most critical challenges is air pollution, particularly indoors, where individuals typically spend over 90% of their time. Ensuring good Indoor Air Quality (IAQ) is essential, especially in heavily frequented public spaces such as shopping malls. This study focuses on assessing IAQ in a large shopping mall located in Tabuk, Saudi Arabia, covering retail zones as well as an attached underground parking area. Monitoring is conducted over a continuous two-month period using calibrated instruments placed at representative locations to capture variations in pollutant levels. The investigation targets key contaminants, including carbon monoxide (CO), carbon dioxide (CO2), fine particulate matter (PM2.5), total volatile organic compounds (TVOCs), and formaldehyde (HCHO). The data are analyzed and compared against international and national guidelines, including World Health Organization (WHO) standards and Saudi environmental regulations. The results show that concentrations of CO, CO2, and PM2.5 in the shopping mall are generally within acceptable limits, with values ranging from approximately 7 to 15 ppm, suggesting that ventilation systems are effective in most areas. However, the study identifies high levels of TVOCs and HCHO, particularly in zones characterized by poor ventilation and high human occupancy. Peak concentrations reach 1.48 mg/m3 for TVOCs and 1.43 mg/m3 for HCHO, exceeding recommended exposure thresholds. These findings emphasize the urgent need for enhancing ventilation designs, prioritizing the use of low-emission materials, and establishing continuous air quality monitoring protocols within commercial buildings. Improving IAQ is not only crucial for protecting public health but also for enhancing occupant comfort, satisfaction, and overall building sustainability. This study offers practical recommendations to policymakers, building managers, and designers striving to create healthier indoor environments in rapidly expanding urban centers. Full article
Show Figures

Figure 1

23 pages, 3474 KiB  
Article
Performance of Ventilation, Filtration, and Upper-Room UVGI in Mitigating PM2.5 and SARS-CoV-2 Levels
by Atefeh Abbaspour, Hamidreza Seraj, Ali Bahadori-Jahromi and Alan Janbey
Clean Technol. 2025, 7(3), 53; https://doi.org/10.3390/cleantechnol7030053 - 23 Jun 2025
Viewed by 625
Abstract
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation [...] Read more.
This study aimed to improve indoor air quality (IAQ) in an existing college building in London by addressing two key pollutants: PM2.5 particles (from indoor and outdoor sources) and SARS-CoV-2 as a biological contaminant. Various mitigation strategies were assessed, including hybrid ventilation that combined CIBSE-recommended rates with partial window and door opening. The effectiveness of HEPA-based air purifiers (APs) and upper-room ultraviolet germicidal irradiation (UVGI) systems with different intensities was also evaluated for reducing viral transmission and the basic reproduction number (R0). To manage PM2.5 in the kitchen, HEPA and in-duct MERV13 filters were integrated into the ventilation system. Results showed that hybrid ventilation outperformed mechanical systems by achieving greater reductions in infection probability (PI) and maintained higher performance as the number of infectors increased, showing only a 2.5–16% drop, compared to 35% with mechanical ventilation. An R0 analysis indicated that UVGI is more suitable in high-risk settings, while APs combined with hybrid ventilation are effective in lower-risk scenarios. The findings also emphasize that combining Supply–Exhaust ventilation with APs or MERV13 filters is crucial for maintaining safe IAQ in kitchens, aligning with the WHO’s short- and long-term exposure limits. Full article
Show Figures

Figure 1

11 pages, 2178 KiB  
Article
Actuator-Driven, Purge-Free Formaldehyde Gas Sensor Based on Single-Walled Carbon Nanotubes
by Shinsuke Ishihara, Mandeep K. Chahal, Jan Labuta, Takeshi Tanaka, Hiromichi Kataura, Jonathan P. Hill and Takashi Nakanishi
Nanomaterials 2025, 15(13), 962; https://doi.org/10.3390/nano15130962 - 21 Jun 2025
Viewed by 401
Abstract
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of [...] Read more.
Formaldehyde vapor (HCHO) is a harmful chemical substance and a potential air contaminant, with a permissible level in indoor spaces below 0.08 ppm (80 ppb). Thus, highly sensitive gas sensors for the continuous monitoring of HCHO are in demand. The electrical conductivity of semiconducting nanomaterials (e.g., single-walled carbon nanotubes (SWCNTs)) makes them sensitive to chemical substances adsorbed on their surfaces, and a variety of portable and highly sensitive chemiresistive gas sensors, including those capable of detecting HCHO, have been developed. However, when monitoring low levels of vapors (<1 ppm) found in ambient air, most chemiresistive sensors face practical issues, including false responses to interfering effects (e.g., fluctuations in room temperature and humidity), baseline drift, and the need to apply a purge gas. Here, we report an actuator-driven, purge-free chemiresistive gas sensor that is capable of reliably detecting 0.05 ppm of HCHO in the air. This sensor is composed of an HCHO→HCl converter (powdery hydroxylamine salt, HA), an HCl detector (a SWCNT-based chemiresistor), and an HCl blocker (a thin plastic plate). Upon exposure to HCHO, the HA emits HCl vapor, which diffuses onto the adjacent SWCNTs, increasing their electrical conductivity through p-doping. Meanwhile, inserting a plastic plate between HA and SWCNTs makes the conductivity of SWCNTs insensitive to HCHO. Thus, via periodic actuation (insertion and removal) of the plastic plate, HCHO can be detected reliably over a wide concentration range (0.05–15 ppm) with excellent selectivity over other volatile organic compounds. This actuator-driven system is beneficial because it does not require a purge gas for sensor recovery or baseline correction. Moreover, since the response to HCHO is synchronized with the actuation timing of the plate, even small (~0.8%) responses to 0.05 ppm of HCHO can be clearly separated from larger noise responses (>1%) caused by interfering effects and baseline drift. We believe that this work provides substantial insights into the practical implementation of nanomaterial-based chemiresistive gas sensors. Full article
Show Figures

Figure 1

19 pages, 1546 KiB  
Article
Inactivation of Bioaerosol Particles in a Single-Pass Multi-Stage Non-Thermal Plasma and Ionization Air Cleaner
by Justinas Masionis, Darius Čiužas, Edvinas Krugly, Martynas Tichonovas, Tadas Prasauskas and Dainius Martuzevičius
Plasma 2025, 8(2), 22; https://doi.org/10.3390/plasma8020022 - 31 May 2025
Viewed by 1066
Abstract
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of [...] Read more.
Bioaerosol particles contribute to the reduced indoor air quality and cause various health issues, thus their concentration must be managed. Air cleaning is one of the most viable technological options for reducing quantities of indoor air contaminants. This study assesses the effectiveness of a prototype multi-stage air cleaner in reducing bioaerosol particle viability and concentrations. The single-pass type unit consisted of non-thermal plasma (NTP), ultraviolet-C (UV-C) irradiation, bipolar ionization (BI), and electrostatic precipitation (ESP) stages. The device was tested under controlled laboratory conditions using Escherichia coli (Gram-negative) and Lactobacillus casei (Gram-positive) bacteria aerosol at varying airflow rates (50–600 m3/h). The device achieved over 99% inactivation efficiency for both bacterial strains at the lowest airflow rate (50 m3/h). Efficiency declined with increasing airflow rates but remained above 94% at the highest flow rate (600 m3/h). Among the individual stages, NTP demonstrated the highest standalone inactivation efficiency, followed by UV-C and BI. The ESP stage effectively captured inactivated bioaerosol particles, preventing re-emission, while an integrated ozone decomposition unit maintained ozone concentrations below safety thresholds. These findings show the potential of multi-stage air cleaning technology for reducing bioaerosol contamination in indoor environments, with applications in healthcare, public spaces, and residential settings. Full article
(This article belongs to the Special Issue Feature Papers in Plasma Sciences 2025)
Show Figures

Graphical abstract

30 pages, 24334 KiB  
Article
Enhanced Heat Removal Using Buoyancy-Tracking Exhaust Vents for Moving Heat Sources in Industrial Environments: CFD and Experimental Study
by Zhongwu Xie, Wei Yin, Xiaoli Hao, Shaobo Zhang, Theofanis Psomas, Torbjörn Lindholm and Lars Ekberg
Buildings 2025, 15(10), 1719; https://doi.org/10.3390/buildings15101719 - 19 May 2025
Viewed by 485
Abstract
High-temperature and high-pollution mobile sources are frequently encountered in industrial environments. Fixed-position exhaust outlets often fail to promptly remove heat and contaminants when these sources are in motion, leading to local accumulation and reduced indoor air quality. This study proposes a novel mobile [...] Read more.
High-temperature and high-pollution mobile sources are frequently encountered in industrial environments. Fixed-position exhaust outlets often fail to promptly remove heat and contaminants when these sources are in motion, leading to local accumulation and reduced indoor air quality. This study proposes a novel mobile exhaust system capable of tracking and dynamically aligning with moving emission sources to improve heat removal and cooling efficiency. Three configurations were evaluated: (1) a fixed exhaust outlet, (2) an exhaust vent moving synchronously with the heat source, and (3) a buoyancy-driven tracking exhaust outlet. Small-scale experiments and CFD simulations using dynamic mesh techniques were conducted. The results showed that the synchronous system reduced ambient temperature by an average of 0.25 to 2.3 °C compared to the fixed outlet, while the buoyancy-tracking system achieved an additional 0.15 to 2.5 °C reduction. The study also introduces a correlation between thermal plume inclination and the Archimedes number, providing a predictive basis for exhaust positioning. Given the similar dispersion patterns of heat and airborne pollutants, the proposed system holds promise for both thermal management and contaminant control in dynamic industrial environments. Furthermore, the system may offer critical advantages in emergency ventilation scenarios involving intense heat or hazardous pollutant outbreaks. Full article
(This article belongs to the Special Issue Building Energy-Saving Technology—3rd Edition)
Show Figures

Figure 1

23 pages, 1667 KiB  
Article
Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration
by Małgorzata Basińska and Michał Michałkiewicz
Atmosphere 2025, 16(5), 600; https://doi.org/10.3390/atmos16050600 - 16 May 2025
Viewed by 463
Abstract
This article explores how the location of a building in an urban area, the level of external air pollution, and the way a residence is used can affect indoor air quality. To assess this, this study used measurements of physical and chemical pollutants, [...] Read more.
This article explores how the location of a building in an urban area, the level of external air pollution, and the way a residence is used can affect indoor air quality. To assess this, this study used measurements of physical and chemical pollutants, as well as microbiological measurements, including counts of various bacteria and microscopic fungi. These included counts of mesophilic and psychrophilic bacteria, mannitol-positive and mannitol-negative Staphylococcus, Actinobacteria, Pseudomonas fluorescens, and microscopic fungi. The research involved analysing indoor and outdoor air quality in 38 selected spaces within buildings in the city of Poznań during the heating season. The study found that the eastern part of the city showed the highest levels of fungal contamination in the external environment. Furthermore, distinct differences were observed between the presence of microorganisms indoors and outdoors based on the results of bacterial and fungal aerosol studies. The authors advocate for including microbiological studies as part of standard air quality assessment indicators to reveal the extent and source of contamination, as similar issues may be present in cities around the world. Full article
(This article belongs to the Special Issue Air Quality in Poland (2nd Edition))
Show Figures

Figure 1

20 pages, 5459 KiB  
Article
Next-Generation Eco-Friendly Hybrid Air Purifier: Ag/TiO2/PLA Biofilm for Enhanced Bioaerosols Removal
by Rotruedee Chotigawin, Bhuvaneswari Kandasamy, Paradee Asa, Tistaya Semangoen, Pravech Ajawatanawong, Sarun Phibanchon, Taddao Pahasup-anan, Surachai Wongcharee and Kowit Suwannahong
Int. J. Mol. Sci. 2025, 26(10), 4584; https://doi.org/10.3390/ijms26104584 - 10 May 2025
Cited by 1 | Viewed by 837
Abstract
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address [...] Read more.
Indoor air pollution poses a significant public health risk, particularly in urban areas, where PM2.5 and airborne contaminants contribute to respiratory diseases. In Thailand, including Chonburi Province, PM2.5 levels frequently exceed safety thresholds, underscoring the urgent need for effective mitigation strategies. To address this challenge, we developed a hybrid air purification system incorporating a bioplastic-based photocatalytic film of polylactic acid (PLA) embedded with titanium dioxide (TiO2) nanoparticles. For optimization, PLA films were functionalized with varying TiO2 concentrations and characterized using SEM, FTIR, TGDTA, and UV–Vis. spectroscopy. A 5 wt% TiO2 loading was identified as optimal and further enhanced with silver (Ag) nanoparticles to boost photocatalytic efficiency. The Ag/TiO2/PLA biofilm was fabricated via a compound pellet formulation process followed by blown film extrusion. Various compositions, with and without Ag, were systematically evaluated for photocatalytic performance. The novel customized hybrid air purifier developed in this study is designed to enhance indoor air purification efficiency by integrating Ag/TiO2/PLA biofilms into a controlled oxidation system. The air purification efficacy of the developed biofilm was evaluated through a controlled study on Staphylococcus aureus (S. aureus) removal under different treatment conditions: control, adsorption, photolysis, and photocatalytic oxidation. The impact of light intensity on photocatalytic efficiency was also examined. The photocatalytic oxidation of S. aureus was subjected to the first-order kinetic evaluation through mathematical modeling. Results demonstrated that the Ag/TiO2/PLA biofilm significantly enhances indoor air purification, providing a sustainable, scalable, and energy-efficient solution for microbial decontamination and pollutant removal. This innovative approach outperforms conventional adsorption, adsorption and photocatalytic oxidation systems, offering a promising pathway for improved indoor air quality. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

36 pages, 1542 KiB  
Review
Volatile Organic Compounds in Indoor Air: Sampling, Determination, Sources, Health Risk, and Regulatory Insights
by Tajana Horvat, Gordana Pehnec and Ivana Jakovljević
Toxics 2025, 13(5), 344; https://doi.org/10.3390/toxics13050344 - 26 Apr 2025
Cited by 1 | Viewed by 3155
Abstract
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen [...] Read more.
Indoor air pollution is a serious public health issue caused by the accumulation of numerous toxic contaminants within enclosed spaces. Particulate matter (PM2.5 and PM10), biological contaminants (mould, bacteria, and allergies), inorganic gases (carbon monoxide, carbon dioxide, ozone, and nitrogen dioxide), and a variety of volatile organic compounds (VOCs) are examples of common indoor air pollutants. VOCs are one of the chief indoor contaminants, and their effects on human health have made indoor air quality a serious concern. Indoor VOC concentrations are frequently higher than outdoor levels, according to studies, which raises the danger of exposure, particularly for young people and those with respiratory disorders. VOCs originate from both biogenic and anthropogenic sources, and they can create secondary pollutants like ozone and aerosols, which can lead to cardiovascular and pulmonary problems. Prolonged exposure to VOCs has been associated with respiratory irritation, neurological effects, and an increased risk of chronic diseases. This review examines the primary sources, sampling and analysis approach, and health impact of VOCs in indoor air. Additionally, we compared worldwide regulatory guidelines for VOC exposure limits, emphasizing the need for strict exposure limits to protect human health. Full article
Show Figures

Figure 1

15 pages, 3815 KiB  
Article
Study of Bacterial Elution from High-Efficiency Glass Fiber Filters
by Le Rong, Yun Liang, Zhaoqian Li, Desheng Wang, Hao Wang, Lingyun Wang and Min Tang
Separations 2025, 12(5), 110; https://doi.org/10.3390/separations12050110 - 25 Apr 2025
Viewed by 448
Abstract
Antibacterial filter materials have been effectively utilized for controlling biological contaminants and purifying indoor air, with the market for such materials experiencing continuous expansion. Currently, textile antibacterial testing standards are widely adopted to evaluate the antimicrobial efficacy of filter materials, yet no dedicated [...] Read more.
Antibacterial filter materials have been effectively utilized for controlling biological contaminants and purifying indoor air, with the market for such materials experiencing continuous expansion. Currently, textile antibacterial testing standards are widely adopted to evaluate the antimicrobial efficacy of filter materials, yet no dedicated assessment protocols specifically tailored for filtration media have been established. This study aims to investigate the applicability of textile antibacterial testing methods to high-efficiency glass fiber filter materials (filtration efficiency > 99.9%), as well as to explore the factors that affect the rate of bacterial elution from high-efficiency glass fiber filter materials. By referencing the textile antibacterial testing standard (absorption method), significant discrepancies in bacterial recovery counts were observed between the high-efficiency glass fiber materials and the various textile control samples, with the former exhibiting a markedly lower recovery rate (approximately 10%). Pore structure and wettability analyses revealed the underlying causes of these differences. To ensure the accuracy of the antibacterial evaluation results, the effects of oscillation elution parameters (time and intensity) and material incubation conditions (duration, sealing and humidity) on bacterial recovery rates in glass fiber filter materials were systematically investigated to optimize the elution methodology. The results indicate that specimen type, size, elution method, incubation duration (4 h or 24 h), sealing conditions, and environmental humidity (10% or 30%, 60% and 95% RH) collectively influence bacterial recovery efficiency. The highest recovery efficiency (55%) was achieved when the filter materials were incubated in a sealed environment with humidity maintained at ≥60% RH. These findings emphasize the critical need to establish clear and specialized antibacterial performance testing standards for filter materials. The study provides essential guidance for developing material-specific evaluation protocols to ensure a reliable and standardized assessment of antimicrobial efficacy in high-efficiency filtration systems. Full article
Show Figures

Figure 1

21 pages, 4593 KiB  
Review
Effects of Indoor Air Quality on Human Physiological Impact: A Review
by Tong Nie, Guofu Zhang, Yinan Sun, Wenhao Wang, Tianai Wang and Haoyan Duan
Buildings 2025, 15(8), 1296; https://doi.org/10.3390/buildings15081296 - 15 Apr 2025
Viewed by 1663
Abstract
As urbanization accelerates, indoor air quality has emerged as a critical determinant of population health. To systematically evaluate the relationship between indoor air quality (IAQ) and human physiological responses, we conducted a comprehensive review of 63 experimental studies retrieved from three major databases [...] Read more.
As urbanization accelerates, indoor air quality has emerged as a critical determinant of population health. To systematically evaluate the relationship between indoor air quality (IAQ) and human physiological responses, we conducted a comprehensive review of 63 experimental studies retrieved from three major databases (ScienceDirect, Google Scholar, Web of Science) spanning the years 2000–2023. This systematic review synthesizes evidence from experimental studies examining the physiological impacts of indoor air contaminants, including gaseous pollutants, particulate matter (PM), and volatile organic compounds (VOCs). Through an analysis of cardiovascular biomarkers (heart rate variability, blood pressure), respiratory parameters, and neurological indicators (electroencephalogram patterns), we identify the mechanisms linking air quality degradation to impaired physiological functioning. Our findings demonstrate that optimized ventilation systems and high-efficiency particulate filtration can mitigate exposure risks, potentially enhancing cardiovascular efficiency, pulmonary capacity, and cognitive performance. The evidence further suggests that sustained improvements for indoor environments may decrease incidence rates of respiratory pathologies and neurological disorders. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 5883 KiB  
Article
Innovative Antibacterial Air Filters Impregnated with Photocatalytic MgFe2O4 Nanoparticles for Improved Microbiological Air Quality
by Abdelwahab Rai, Sara Oumenoune Tebbi, Chaima Ben Mahfoud, Maroua Bourbala, Reguia Boudraa, Abdelatif Amrane, Najeh Maaloul, Manuel Rendueles, Paula Oulego, Maymounah N. Alharthi and Lotfi Mouni
Catalysts 2025, 15(4), 365; https://doi.org/10.3390/catal15040365 - 8 Apr 2025
Viewed by 1271
Abstract
Over time, nanoparticles’ chemistry has shown exceptional ability to solve a wide range of problems in various fields, including the control of microbiological air quality in buildings. Herein, magnesium ferrite (MgFe2O4) was synthesized using coprecipitation, then characterized using X-ray [...] Read more.
Over time, nanoparticles’ chemistry has shown exceptional ability to solve a wide range of problems in various fields, including the control of microbiological air quality in buildings. Herein, magnesium ferrite (MgFe2O4) was synthesized using coprecipitation, then characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET), scanning electron microscopy (SEM), Transmission Electron Microscopy (TEM) and photoelectron spectroscopy (XPS). MgFe2O4 nanoparticles were then assessed for their ability to inhibit Escherichia coli ATCC 8739 growth and airborne bacterial viability in a laboratory atmosphere through a direct air filtration system. The material showed strong inhibitory activity against E. coli by eliminating practically all viable cells in the tested suspensions after 1 h contact time in the presence of light. Finally, the prepared air filtration setup revealed that passing air bacteria through non-woven fabric filters impregnated with MgFe2O4 effectively eliminates them. Thus, only 1 colony-forming unit (CFU) was obtained from 36 L of filtered air, while a control filter (without MgFe2O4) allowed the passage of 2.6 × 105 CFU to the liquid medium. The obtained results initiate potential applications of MgFe2O4 nanoparticles in controlling microbiological indoor air quality (IAQ), especially in healthcare facilities where microbial resistance to antibiotics is the most notable, individuals are the most exposed, and contamination risks are the highest. Full article
Show Figures

Figure 1

19 pages, 1749 KiB  
Article
Efficiency of the Coriolis µ Air Sampling Device for Fungal Contamination Analysis of Indoor Air: A Case Study
by Mohamad Al Hallak, Thomas Verdier, Alexandra Bertron, Myriam Mercade, Pascale Lepercq, Christine Roques and Jean-Denis Bailly
Pathogens 2025, 14(4), 345; https://doi.org/10.3390/pathogens14040345 - 3 Apr 2025
Viewed by 912
Abstract
Molds are frequent indoor contaminants, where they can colonize many materials. The subsequent aerosolization of fungal spores from moldy surfaces can strongly impact indoor air quality and the health of occupants. The investigation of fungal contamination of habitations is a key point in [...] Read more.
Molds are frequent indoor contaminants, where they can colonize many materials. The subsequent aerosolization of fungal spores from moldy surfaces can strongly impact indoor air quality and the health of occupants. The investigation of fungal contamination of habitations is a key point in evaluating sanitary risks and understanding the relationship that may exist between the fungal presence on surfaces and air contamination. However, to date there is no “gold standard” of sampling indoor air for such investigations. Among various air sampling methods, impingement can be used for capturing fungal spores, as it enables real-time sampling and preserves analytical follow-up. Its efficiency varies depending on several factors, such as spore hydrophobicity, sampling conditions, etc. Sampling devices may also impact the results, with recovery rates sometimes lower than filtration-based methods. The Coriolis µ air sampler, an impingement-based device, utilizes centrifugal force to concentrate airborne particles into a liquid medium, offering flexibility for molecular analysis. Several studies have used this device for air sampling, demonstrating its application in detecting pollen, fungal spores, bacteria, and viruses, but it is most often used in laboratory conditions. The present case study, conducted in a moldy house, aims to investigate the efficiency of this device in sampling fungal spores for DNA analysis in indoor environments. The results obtained suggest that the use of this device requires an optimized methodology to enhance its efficiency and reliability in bioaerosol research. Full article
(This article belongs to the Special Issue Detection of Indoor Fungi: Part II)
Show Figures

Figure 1

23 pages, 2220 KiB  
Article
A Sustainable Combined Approach to Control the Microbial Bioburden in the School Environment
by Maria D’Accolti, Irene Soffritti, Eleonora Mazziga, Francesca Bini, Matteo Bisi, Antonella Volta, Sante Mazzacane and Elisabetta Caselli
Microorganisms 2025, 13(4), 791; https://doi.org/10.3390/microorganisms13040791 - 30 Mar 2025
Cited by 3 | Viewed by 1187
Abstract
The indoor microbiome is a dynamic ecosystem including pathogens that can impact human health. In this regard, the school environment represents the main living space of humans for many years, and an unhealthy environment can significantly condition students’ health. School rooms can suffer [...] Read more.
The indoor microbiome is a dynamic ecosystem including pathogens that can impact human health. In this regard, the school environment represents the main living space of humans for many years, and an unhealthy environment can significantly condition students’ health. School rooms can suffer from insufficient ventilation and the use of building materials that may favor pathogen contamination, mostly sanitized by conventional chemical-based methods, which can impact pollution, have temporary effects, and induce the selection of antimicrobial resistance (AMR) in persistent microbes. In the search for sustainable and effective methods to improve the healthiness of the classroom environment, a pre–post case–control study was performed in an Italian high school. Over a year, different interventions were sequentially placed and evaluated for their impact on bioburden and air quality, including the introduction of plants, a mechanical ventilation system, and probiotic-based sanitation (PBS) in substitution for chemical sanitation. Through continuous microbial monitoring of the enrolled school rooms, via culture-dependent and -independent methods, a remarkable bioburden level was detected at baseline (around 12,000 and 20,000 CFU/m2, before and after classes, respectively), composed mostly of Staphylococcus spp. and fungi. Some decrease in fungal contamination was observed following the introduction of plants. Still, the most significant decrease in pathogens and associated AMR was detected following the introduction of ventilation and PBS, which decreased pathogen level by >80% (p < 0.001) and AMR by up to 3 Log10 (p < 0.001) compared to controls. Collected data support the use of combined strategies to improve indoor microbial quality and confirm that PBS can effectively control bioburden and AMR spread not only in sanitary environments. Full article
Show Figures

Figure 1

Back to TopTop