Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Buildings
- Locality (centre of the city, residential area, suburbia).
- Older than 15 years (constructed according to similar building regulations, equipped with natural ventilation).
- Heating system (municipal heating network or individual heating system).
- Number of inhabitants (two to three people).
- The consent of users for conducting IAQ monitoring.
2.2. Environmental Parameters
2.2.1. Physical Measurements
2.2.2. Microbiological Measurements
2.2.3. Physical Tests Conducted by the Regional Inspectorate of Environmental Protection (WIOS)
2.3. Assessment Indicators
- I/O ratio: the pollution source information index caused by microorganisms, calculated as the ratio of a specific microorganism’s value in indoor air to its value in outdoor air.
- GIMC·m−3 index: the global microbiological contamination index per cubic meter of air, calculated as the sum of all detected bacteria and fungi in the analysed air per cubic meter of air.
- IMSC·B−1 index: the psychrophilic bacteria index, calculated as the quotient of the sum of mesophilic bacteria and staphylococci divided by the sum of the remaining bacteria, i.e., psychrophilic, Pseudomonas fluorescens, and Actinobacteria.
- IMSC·BF−1 index: the index of mesophilic bacteria and staphylococci calculated as the quotient of mesophilic bacteria and staphylococci divided by the sum of the other detected bacteria and fungi.
- B·F−1 index: the ratio of the sum of all bacteria to the microscopic fungi occurring at a given location (modified version according to [48].
3. Results
3.1. Microbiological Air Contamination—Quantitative Assessment
3.1.1. I/O Assessment Indicator
3.1.2. I/O Assessment Indicators GIMC·m−3, B·F−1, IMSC·B−1, and IMSC·BF−1
3.2. Indoor Environmental Conditions
3.3. Outdoor Air Quality Results of the WIOS Monitoring Stations
4. Discussion
5. Conclusions
- In the city of Poznań, the degree of outdoor air contamination varies. In the north-eastern part, pollution is lower than in the central and south-western parts, with significant impacts on indoor air quality.
- Among the analysed parameters regarding IAQ, except for basic physical and chemical pollutants (temperature, relative humidity, carbon dioxide concentration), microbiological parameters are important (number of bacteria and microscopic fungi), which should be taken in the evaluation.
- IAQ described by physical and chemical parameters, and microbiological contamination are impacted by building size, building age, building material, ventilation system, interior fittings, and the number of inhabitants.
- Outdoor air pollution has a different effect on IAQ depending on the type of building.
- The degree of microbial air contamination in older buildings depends on the microscopic fungi.
- Depending on the location of the building in the Poznań city, the microbiological air quality varies.
- Microbial indoor air quality was better in single-family buildings due to their large cubic volume.
- Because the main source of microbial contamination and the increase in CO2 concentration in the room is humans, lack of continuous ventilation or insufficient periodical ventilation in apartments may result in increased physical and microbiological air contamination. Our tests were carried out in different rooms with different methods of their exploitation (windows with different tightness, open or closed).
- At high pollution levels of the outside air, balanced mechanical ventilation with filters should be used.
- Standard assessment indicators (physical air quality) should be supplemented with microbiological tests that indicate the degree and source of contamination.
- In rooms of good physical quality IAQ, the microbiological contamination requirements were not met.
- A similar physical, chemical, and microbiological contamination of the external and internal air may occur not only in Poznań, but also in every city in the world.
Limitations
- According to Polish standards, only single measurements are used to assess microbiological contamination.
- In subsequent studies, a specific statistical analysis (e.g., ANOVA, Kruskal–Wallis) should be carried out to test for differences between building types in terms of microbiological and physical parameters and correlation coefficients (e.g., Spearman’s, Pearson’s) between physical parameters (CO2 concentration, temperature, relative humidity) and microbiological contamination (e.g., total bacterial or fungal counts).
- To confirm the conclusions presented, long-term monitoring across seasons should be carried out.
- The results presented are for a limited sample size, and the evaluation method presented can be used in larger-scale studies.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Type | Year of Construction | No. of Floors | External Wall Structure | Heating System | No. of Measurement Point | Room Volume [m3] |
---|---|---|---|---|---|---|
1-RB | 1904 | 4 | brick | TS and EH | 1 2 3 * | 58.5 10.8 |
2-RB | 1977 | 11 | slab | DH | 4 5 6 * | 46.7 19.0 |
3-CRB | 1976 | 11 | brick | DH | 7 8 9 * | 29.7 11.2 |
4-SB | 1996/extension 2011 | 2 | timber and brick | KGB | 10 11 12 13 * | 58.5 48.1 37.5 |
5-SB | 1960 | 2 | brick | KGB | 14 15 16 17 * | 61.6 24.6 119.0 |
6-RB | 1942–43 | 4 | brick | DH | 18 19 20 21 * | 57.1 30.1 41.6 |
7-RB | 1978 | 12 | slab | DH | 22 23 24 25 * | 45.0 20.5 26.7 |
8-SB | 1993 | 2 | brick | KGB | 26 27 28 * | 103.2 24.7 |
9-RB | 1970 | 5 | brick | DH | 29 30 31 * | 41.9 23.1 |
10-CRB | 1966 | 4 | brick | DH | 32 35 * | 60.0 |
11-CRB | 1964 | 4 | brick | DH | 33 35 * | 51.0 |
12-CRB | 1976 | 11 | brick | DH | 34 35 * | 30.0 |
13-CRB | 1975 | 11 | brick | DH | 36 37 38 * | 34.2 9.3 |
Appendix A.2
No. of Measurement Point | Bacteria, (CFU·m−3) | Fungi, (CFU·m−3) | ||||||
---|---|---|---|---|---|---|---|---|
Mes. | SM+ | SM− | Psy. | P. flu. | Actin. | Cz-D | Waks. | |
1 | 1320 | 115 | 335 | 1280 | 0 | 140 | 2760 | 9940 |
2 | 3760 | 130 | 1360 | 3720 | 0 | 170 | 1750 | 2820 |
3 * | 1040 | 45 | 350 | 860 | 180 | 290 | 1240 | 2600 |
4 | 260 | 10 | 60 | 200 | 10 | 0 | 580 | 320 |
5 | 280 | 10 | 40 | 260 | 0 | 0 | 480 | 320 |
6 * | 180 | 100 | 10 | 2940 | 30 | 20 | 13,900 | 12,360 |
7 | 1000 | 60 | 270 | 2560 | 30 | 0 | 8440 | 4040 |
8 | 1080 | 80 | 540 | 2080 | 0 | 10 | 7960 | 7080 |
9 * | 560 | 90 | 90 | 2360 | 10 | 0 | 6960 | 7840 |
10 | 5380 | 135 | 2235 | 4740 | 0 | 0 | 780 | 1220 |
11 | 7520 | 155 | 4330 | 8040 | 0 | 0 | 580 | 800 |
12 | 7520 | 110 | 2830 | 5480 | 0 | 0 | 2200 | 600 |
13 * | 40 | 20 | 5 | 440 | 0 | 20 | 1240 | 1820 |
14 | 16,640 | 325 | 2540 | 8120 | 10 | 60 | 1280 | 1140 |
15 | 2060 | 90 | 655 | 2520 | 5 | 0 | 580 | 860 |
16 | 4520 | 135 | 1575 | 5000 | 0 | 60 | 3640 | 5760 |
17 * | 140 | 25 | 30 | 720 | 0 | 60 | 2160 | 3160 |
18 | 4940 | 105 | 1735 | 4880 | 0 | 0 | 460 | 420 |
19 | 7600 | 90 | 3230 | 5400 | 0 | 0 | 440 | 480 |
20 | 7480 | 55 | 2140 | 4440 | 0 | 0 | 280 | 460 |
21 * | 440 | 15 | 10 | 1000 | 0 | 20 | 580 | 720 |
22 | 7560 | 95 | 1025 | 4920 | 10 | 0 | 340 | 680 |
23 | 6360 | 155 | 1280 | 3000 | 15 | 0 | 240 | 420 |
24 | 5100 | 165 | 1760 | 3280 | 5 | 0 | 240 | 420 |
25 * | 360 | 20 | 100 | 320 | 5 | 20 | 420 | 780 |
26 | 80 | 10 | 10 | 160 | 0 | 0 | 1120 | 1800 |
27 | 120 | 20 | 20 | 160 | 0 | 0 | 1600 | 800 |
28 * | 80 | 20 | 10 | 400 | 0 | 0 | 3160 | 3280 |
29 | 400 | 20 | 70 | 400 | 0 | 0 | 120 | 140 |
30 | 340 | 50 | 60 | 80 | 0 | 0 | 100 | 140 |
31 * | 200 | 10 | 10 | 280 | 0 | 10 | 740 | 800 |
32 | 3360 | 120 | 820 | 2200 | 5 | 0 | 140 | 740 |
33 | 7760 | 525 | 1490 | 4780 | 10 | 0 | 3120 | 1040 |
34 | 5960 | 50 | 675 | 3800 | 5 | 80 | 3200 | 1220 |
35 * | 40 | 10 | 100 | 400 | 0 | 0 | 940 | 800 |
36 | 600 | 50 | 70 | 680 | 0 | 0 | 520 | 720 |
37 | 3880 | 60 | 4870 | 5080 | 0 | 0 | 1280 | 1880 |
38 * | 3160 | 40 | 470 | 7400 | 0 | 0 | 1800 | 1560 |
Appendix A.3
No. of Measurement Point | CO2 (ppm) | Relative Humidity (%) | Temperature (°C) | |||
---|---|---|---|---|---|---|
M SD | Max Min | M SD | Max Min | M SD | Max Min | |
1 | 371 91.3 | 689 273 | 72.7 2.06 | 77.9 61.4 | 19.8 0.26 | 22.3 19.3 |
2 | 414 68.0 | 674 304 | 73.7 2.04 | 78.2 66.8 | 19.5 0.18 | 20.2 19.2 |
3 * | 680 31.4 | 830 619 | 84.4 8.13 | 95.7 64.7 | 16.2 2.79 | 21.5 11.7 |
4 | 810 6.4 | 821 806 | 48.6 0.85 | 49.9 47.9 | 22.2 0.16 | 22.4 22.0 |
5 | 863 14.4 | 883 848 | 47.5 0.99 | 48.9 46.4 | 22.5 0.16 | 22.7 22.3 |
6 * | 343 3.3 | 348 340 | 83.2 0.62 | 84.1 82.6 | 16.4 0.19 | 16.6 16.2 |
7 | 536 5.3 | 542 530 | 43.5 1.03 | 44.8 42.3 | 22.5 0.10 | 22.6 22.4 |
8 | 534 4.5 | 540 528 | 43.3 0.75 | 44.6 42.8 | 24.3 0.20 | 24.5 24.1 |
9 * | 318 3.5 | 324 316 | 45.2 0.75 | 46.4 44.5 | 16.6 0.10 | 16.7 16.5 |
10 | 758 165.6 | 1091 414 | 58.3 1.98 | 69.8 53.8 | 22.7 0.83 | 24.8 20.8 |
11 | 795 166.0 | 1200 430 | 65.4 2.32 | 75.3 58.9 | 21.2 0.62 | 22.5 20.3 |
12 | 861 239.8 | 1507 429 | 62.4 3.95 | 86.9 53.6 | 23.0 0.43 | 24.1 22.4 |
13 * | 531 23.8 | 794 484 | 89.8 10.12 | 100.0 63.9 | 13.0 2.10 | 17.1 8.9 |
14 | 678 148.3 | 1323 509 | 51.4 4.34 | 60.6 39.7 | 22.7 1.02 | 25,0 21.3 |
15 | 1019 323.2 | 1945 642 | 67.6 4.12 | 74.7 59.1 | 19.9 0.77 | 21.4 18.7 |
16 | 504 44.50 | 790 433 | 78.1 3.02 | 81.8 67.9 | 16.6 0.16 | 17.0 16.3 |
17 * | 588 28.07 | 678 487 | 86.0 14.96 | 99.6 39.5 | 7.3 3.02 | 17.0 0.7 |
18 | 1495 403 | 3133 831 | 60.2 2.91 | 87.1 51.7 | 21.2 0.59 | 23.1 20.0 |
19 | 1302 335.2 | 2984 710 | 54.6 2.59 | 65.0 49.4 | 21.7 0.48 | 23.0 20.8 |
20 | 1385 303.2 | 2455 695 | 59.2 2.74 | 71.9 50.0 | 22.0 0.34 | 23.2 20.1 |
21 * | 589 39.7 | 687 497 | 81.1 12.14 | 95.4 45.7 | 7.4 3.48 | 16.5 1.7 |
22 | 902 344.4 | 2505 441 | 60.0 6.22 | 73.0 48.2 | 19.8 0.55 | 21.9 17.7 |
23 | 1151 726.1 | 2957 522 | 60.8 3.48 | 70.6 55.5 | 20.6 0.45 | 22.0 19.2 |
24 | 1352 677.7 | 3133 456 | 64.0 4.63 | 73.6 56.9 | 19.9 0.51 | 20.9 18.1 |
25 * | 600 36.7 | 714 467 | 86.4 15.27 | 100.0 24.5 | 8.7 3.28 | 21.7 1.9 |
26 | 478 10.3 | 493 469 | 49.4 0.04 | 49.5 49.4 | 21.5 0.04 | 21.6 21.5 |
27 | 564 2.4 | 568 562 | 52.7 0.29 | 53.2 52.5 | 20.9 0.07 | 21.0 20.8 |
28 * | 372 1.6 | 374 370 | 93.1 1.16 | 94.2 91.3 | 9.9 0.04 | 10.0 9.9 |
29 | 673 6.3 | 683 667 | 76.0 1.41 | 78.0 75.0 | 19.0 0.10 | 19.1 18.9 |
30 | 713 6.0 | 722 707 | 71.1 1.53 | 73.8 70.1 | 20.0 0.73 | 21.0 19.2 |
31 * | 448 2.9 | 451 444 | 71.7 1.07 | 72.9 70.4 | 9.3 0.14 | 9.5 9.2 |
32 | 1392 714.3 | 2983 485 | 51.7 5.84 | 62.3 36.9 | 23.9 0.77 | 25.7 21.5 |
33 | 2103 706.7 | 2960 531 | 61.2 4.99 | 70.3 43.5 | 24.1 0.71 | 25.5 18.1 |
34 | 1819 910.8 | 3133 490 | 46.2 6.09 | 59.2 34.6 | 25.0 0.79 | 26.4 21.5 |
35 * | 638 10.1 | 744 590 | 95.8 3.01 | 100.0 85.6 | 4.1 0.72 | 5.6 2.9 |
36 | 1217 501.5 | 2145 517 | 43.9 5.72 | 59.8 37.2 | 21.8 0.74 | 22.9 20.1 |
37 | 1027 505.9 | 1993 462 | 43.7 6.42 | 60.4 35.1 | 22.7 1.11 | 24.7 21.4 |
38 * | 551 5.8 | 560 536 | 81.6 1.96 | 84.5 75.5 | 4.1 0.95 | 6.5 2.6 |
References
- Brągoszewska, E.; Biedroń, I.; Kozielska, B.; Pastuszka, J.S. Microbiological indoor air quality in an office building in Gliwice, Poland: Analysis of the case study. Air Qual. Atmos. Health 2018, 11, 729–740. [Google Scholar] [CrossRef]
- Brągoszewska, E.; Palmowska, A.; Biedroń, I. Investigation of indoor air quality in the ventilated ice rink arena. Atmos. Pollut. Res. 2020, 11, 903–908. [Google Scholar] [CrossRef]
- Dimitroulopoulou, C. Ventilation in European dwellings: A review. Build. Environ. 2012, 47, 109–125. [Google Scholar] [CrossRef]
- Madsen, A.M.; Moslehi-Jenabian, S.; Islam, M.Z.; Frankel, M.; Spilak, M.; Frederiksen, M.W. Concentrations of Staphylococcus species in indoor air as associated with other bacteria, season, relative humidity, air change rate, and S. aureus-positive occupants. Environ. Res. 2018, 160, 282–291. [Google Scholar] [CrossRef]
- Al Horr, Y.; Arif, M.; Kaushik, A.; Mazroei, A.; Katafygiotou, M.; Elsarrag, E. Occupant productivity and office indoor environment quality: A review of the literature. Build. Environ. 2016, 105, 369–389. [Google Scholar] [CrossRef]
- Asadi, I.; Mahyuddin, N.; Shafigh, P. A review on Indoor Environmental Quality (IEQ) and energy consumption in Building based on occupant behaviour. Facilities 2017, 35, 684–695. [Google Scholar] [CrossRef]
- Geng, Y.; Ji, W.; Lin, B.; Zhu, Y. The impact of thermal environment on occupant IEQ perception and productivity. Build. Environ. 2017, 121, 158–167. [Google Scholar] [CrossRef]
- Niu, R.P.; Chen, X.; Liu, H. Analysis of the impact of a fresh air system on the indoor environment in office buildings. Sustain. Cities Soc. 2022, 83, 103934. [Google Scholar] [CrossRef]
- World Health Organization. The World Health Report 2002. Reducing Risks, Promoting Healthy Life; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- Basińska, M.; Michałkiewicz, M.; Ratajczak, K. Impact of physical and microbiological parameters on proper indoor air quality in nursery. Environ. Int. 2019, 132, 105098. [Google Scholar] [CrossRef]
- Aganovic, A.; Hamon, M.; Kolarik, J.; Cao, G. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information. In Proceedings of the 38th AIVC Conference, Nottingham, UK, 13–14 September 2017. [Google Scholar]
- Azuma, K.; Uchiyama, I.; Uchiyama, S.; Kunugita, N. Assessment of inhalation exposure to indoor air pollutants: Screening for health risks of multiple pollutants in Japanese dwellings. Environ. Res. 2016, 145, 39–49. [Google Scholar] [CrossRef]
- Mfarrej, M.F.B.; Qafisheh, N.A.; Bahloul, M.M. Investigation of Indoor Air Quality inside Houses From UAE. Air Soil Water Res. 2020, 13. [Google Scholar] [CrossRef]
- Park, H.S.; Ji, C.; Hong, T. Methodology for assessing human health impacts due to pollutants emitted from building materials. Build. Environ. 2016, 95, 133–144. [Google Scholar] [CrossRef]
- Persily, A.; de Jonge, L. Carbon dioxide generation rates for building occupants. Indoor Air 2017, 27, 868–879. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, N.; Nakaoka, H.; Hanazato, M.; Nakayama, Y.; Tsumura, K.; Takaya, K.; Todaka, E.; Mori, C. Indoor Air Quality Analysis of Newly Built Houses. Int. J. Environ. Res. Public Health 2019, 16, 4142. [Google Scholar] [CrossRef] [PubMed]
- Basińska, M.; Ratajczak, K.; Michałkiewicz, M.; Fuć, P.; Siedlecki, M. The Way of Usage and Location in a Big City Agglomeration as Impact Factors of the Nurseries Indoor Air Quality. Energies 2021, 14, 7534. [Google Scholar] [CrossRef]
- Polish Law: No 75, Item 690, Regulation of Minister of Infrastructure on the Technical Condition That Should Be Met by Buildings and Their Location. Warsaw: 2002. Available online: https://isap.sejm.gov.pl/isap.nsf/search.xsp?status=O&year=2002&volume=75&position=690 (accessed on 25 December 2019). (In Polish)
- ASHRAE 62-1-2019; Ventilation for Acceptable Indoor Air Quality. American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE): Norcross, GA, USA, 2019.
- Brągoszewska, E.; Biedroń, I. Indoor Air Quality and Potential Health Risk Impacts of Exposure to Antibiotic Resistant Bacteria in Office Rooms in Southern Poland. Int. J. Environ. Res. Public Health 2018, 15, 2604. [Google Scholar] [CrossRef]
- Cetin, M.; Sevik, H. Measuring the Impact of Selected Plants on Indoor CO2 Concentrations. Pol. J. Environ. Stud. 2016, 25, 973–979. [Google Scholar] [CrossRef]
- Kozdrój, J.; Frączek, K.; Ropek, D. Assessment of bioaerosols in indoor air of glasshouses located in a botanical garden. Build. Environ. 2019, 166, 106436. [Google Scholar] [CrossRef]
- Cummings, L.E.; Stewart, J.D.; Kremer, P.; Shakya, K.M. Predicting citywide distribution of air pollution using mobile monitoring and three-dimensional urban structure. Sustain. Cities Soc. 2022, 76, 103510. [Google Scholar] [CrossRef]
- Nemitz, E.; Vieno, M.; Carnell, E.; Fitch, A.; Steadman, C.; Cryle, P.; Holland, M.; Morton, R.D.; Hall, J.; Mills, G.; et al. Potential and limitation of air pollution mitigation by vegetation and uncertainties of deposition-based evaluations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2020, 378, 20190320. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zou, R.; Yang, M.; Zhang, Z. Experimental examination of effectiveness of vegetation as bio-filter of particulate matters in the urban environment. Environ. Pollut. 2016, 208, 198–208. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Brimblecombe, P. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmos. Environ. 2019, 201, 73–83. [Google Scholar] [CrossRef]
- Green, B.J.; Tovey, E.R.; Sercombe, J.K.; Blachere, F.M.; Beezhold, D.H.; Schmechel, D. Airborne fungal fragments and allergenicity. Med. Mycol. 2006, 44, 245–255. [Google Scholar] [CrossRef]
- Kim, J.L.; Elfman, L.; Mi, Y.; Wieslander, G.; Smedje, G.; Norbäck, D. Indoor molds, bacteria, microbial volatile organic compounds and plasticizers in schools e associations with asthma and respiratory symptoms in pupils. Indoor Air 2007, 17, 153–163. [Google Scholar] [CrossRef] [PubMed]
- Spilak, M.P.; Madsen, A.M.; Knudsen, S.M.; Kolarik, B.; Hansen, E.W.; Frederiksen, M.; Gunnarsen, L. Impact of dwelling characteristics on concentrations of bacteria, fungi, endotoxin and total inflammatory potential in settled dust. Build. Environ. 2015, 93, 64–71. [Google Scholar] [CrossRef]
- Stewart, J.D.; Shakya, K.M.; Bilinski, T.; Wilson, J.W.; Ravi, S.; Choi, C.S. Variation of near surface atmosphere microbial communities at an urban and a suburban site in Philadelphia, PA, USA. Sci. Total. Environ. 2020, 724, 138353. [Google Scholar] [CrossRef]
- Tischer, C.; Chen, C.-M.; Heinrich, J. Association between domestic mould and mould components, and asthma and allergy in children: A systematic review. Eur. Respir. J. 2011, 38, 812–824. [Google Scholar] [CrossRef] [PubMed]
- Adams, R.I.; Bhangar, S.; Dannemiller, K.C.; Eisen, J.A.; Fierer, N.; Gilbert, J.A.; Green, J.L.; Marr, L.C.; Miller, S.L.; Siegel, J.A.; et al. Ten questions concerning the microbiomes of buildings. Build. Environ. 2016, 109, 224–234. [Google Scholar] [CrossRef]
- Eltzov, E.; De Cesarea, A.L.; Low, Y.K.A.; Marks, R.S. Indoor air pollution and the contribution of biosensors. EuroBiotech J. 2019, 3, 19–31. [Google Scholar] [CrossRef]
- Grisoli, P.; Rodolfi, M.; Chiara, T.; Zonta, L.A.; Dacarro, C. Evaluation of microbiological air quality and of microclimate in university classrooms. Environ. Monit. Assess. 2012, 184, 4171–4180. [Google Scholar] [CrossRef]
- Gao, R.; Zhang, H.; Li, A.; Wen, S.; Du, W.; Deng, B. A new evaluation indicator of air distribution in buildings. Sustain. Cities Soc. 2020, 53, 101836. [Google Scholar] [CrossRef]
- Hospodsky, D.; Qian, J.; Nazaroff, W.W.; Yamamoto, N.; Bibby, K.; Rismani-Yazdi, H.; Peccia, J. Human occupancy as a source of indoor airborne bacteria. PLoS ONE 2012, 7, e34867. [Google Scholar] [CrossRef] [PubMed]
- Peccia, J.; Kwan, S.E. Buildings, beneficial microbes, and health. Trends Microbiol. 2016, 24, 595–597. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kabir, E.; Jahan, S.A. Airborne bioaerosols and their impact on human health. J. Environ. Sci. 2017, 67, 23–35. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Zhou, Y.; Chen, X.; Zhao, T.; Liu, T.; He, X.; Liu, J.; Xiao, Y. Study on indoor and outdoor permeability coefficients and bacterial components, sources of fine particles in severe cold region of China. Sustain. Cities Soc. 2020, 55, 102020. [Google Scholar] [CrossRef]
- Xie, Z.; Fan, C.; Lu, R.; Liu, P.; Wang, B.; Du, S.; Jin, C.; Deng, S.; Li, Y. Characteristics of ambient bioaerosols during haze episodes in China: A review. Environ. Pollut. 2018, 243, 1930–1942. [Google Scholar] [CrossRef]
- Crook, B.; Burton, N.C. Indoor moulds, Sick Building Syndrome and building related illness. Fungal Biol. Rev. 2010, 24, 106–113. [Google Scholar] [CrossRef]
- Ghaffarianhoseini, A.; AlWaer, H.; Omrany, H.; Ghaffarianhoseini, A.; Alalouch, C.; Clements-Croome, D.; Tookey, J. Sick building syndrome: Are we doing enough? Arch. Sci. Rev. 2018, 61, 99–121. [Google Scholar] [CrossRef]
- Nakayama, Y.; Nakaoka, H.; Suzuki, N.; Tsumura, K.; Hanazato, M.; Todaka, E.; Mori, C. Prevalence and risk factors of pre-sick building syndrome: Characteristics of indoor environmental and individual factors. Environ. Health Prev. 2019, 24, 77. [Google Scholar] [CrossRef]
- Pułyk, M. The State of the Environment in the Wielkopolska. Report 2020; Regional Department of Environmental Monitoring in Poznań: Poznań, Poland, 2020. (In Polish)
- Wiech, A.K.; Marciniewicz-Mykieta, M.; Toczko, B. The State of the Environment in Poland. 2018 Report; Main Inspectorate of Environmental Protection: Warszawa, Poland, 2018. (In Polish)
- PN-EN 16798.1-06; Energy Performance of Buildings—Ventilation for Buildings—Part 1: Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality, Thermal Environment, Lighting and Acoustics—Module M1-6. Polish Standards Institution: Warszawa, Poland, 2019. (In Polish)
- Polish Law: Item 1031, Regulation of Minister of Environment on the Levels of Certain Substances in Ambient Air. Warsaw: 2012. Available online: http://www.fao.org/faolex/results/details/en/c/LEX-FAOC129545/ (accessed on 25 December 2019). (In Polish).
- Grisoli, P.; Albertoni, M.; Rodolfi, M. Application of Airborne Microorganism Indexes in Offices, Gyms, and Libraries. Appl. Sci. 2019, 9, 1101. [Google Scholar] [CrossRef]
- Persily, A.; Polidoro, B. Development and Application of an Indoor Carbon Dioxide Metric. In Proceedings of the 16th Conference of the International Society of Indoor Air Quality & Climate, Seoul, Republic of Korea, 20–24 July 2020. ID ABS-0446. [Google Scholar]
- Jones, A.P. Indoor air quality and health. Atmos. Environ. 1999, 33, 4535–4564. [Google Scholar] [CrossRef]
- Madsen, A.M.; Moslehi-Jenabian, S.; Frankel, M.; White, J.K.; Frederiksen, M.W. Airborne bacterial species in indoor air and association with physical factors. UCL Open Environ. 2023, 31, e056. [Google Scholar] [CrossRef]
- Yang, Z.; Shen, J.; Gao, Z. Ventilation and Air Quality in Student Dormitories in China: A Case Study during Summer in Nanjing. Int. J. Environ. Res. Public Health 2018, 15, 1328. [Google Scholar] [CrossRef] [PubMed]
- Gładyszewska-Fiedoruk, K. Indoor Air Quality in the Bedroom of a Single-Family House—A Case Study. Proceedings 2019, 16, 38. [Google Scholar] [CrossRef]
- Grisoli, P.; Rodolfi, M.; Villani, S.; Grignani, E.; Cottica, D.; Berri, A.; Picco, A.M.; Dacarro, C. Assessment of airborne microorganism contamination in an industrial area characterized by an open composting facility and a wastewater treatment plant. Environ. Res. 2009, 109, 135–142. [Google Scholar] [CrossRef]
- Fujiyoshi, S.; Tanaka, D.; Maruyama, F. Transmission of airborne bacteria across built environments and its measurement standards: A review. Front. Microbiol. 2017, 8, 2336. [Google Scholar] [CrossRef]
- Heo, K.J.; Lim, C.E.; Kim, H.B.; Lee, B.U. Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J. Aerosol Sci. 2017, 104, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.E.; Shaughnessy, R.; Haverinen-Shaughnessy, U.; Kwan, T.A.; Peccia, J. The impact of ventilation rate on the fungal and bacterial ecology of home indoor air. Build. Environ. 2020, 177, 106800. [Google Scholar] [CrossRef]
- Weikl, F.; Tischer, C.; Probst, A.J.; Heinrich, J.; Markevych, I.; Jochner, S.; Pritsch, K. Fungal and bacterial communities in indoor dust follow different environmental determinants. PLoS ONE 2016, 11, e0154131. [Google Scholar] [CrossRef]
- Ogórek, R.; Pląskowska, E.; Kalinowska, K.; Fornalczyk, P.; Misztal, A.; Budziak, J. The analysis of mycological air pollution in selected rooms of student hostels. Mikol. Lek. 2011, 18, 201–210. [Google Scholar]
- Ulpiani, G.; Hart, M.A.; Di Virgilio, G.; Maharaj, A.M. Urban meteorology and air quality in a rapidly growing city: Inter-parameter associations and intra-urban heterogeneity. Sustain. Cities Soc. 2022, 77, 103553. [Google Scholar] [CrossRef]
- Borge, R.; Narros, A.; Artíñano, B.; Yagüe, C.; Gómez-Moreno, F.J.; de la Paz, D.; Román-Cascón, C.; Díaz, E.; Maqueda, G.; Sastre, M.; et al. Assessment of microscale spatio-temporal variation of air pollution at an urban hotspot in Madrid (Spain) through an extensive field campaign. Atmos. Environ. 2016, 140, 432–445. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Y.; Zhuang, D. Spatial distribution differences in PM2.5 concentration between heating and non-heating seasons in Beijing, China. Environ. Pollut. 2019, 248, 574–583. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.; Shen, J.; Tao, J.; Li, N.; Xu, C.; Li, Y.; Liu, Z.; Wang, Q. The impact of heating season factors on eight PM2.5-bound polycyclic aromatic hydrocarbon (PAH) concentrations and cancer risk in Beijing. Sci. Total. Environ. 2019, 688, 1413–1421. [Google Scholar] [CrossRef] [PubMed]
- Ścibor, M.; Balcerzak, B.; Galbarczyk, A.; Targosz, N.; Jasienska, G. Are we safe inside? Indoor air quality in relation to outdoor concentration of PM10 and PM2.5 and to characteristics of homes. Sustain. Cities Soc. 2019, 48, 101537. [Google Scholar] [CrossRef]
- Tang, D.; Wang, C.; Nie, J.; Chen, R.; Niu, Q.; Kan, H.; Chen, B.; Perera, F. Health benefits of improving air quality in Taiyuan, China. Environ. Int. 2014, 73, 235–242. [Google Scholar] [CrossRef]
- Li, S.; Williams, G.; Guo, Y. Health benefits from improved outdoor air quality and intervention in China. Environ. Pollut. 2016, 214, 17–25. [Google Scholar] [CrossRef]
Type | m2·person−1 | m3·person−1 | No. of Persons in Apartment |
---|---|---|---|
1-RB | 44.4 | 127.9 | 2 |
2-RB | 15.7 | 39.1 | 2 |
3-CRB | 10.1 | 24.4 | 2 |
4-SB | 62.5 | 184.3 | 3 |
5-SB | 74.5 | 185.3 | 3 |
6-RB | 20.9 | 58.0 | 3 |
7-RB | 17.7 | 45.9 | 3 |
8-SB | 74.8 | 201.9 | 2 |
9-RB | 17.4 | 48.6 | 2 |
10-CRB | 10.2 | 25.9 | 3 |
11-CRB | 9.1 | 23.0 | 3 |
12-CRB | 10.1 | 24.4 | 2 |
13-CRB | 9.9 | 24.8 | 2 |
Indicators | Single-Family Buildings—SBs (N = 8) | Residential Multi-Family Buildings—RBs (N = 12) | Collective Residence Buildings—CRBs (N = 7) | Outdoor (N = 11) | |
---|---|---|---|---|---|
GIMC·m−3 | M ± SD | 14,766 ± 9814 | 9671 ± 6502 | 13,717 ± 6244 | 8588 ± 8695 |
Min–Max | 2720–30,115 | 770–17,240 | 2640–18,830 | 2025–29,540 | |
B·F−1 | M ± SD | 5.38 ± 5.3 | 8.72 ± 7.7 | 2.77 ± 2.6 | 0.66 ± 0.93 |
Min–Max | 0.09–14.53 | 0.25–19.07 | 0.25–7.39 | 0.08–3.29 | |
IMSC·B−1 | M ± SD | 1.49 ± 0.6 | 2.03 ± 1.2 | 1.40 ± 0.6 | 0.51 ± 0.4 |
Min–Max | 0.63–2.38 | 1.23–5.63 | 0.51–2.04 | 0.10–1.39 | |
IMSC·BF−1 | M ± SD | 0.90 ± 0.71 | 1.14 ± 0.7 | 0.70 ± 0.5 | 0.13 ± 0.1 |
Min–Max | 0.03–1.84 | 0.13–2.12 | 0.09–1.39 | 0.01–0.34 |
Single-Family Building—SBs (N = 8) | Residential Multi-Family Buildings—RBs (N = 12) | Collective Residence Buildings—CRBs (N = 7) | Outdoor (N = 11) | ||
---|---|---|---|---|---|
CO2 (ppm) | M ± SD | 707 ± 187 | 952 ± 381 | 1232 ± 597 | 514 ± 125 |
Min–Max | 414–1945 | 273–3133 | 461–3133 | 316–830 | |
RH (%) | M ± SD | 60.7 ± 9.7 | 62.4 ± 9.5 | 47.6 ± 6.7 | 81.6 ± 13.7 |
Min–Max | 39.7–86.9 | 46.4–87.1 | 34.6–70.3 | 24.5–100.0 | |
t (°C) | M ± SD | 21.1 ± 2.1 | 20.7 ± 1.2 | 23.5 ± 1.2 | 10.3 ± 4.7 |
Min–Max | 16.3–25.0 | 17.7–23.2 | 18.1–26.4 | 0.7–21.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Basińska, M.; Michałkiewicz, M. Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration. Atmosphere 2025, 16, 600. https://doi.org/10.3390/atmos16050600
Basińska M, Michałkiewicz M. Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration. Atmosphere. 2025; 16(5):600. https://doi.org/10.3390/atmos16050600
Chicago/Turabian StyleBasińska, Małgorzata, and Michał Michałkiewicz. 2025. "Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration" Atmosphere 16, no. 5: 600. https://doi.org/10.3390/atmos16050600
APA StyleBasińska, M., & Michałkiewicz, M. (2025). Experience from Research on Indoor and Outdoor Air Quality in the Poznań Agglomeration. Atmosphere, 16(5), 600. https://doi.org/10.3390/atmos16050600