Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (792)

Search Parameters:
Keywords = indium tin oxide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2906 KiB  
Article
Optimal Design of a Lightweight Terahertz Absorber Featuring Ultra-Wideband Polarization-Insensitive Characteristics
by Yafeng Hao, Tengteng Li, Pu Zhu, Fupeng Ma, Huijia Wu, Cheng Lei, Meihong Liu, Ting Liang and Jianquan Yao
Photonics 2025, 12(8), 787; https://doi.org/10.3390/photonics12080787 (registering DOI) - 4 Aug 2025
Abstract
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz [...] Read more.
Metamaterial absorbers in terahertz (THz) based bands have garnered significant attention for their potential applications in military stealth, terahertz imaging, and other fields. Nevertheless, the limited bandwidth, low absorption rate, and heavy weight greatly reduce the further development and wide application of terahertz absorbers. To solve these problems, we propose a polystyrene (PS)-based ultra-broadband metamaterial absorber integrated with a polyethylene terephthalate (PET) double-sided adhesive layer and a patterned indium tin oxide (ITO) film through the simulation method, which operates in the THz band. The electromagnetic wave absorption properties and underlying physical absorption mechanisms of the proposed metamaterial absorbers are comprehensively modeled and rigorously numerically simulated. The research demonstrates the metamaterial absorber can achieve absorption performance of over 90% for fully polarized incident waves in the ultra-wideband range of 1.2–10 THz, especially achieving perfect absorption characteristics of over 99.9% near 1.8–1.9 THz and 5.8–6.2 THz. The proposed absorber has a lightweight physical property of 0.7 kg/m2 and polarization-insensitive characteristic, and it achieves a broad-angle that allows a range of incidence angles up to 60°. The simulation research results of this article provide theoretical support for the design of terahertz absorbers with ultra-wideband absorption characteristics. Full article
(This article belongs to the Special Issue Metamaterials and Nanophotonics: Fundamentals and Applications)
Show Figures

Figure 1

24 pages, 1483 KiB  
Review
Towards AZO Thin Films for Electronic and Optoelectronic Large-Scale Applications
by Elena Isabela Bancu, Valentin Ion, Stefan Antohe and Nicu Doinel Scarisoreanu
Crystals 2025, 15(8), 670; https://doi.org/10.3390/cryst15080670 - 23 Jul 2025
Viewed by 316
Abstract
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to [...] Read more.
Transparent conductive oxides (TCOs) have become essential components in a broad range of modern devices, including smartphones, flat-panel displays, and photovoltaic cells. Currently, indium tin oxide (ITO) is used in approximately 90% of these devices. However, ITO prices continue to rise due to the limited supply of indium (In), making the development of alternative materials for TCOs indispensable. Therefore, this study highlights the latest advances in creating new, affordable materials, with a focus on aluminum-doped zinc oxide (AZO). Over the last few decades, this material has been widely studied to improve its physical properties, particularly its low electrical resistivity, which can affect the performance of various devices. Now, it is close to replacing ITO due to several advantages including cost-effectiveness, stability under hydrogen plasma, low processing temperatures, and lack of toxicity. Besides that, in comparison to other TCOs such as IZO, IGZO, or IZrO, AZO achieved a low electrical resistivity (10−5 ohm cm) while maintaining a high transparency across the visible spectrum (over 85%). Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. Additionally, due to the increasing development of technologies utilizing such materials, it is essential to develop more effective techniques for producing TCOs on a larger scale. This review emphasizes the potential of AZO as a cost-effective and scalable alternative to ITO, highlighting key advancements in deposition techniques such as pulsed laser deposition (PLD). Full article
Show Figures

Figure 1

28 pages, 14374 KiB  
Article
Novel Airfoil-Shaped Radar-Absorbing Inlet Grilles on Aircraft Incorporating Metasurfaces: Multidisciplinary Design and Optimization Using EHVI–Bayesian Method
by Xufei Wang, Yongqiang Shi, Qingzhen Yang, Huimin Xiang and Saile Zhang
Sensors 2025, 25(14), 4525; https://doi.org/10.3390/s25144525 - 21 Jul 2025
Viewed by 333
Abstract
Aircraft, as electromagnetically complex targets, have radar cross-sections (RCSs) that are influenced by various factors, with the inlet duct being a critical component that often serves as a primary source of electromagnetic scattering, significantly impacting the scattering characteristics. In light of the conflict [...] Read more.
Aircraft, as electromagnetically complex targets, have radar cross-sections (RCSs) that are influenced by various factors, with the inlet duct being a critical component that often serves as a primary source of electromagnetic scattering, significantly impacting the scattering characteristics. In light of the conflict between aerodynamic performance and electromagnetic characteristics in the design of aircraft engine inlet grilles, this paper proposes a metasurface radar-absorbing inlet grille (RIG) solution based on a NACA symmetric airfoil. The RIG adopts a sandwich structure consisting of a polyethylene terephthalate (PET) dielectric substrate, a copper zigzag metal strip array, and an indium tin oxide (ITO) resistive film. By leveraging the principles of surface plasmon polaritons, electromagnetic wave absorption can be achieved. To enhance the design efficiency, a multi-objective Bayesian optimization framework driven by the expected hypervolume improvement (EHVI) is constructed. The results show that, compared with a conventional rectangular cross-section grille, an airfoil-shaped grille under the same constraints will reduce both aerodynamic losses and the absorption bandwidth. After 100-step EHVI–Bayesian optimization, the optimized balanced model attains a 57.79% reduction in aerodynamic loss relative to the rectangular-shaped grille, while its absorption bandwidth increases by 111.99%. The RCS exhibits a reduction of over 8.77 dBsm in the high-frequency band. These results confirm that the proposed optimization design process can effectively balance the conflict between aerodynamic performance and stealth performance for RIGs, reducing the signal strength of aircraft engine inlets. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

13 pages, 3688 KiB  
Article
Layer-by-Layer Engineered Zinc–Tin Oxide/Single-Walled Carbon Nanotube (ZTO/SWNT) Hybrid Films for Thin-Film Transistor Applications
by Yong-Jae Kim, Young-Jik Lee, Yeon-Hee Kim, Byung Seong Bae and Woon-Seop Choi
Micromachines 2025, 16(7), 825; https://doi.org/10.3390/mi16070825 - 20 Jul 2025
Viewed by 484
Abstract
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with [...] Read more.
Indium-based oxide semiconductors have been commercialized because of their excellent electrical properties, but the high cost, limited availability, and environmental toxicity of indium necessitate the development of alternative materials. Among the most promising candidates, zinc–tin oxide (ZTO) is an indium-free oxide semiconductor with considerable potential, but its relatively low carrier mobility and inherent limitations in thin-film quality demand further performance enhancements. This paper proposes a new approach to overcome these challenges by incorporating single-walled carbon nanotubes (SWNTs) as conductive fillers into the ZTO matrix and using a layer-by-layer multiple coating process to construct nanocomposite thin films. As a result, ZTO/SWNTs (0.07 wt.%) thin-film transistors (TFTs) fabricated with three coating cycles exhibited a high saturation mobility of 18.72 cm2/V·s, a threshold voltage of 0.84 V, and a subthreshold swing of 0.51 V/dec. These values represent an approximately four-fold improvement in mobility compared to ZTO TFT, showing that the multiple-coating-based nanocomposite strategy can effectively overcome the fundamental limitations. This study confirms the feasibility of achieving high-performance oxide semiconductor transistors without indium, providing a sustainable pathway for next-generation flexible electronics and display technologies. Full article
Show Figures

Figure 1

18 pages, 5775 KiB  
Article
Precision Solar Spectrum Filtering in Aerogel Windows via Synergistic ITO-Ag Nanoparticle Doping for Hot-Climate Energy Efficiency
by Huilin Yang, Maoquan Huang, Mingyang Yang, Xuankai Zhang and Mu Du
Gels 2025, 11(7), 553; https://doi.org/10.3390/gels11070553 - 18 Jul 2025
Viewed by 194
Abstract
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant [...] Read more.
Windows are a major contributor to energy loss in buildings, particularly in hot climates where solar radiation heat gain significantly increases cooling demand. An ideal energy-efficient window must maintain high visible light transmittance while effectively blocking ultraviolet and near-infrared radiation, presenting a significant challenge for material design. We propose a plasma silica aerogel window utilizing the local surface plasmon resonance effect of plasmonic nanoparticles. This design incorporates indium tin oxide (ITO) nanospheres (for broad-band UV/NIR blocking) and silver (Ag) nanocylinders (targeted blocking of the 0.78–0.9 μm NIR band) co-doped into the silica aerogel. This design achieves a visible light transmittance of 0.8, a haze value below 0.12, and a photothermal ratio of 0.91. Building simulations indicate that compared to traditional glass, this window can achieve annual energy savings of 20–40% and significantly reduce the economic losses associated with traditional glass, providing a feasible solution for sustainable buildings. Full article
(This article belongs to the Section Gel Applications)
Show Figures

Graphical abstract

14 pages, 3096 KiB  
Article
Photoelectrochemical CO2 Reduction Measurements of a BiOI Coating Deposited onto a Non-Conductive Glass Support as a Platform for Environmental Remediation
by J. Manuel Mora-Hernandez and A. Hernández-Ramírez
Processes 2025, 13(7), 2292; https://doi.org/10.3390/pr13072292 - 18 Jul 2025
Viewed by 489
Abstract
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium [...] Read more.
Aiming to contribute to environmental remediation strategies, this work proposes a novel fabrication of photoelectrocatalytic electrodes containing a BiOI coating deposited onto non-conductive glass (NCG) for CO2 conversion applications. When BiOI electrodes are not deposited onto fluorine-doped tin oxide (FTO) or indium tin oxide (ITO) conductive supports, the electrochemical measurements enable the registration of the (photo)electrochemical response for bare BiOI, thereby excluding remnant signals from the conductive supports and reporting an exclusive and proper photoelectrocatalytic BiOI response. A systematic procedure was carried out to improve the physicochemical properties of BiOI through a simple variation in the amount of reagents employed in a solvothermal synthesis, thus increasing the crystallite size and surface area of the resulting material (BiOI-X3-20wt.%). The tailored BiOI coating on a non-conductive support showed activity in performing CO2 photoelectroreduction under UV–Vis irradiation in aqueous media. Finally, the BiOI-X3-20wt.% sample was evaluated for photocatalytic CO2 conversion in gaseous media, producing CO as the primary reaction product. This study confirms that BiOI is a suitable and easily synthesized material, with potential applications for CO2 capture and conversion when employed as a photoactive coating for environmental remediation. Full article
(This article belongs to the Special Issue Advanced Application of Photoelectrocatalysis for Energy Conversion)
Show Figures

Graphical abstract

33 pages, 7442 KiB  
Review
Transparent Electrodes Based on Crack-Templated Metallic Networks for Next-Generation Optoelectronics
by Eleonora Sofia Cama, Mariacecilia Pasini, Francesco Galeotti and Umberto Giovanella
Materials 2025, 18(13), 3091; https://doi.org/10.3390/ma18133091 - 30 Jun 2025
Viewed by 592
Abstract
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high [...] Read more.
Transparent conductive electrodes (TCEs) are essential components in modern optoelectronic devices, including organic light-emitting diodes and solar cells, sensors, and flexible displays. Indium tin oxide has been the dominant material for TCEs due to its high transparency and conductivity. However, its brittleness, high cost, and increasingly limited availability pose significant challenges for electronics. Crack-template (CT)-assisted fabrication has emerged as a promising technique to develop metal mesh-based TCEs with superior mechanical flexibility, high conductivity, and excellent optical transmittance. This technique leverages the spontaneous formation of random and continuous microcrack networks in sacrificial templates, followed by metal deposition (e.g., Cu, Ag, Al, etc.), to produce highly conductive, scalable, and low-cost electrodes. Various crack formation strategies, including controlled drying of polymer suspensions, mechanical strain engineering, and thermal processing, have been explored to tailor electrode properties. Recent studies have demonstrated that crack-templated TCEs can achieve transmittance values exceeding 85% and sheet resistances below 10 Ω/sq, with mesh line widths as low as ~40 nm. Moreover, these electrodes exhibit enhanced stretchability and robustness under mechanical deformation, outperforming ITO in bend and fatigue tests. This review aims to explore recent advancements in CT engineering, highlighting key fabrication methods, performance metrics across different metals and substrates, and presenting examples of its applications in optoelectronic devices. Additionally, it will examine current challenges and future prospects for the widespread adoption of this emerging technology. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Graphical abstract

14 pages, 3702 KiB  
Article
A High-Sensitivity U-Shaped Optical Fiber SPR Sensor Based on ITO Coating
by Chuhan Ye, Zhibo Li, Wenhao Kang and Lei Hou
Sensors 2025, 25(13), 3911; https://doi.org/10.3390/s25133911 - 23 Jun 2025
Viewed by 394
Abstract
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. [...] Read more.
This paper proposes a high-sensitivity U-shaped optical fiber sensor based on indium tin oxide (ITO) for surface plasmon resonance (SPR) sensing. Finite element simulations reveal that introducing ITO enhances the surface electric field strength by 1.15× compared to conventional designs, directly boosting sensitivity. The U-shaped structure optimizes evanescent wave–metal film interaction, further improving performance. In an external refractive index (RI) range of 1.334–1.374 RIU, the sensor achieves a sensitivity of 4333 nm/RIU (1.85× higher than traditional fiber sensors) and a figure of merit (FOM) of 21.7 RIU−1 (1.68× improvement). Repeatability tests show a low relative standard deviation (RSD) of 0.4236% for RI measurements, with a maximum error of 0.00018 RIU, confirming excellent stability. The ITO coating’s strong adhesion ensures long-term reliability. With its simple structure, ease of fabrication, and superior sensitivity/FOM, this SPR sensor is well-suited for high-precision biochemical detection in intelligent sensing systems. Full article
(This article belongs to the Special Issue Feature Papers in Optical Sensors 2025)
Show Figures

Figure 1

21 pages, 4516 KiB  
Article
Exploring the Electrochemical Signatures of Heavy Metals on Synthetic Melanin Nanoparticle-Coated Electrodes: Synthesis and Characterization
by Mohamed Hefny, Rasha Gh. Orabi, Medhat M. Kamel, Haitham Kalil, Mekki Bayachou and Nasser Y. Mostafa
Appl. Nano 2025, 6(3), 11; https://doi.org/10.3390/applnano6030011 - 23 Jun 2025
Viewed by 580
Abstract
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the [...] Read more.
This study investigates the development and sensing profile of synthetic melanin nanoparticle-coated electrodes for the electrochemical detection of heavy metals, including lead (Pb), cadmium (Cd), cobalt (Co), zinc (Zn), nickel (Ni), and iron (Fe). Synthetic melanin films were prepared in situ by the deacetylation of diacetoxy indole (DAI) to dihydroxy indole (DHI), followed by the deposition of DHI monomers onto indium tin oxide (ITO) and glassy carbon electrodes (GCE) using cyclic voltammetry (CV), forming a thin layer of synthetic melanin film. The deposition process was characterized by electrochemical quartz crystal microbalance (EQCM) in combination with linear sweep voltammetry (LSV) and amperometry to determine the mass and thickness of the deposited film. Surface morphology and elemental composition were examined using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). In contrast, Fourier-transform infrared (FTIR) and UV–Vis spectroscopy confirmed the melanin’s chemical structure and its polyphenolic functional groups. Differential pulse voltammetry (DPV) and amperometry were employed to evaluate the melanin films’ electrochemical activity and sensitivity for detecting heavy metal ions. Reproducibility and repeatability were rigorously assessed, showing consistent electrochemical performance across multiple electrodes and trials. A comparative analysis of ITO, GCE, and graphite electrodes was conducted to identify the most suitable substrate for melanin film preparation, focusing on stability, electrochemical response, and metal ion sensing efficiency. Finally, the applicability of melanin-coated electrodes was tested on in-house heavy metal water samples, exploring their potential for practical environmental monitoring of toxic heavy metals. The findings highlight synthetic melanin-coated electrodes as a promising platform for sensitive and reliable detection of iron with a sensitivity of 106 nA/ppm and a limit of quantification as low as 1 ppm. Full article
Show Figures

Figure 1

12 pages, 1611 KiB  
Article
Influence of Deposition Time on Properties of Se-Doped CdTe Thin Films for Solar Cells
by Ibrahim M. Beker, Francis B. Dejene, Lehlohonolo F. Koao, Jacobus J. Terblans and Habtamu F. Etefa
Crystals 2025, 15(7), 589; https://doi.org/10.3390/cryst15070589 - 22 Jun 2025
Viewed by 321
Abstract
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) [...] Read more.
Se-doped CdTe thin films were grown employing a simple two-electrode electrochemical deposition method using glass/tin-doped indium oxide (glass/ITO). Cadmium acetate dihydrate [Cd (CH3CO2)2. 2H2O], selenium dioxide (SeO2), and tellurium dioxide (TeO2) were used as precursors. Instruments including X-ray diffraction for structural investigation, UV-Vis spectrophotometry for optical properties, and scanning probe microscopy for morphological properties were employed to investigate the physico-chemical characteristics of the resulting Se-doped CdTe thin-film. The films are polycrystalline with a cubic phase, according to X-ray diffraction (XRD) data. More ions are deposited on the substrate, which makes the material more crystalline and intensifies the characteristic peaks that are seen. It is observed from the acquired optical characterization that the film’s bandgap is greatly influenced by the deposition time. The bandgap dropped from 1.92 to 1.62 as the deposition period increased from 25 to 45 min, making the film more transparent and absorbing less light at shorter deposition durations. Images from scanning electron microscopy (SEM) show that the surface morphology is homogenous with closely packed grains and that the grain forms become less noticeable as the deposition time increases. This work is novel in that it investigates the influence of the deposition time on the structural, optical, and morphological properties of Se-doped CdTe thin films deposited using a cost-effective, simplified two-electrode electrochemical method—a fabrication route that remains largely unexplored for this material system. Full article
(This article belongs to the Section Materials for Energy Applications)
Show Figures

Figure 1

11 pages, 2538 KiB  
Article
Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator
by Nevin Taşaltın, İlke Gürol, Cihat Taşaltın, Selcan Karakuş, Bersu Baştuğ Azer, Ahmet Gülsaran and Mustafa Yavuz
Materials 2025, 18(12), 2850; https://doi.org/10.3390/ma18122850 - 17 Jun 2025
Viewed by 281
Abstract
In this study, borophene and nickel phthalocyanine (NiPc): borophene nanocomposites were prepared using the sonication method. The NiPc: borophene nanocomposite was uniformly obtained as a 10–80 nm-sized spherically shaped particle. Electrical conductivities (s) were measured as 3 × 10−13 Scm−1 and [...] Read more.
In this study, borophene and nickel phthalocyanine (NiPc): borophene nanocomposites were prepared using the sonication method. The NiPc: borophene nanocomposite was uniformly obtained as a 10–80 nm-sized spherically shaped particle. Electrical conductivities (s) were measured as 3 × 10−13 Scm−1 and 9.5 × 10−9 Scm−1 for NiPc and the NiPc: borophene nanocomposite, respectively. The SEM image showed that borophene was homogeneously distributed in the NiPc matrix and increased the charge transport pathways. This is the main reason for a 106-fold increase in electrical conductivity. An indium tin oxide (ITO)/NiPc: borophene nanocomposite-based thermoelectric generator (TEG) was prepared and characterized. The Seebeck coefficients (S) were calculated to be 5 μVK−1 and 30 μVK−1 for NiPc and the NiPc: borophene nanocomposite, respectively. A positive Seebeck coefficient value for the NiPc: borophene showed the p-type nature of the nanocomposite. The power factors (PF = sS2) were calculated as 7.5 × 10−16 μW m−1 K−2 and 8.6 × 10−10 μW m−1 K−2 for NiPc and the NiPc: borophene nanocomposite, respectively. Compositing NiPc with borophene increased the power factor by ~106-fold. It has been concluded that the electrical conductivity and Seebeck coefficient of the NiPc: borophene material increases due to energy band convergence because of combining p-type NiPc with p-type borophene. Therefore, the NiPc: borophene nanocomposite is a promising material for TEG. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

27 pages, 7536 KiB  
Article
Laser-Patterned and Photodeposition Ag-Functionalized TiO2 Grids on ITO Glass for Enhanced Photocatalytic Degradation
by Bozhidar I. Stefanov
Coatings 2025, 15(6), 709; https://doi.org/10.3390/coatings15060709 - 12 Jun 2025
Viewed by 630
Abstract
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to [...] Read more.
Laser patterning of sol–gel-derived TiO2 coatings offers a promising route for fabricating TiO2-based devices. Conventional approaches require high-power CO2 lasers, whereas herein is demonstrated an alternative method using a low-cost, blue laser (λ = 445 nm, 1250 mW) to pattern TiO2 layers derived from a visible-light-absorbing titanium salicylate sol. Grid-shaped TiO2 patterns (~250 μm line, 500 μm pitch) were fabricated on indium tin oxide (ITO)-coated glass substrates via dip-coating, laser patterning, selective solvent removal, and annealing at 450 °C. Photocatalytic performance was enhanced through Ag photodeposition from a 5 mM Ag+ aqueous electrolyte under UV doses of 5, 10, and 20 J cm−2. Structural and compositional analysis (XRD, SEM-EDS, AFM, UV–Vis, Raman) confirmed the formation of crystalline anatase TiO2 and Ag incorporation proportional to the dose. Methylene blue (MB) photooxidation experiments revealed that Ag-functionalized samples showed up to 20% higher degradation efficiency and improved photocatalytic stability across eight consecutive MB oxidation cycles. Additional photoelectrochemical measurements confirmed the formation of a TiO2/Ag Schottky junction, while surface-enhanced Raman scattering (SERS) signals observed on Ag/TiO2 grids enabled the detection of MB adsorbates. Full article
(This article belongs to the Special Issue Electrochemical Properties and Applications of Thin Films)
Show Figures

Figure 1

18 pages, 6070 KiB  
Article
A Non-Vacuum Coating Process That Fully Achieves Technical Goals of Bipolar Plates via Synergistic Control of Multiple Layer-by-Layer Strategy
by Qiaoling Liu, Xiaole Chen, Menghan Wu, Weihao Wang, Yinru Lin, Zilong Chen, Shuhan Yang, Yuhui Zheng and Qianming Wang
Molecules 2025, 30(12), 2543; https://doi.org/10.3390/molecules30122543 - 11 Jun 2025
Viewed by 435
Abstract
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used [...] Read more.
The primary challenge associated with stainless steel in fuel cell operation is its susceptibility to corrosion, which leads to increased contact resistance and subsequent degradation of electrochemical performance. In general, the protective layers have been loaded onto the metal surface by widely used traditional techniques such as physical vapor deposition (PVD), or cathode arc ion plating. However, the above sputtering and evaporation ways require a high-vacuum condition, complicated experimental setups, higher costs, and an elevated temperature. Therefore, herein the achievement for uniform coatings over a large surface area has been realized by using a cost-effective strategy through a complete wet chemical process. The synergistic regulation of two conductive components and a plastic additive has been employed together with the entrapment of a surfactant to optimize the microstructure of the coating surface. The assembly of layered graphite and a polystyrene sphere could maintain both the high corrosion resistance feature and excellent electrical conductivity. In particular, the intrinsic vacant space in the above physical barriers has been filled with fine powders of indium tin oxide (ITO) due to its small size, and the interconnected conductive network with vertical/horizontal directions would be formed. All the key technical targets based on the U.S. Department of Energy (DOE) have been achieved under the simulated operating environments of a proton exchange membrane fuel cell. The corrosion current density has been measured as low as 0.52 μA/cm2 (for the sample of graphite/mixed layer) over the applied potentials from −0.6 V to 1.2 V and its protective efficiency is evaluated to be 99.8%. The interfacial contact resistance between the sample and the carbon paper is much less than 10 mΩ·cm2 (3.4 mΩ·cm2) under a contact pressure of 165 N/cm2. The wettability has been investigated and its contact angle has been evolved from 48° (uncoated sample) to even 110°, providing superior hydrophobicity to prevent water penetration. Such an innovative approach opens up new possibilities for improving the durability and reducing the costs of carbon-based coatings. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia)
Show Figures

Figure 1

10 pages, 1697 KiB  
Article
Effect of Rising Time on AC Stress-Induced Performance Degradation in a-ITGZO Thin-Film Transistors
by Mingu Kang, Kyoungah Cho and Sangsig Kim
Nanomaterials 2025, 15(12), 880; https://doi.org/10.3390/nano15120880 - 7 Jun 2025
Viewed by 514
Abstract
In this study, we investigate the impact of rising time on alternating current (AC) stress-induced degradation in amorphous indium–tin–gallium–zinc oxide (a-ITGZO) TFTs through both experiments and simulations. When AC bias stresses with rising and falling times (tr-f) of 400 ns, [...] Read more.
In this study, we investigate the impact of rising time on alternating current (AC) stress-induced degradation in amorphous indium–tin–gallium–zinc oxide (a-ITGZO) TFTs through both experiments and simulations. When AC bias stresses with rising and falling times (tr-f) of 400 ns, 200 ns, and 100 ns were applied to the a-ITGZO TFTs, the threshold voltage (VTH) shifted positively by 0.97 V, 2.68 V, and 2.83 V, respectively. These experimental results align with a stretched exponential model, which attributes the VTH to electron trapping in bulk dielectric states or at interface traps. The simulation results further validate the stretched exponential model by illustrating the potential distribution across the dielectric and channel layers as a function of tr-f and the density of states in the a-ITGZO TFT. Full article
Show Figures

Graphical abstract

15 pages, 1981 KiB  
Article
Substrate-Dependent Characteristics of CuSbS2 Solar Absorber Layers Grown by Spray Pyrolysis
by Samaneh Shapouri, Elnaz Irani, Payam Rajabi Kalvani, Stefano Pasini, Gianluca Foti, Antonella Parisini and Alessio Bosio
Coatings 2025, 15(6), 683; https://doi.org/10.3390/coatings15060683 - 6 Jun 2025
Viewed by 642
Abstract
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), [...] Read more.
Copper antimony sulfide (CuSbS2) is an affordable and eco-friendly solar absorber with an optimal bandgap and high absorption coefficient, and it stands out as a promising candidate for thin-film solar cells. This study investigates the effects of indium tin oxide (ITO), fluorine-doped tin oxide (FTO), and glass substrates on the microstructural, morphological, and optical properties of CuSbS2 (CAS) layers synthesized via spray pyrolysis. X-ray Diffraction (XRD) and Raman spectroscopy analyses revealed that CAS phases formed on ITO and FTO substrates exhibited a phase composition without additional copper phases. However, the CAS layer on glass contained a copper sulfide (CuS) phase, which can be detrimental for solar cell applications. Furthermore, the influences of the substrate morphology and contact angle on the growth mechanisms of CAS layers was examined, highlighting the relationship between the substrate micromorphology and the resultant film characteristics. Advanced image processing techniques applied to Atomic Force Microscopy (AFM) images of the substrate surfaces facilitated a comprehensive comparison with the surface characteristics of the CAS films grown on those substrates. Field Emission Scanning Electron Microscopy (FESEM) indicated that CAS layers on ITO possessed larger grains than FTO, whereas those on FTO exhibited lower roughness with a more uniform grain distribution. Notably, the optical properties of the CAS layers correlated strongly with their microstructural and morphological characteristics. This work highlights the critical influence of substrate choice on the growth and characteristics of CAS layers through a comparative analysis. Full article
Show Figures

Graphical abstract

Back to TopTop