Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
3.1. Structural and Chemical Analysis of the NiPc: Borophene Nanocomposite
3.2. Thermoelectric Performance of the Prepared TEGs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Russ, B.; Glaudell, A.; Urban, J.J.; Chabinyc, M.L.; Segalman, R.A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 2016, 1, 1–14. [Google Scholar] [CrossRef]
- Urban, J.J.; Menon, A.K.; Tian, Z.; Jain, A.; Hippalgaonkar, K.J. New horizons in thermoelectric materials: Correlated electrons, organic transport, machine learning, and more. Appl. Phys. 2019, 125, 180902. [Google Scholar] [CrossRef]
- Wang, H.; Yu, C. Organic Thermoelectrics: Materials Preparation, Performance Optimization, and Device Integration. Joule 2019, 3, 53–80. [Google Scholar] [CrossRef]
- Nandihalli, N.; Liu, C.J.; Mori, T. Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 2020, 78, 105186. [Google Scholar] [CrossRef]
- Bell, L.E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 2008, 321, 1457–1461. [Google Scholar] [CrossRef]
- Yang, B.; Ahuja, H.; Tran, T.N. Review Article: Thermoelectric Technology Assessment: Application to Air Conditioning and Refrigeration. Hvac&R Res. 2008, 14, 635–653. [Google Scholar]
- Vineis, C.J.; Shakouri, A.; Majumdar, A.; Kanatzidis, M.G. Nanostructured Thermoelectrics: Big Efficiency Gains from Small Features. Adv. Mater. 2010, 22, 3970–3980. [Google Scholar] [CrossRef]
- Lee, J.; Chen, H.F.; Batagoda, T.; Coburn, C.; Djurovich, P.I.; Thompson, M.E.; Forrest, S.R. Deep blue phosphorescent organic light-emitting diodes with very high brightness and efficiency. In Electrophosphorescent Materials and Devices; Jenny Stanford Publishing: Singapore; pp. 877–899.
- Verma, A.K.; Johari, K.K.; Dubey, P.; Sharma, D.K.; Kumar, S.; Dhakate, S.R.; Candolfi, C.; Lenoir, B.; Gahtori, B. Realization of band convergence in p-Type TiCoSb half-heusler alloys significantly enhances the thermoelectric performance. ACS Appl. Mater. Interfaces 2022, 15, 942–952. [Google Scholar] [CrossRef]
- Sirringhaus, H. 25th Anniversary Article: Organic Field-Effect Transistors: The Path Beyond Amorphous Silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef]
- Cahill, D.G.; Braun, P.V.; Chen, G.; Clarke, D.R.; Fan, S.; Goodson, K.E.; Keblinski, P.; King, W.P.; Mahan, G.D.; Majumdar, A.; et al. Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 2014, 1, 011305. [Google Scholar] [CrossRef]
- Tan, M.; Wang, Y.; Deng, Y.; Zhang, Z.; Luo, B.; Yang, J.; Xu, Y. Oriented growth of A2Te3 (A = Sb, Bi) films and their devices with enhanced thermoelectric performance. Sens. Actuators A Phys. 2011, 171, 252–259. [Google Scholar] [CrossRef]
- Goldsmid, H.J. The Electrical Conductivity and Thermoelectric Power of Bismuth Telluride. Proc. Phys. Soc. 1958, 71, 633. [Google Scholar] [CrossRef]
- Majumdar, A. Thermoelectricity in Semiconductor Nanostructures. Science 2004, 303, 777–778. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’Quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. The Effect of Quantum Well Structures on the Thermoelectric Figure of Merit. Phys. Rev. B 1993, 47, 12727. [Google Scholar] [CrossRef] [PubMed]
- Li, J.F.; Liu, W.S.; Zhao, L.D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Girard, S.N.; He, J.; Li, C.; Moses, S.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. In situ nanostructure generation and evolution within a bulk thermoelectric material to reduce lattice thermal conductivity. Nano Lett. 2010, 10, 2825. [Google Scholar] [CrossRef]
- Zhao, H.; Pokheral, M.; Zhu, G.; Chen, S.; Lukas, K.; Jie, Q.; Opeil, C.; Chen, G.; Ren, Z. Dramatic Thermal Conductivity Reduction by Nanostructures for Large Increase in Thermoelectric Figure-of-merit of FeSb2. Appl. Phys. Lett. 2011, 99, 163101. [Google Scholar] [CrossRef]
- Morelli, D.T.; Meisner, G.P. Low temperature properties of the filled skutterudite CeFe4Sb12. J. Appl. Phys. 1995, 77, 3777–3781. [Google Scholar] [CrossRef]
- Uher, C.; Yang, J.; Hu, S.; Morelli, D.T.; Meisner, G.P. Transport properties of pure and doped MNiSn (M=Zr, Hf). Phys. Rev. B 1999, 59, 8615. [Google Scholar] [CrossRef]
- Nolas, G.S.; Cohn, J.L.; Slack, G.A.; Schujman, S.B. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications. Appl. Phys. Lett. 1998, 73, 178–180. [Google Scholar] [CrossRef]
- Sakurada, S.; Shutoh, N. Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl. Phys. Lett. 2005, 86, 082105. [Google Scholar] [CrossRef]
- Sun, Y.; Sheng, P.; Di, C.; Jiao, F.; Xu, W.; Qiu, D.; Zhu, D. Organic Thermoelectric Materials and Devices Based on p- and n-Type Poly(metal 1,1,2,2-ethenetetrathiolate)s. Adv. Mater. 2012, 24, 932–937. [Google Scholar] [CrossRef] [PubMed]
- Yue, R.; Chen, S.; Liu, C.; Lu, B.; Xu, J.; Wang, J.; Liu, G. Synthesis, characterization, and thermoelectric properties of a conducting copolymer of 1, 12-bis (carbazolyl) dodecane and thieno [3, 2-b] thiophene. J. Solid State Electrochem. 2012, 16, 117. [Google Scholar] [CrossRef]
- Søndergaard, R.R.; Hösel, M.; Espinosa, N.; Jørgensen, M.; Krebs, F.C. Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci. Eng. 2013, 1, 81–88. [Google Scholar] [CrossRef]
- Sun, Y.; Xu, W.; Di, C.A.; Zhu, D. Metal-organic complexes-towards promising organic thermoelectric materials. Synth. Met. 2017, 225, 22–30. [Google Scholar] [CrossRef]
- Wang, L.; Dong, B.; Ge, R.; Jiang, F.; Xu, J. Fluorene-Based Two-Dimensional Covalent Organic Framework with Thermoelectric Properties through Doping. ACS Appl. Mater. Interfaces 2017, 9, 7108–7114. [Google Scholar] [CrossRef]
- Bertram, J.R.; Penn, A.; Nee, M.J.; Rathnayake, H. A Novel N-Type OrganosilaneMetal Ion Hybrid of Rhodamine B and Copper Cation for Low-Temperature Thermoelectric Materials. ACS Appl. Mater. Interfaces 2017, 9, 10946–10954. [Google Scholar] [CrossRef]
- Sun, L.; Liao, B.; Sheberla, D.; Kraemer, D.; Zhou, J.; Stach, E.A.; Zakharov, D.; Stavila, V.; Talin, A.A.; Ge, Y.; et al. A Microporous and Naturally Nanostructured Thermoelectric Metal-Organic Framework with Ultralow Thermal Conductivity. Joule 2017, 1, 168–177. [Google Scholar] [CrossRef]
- Shakeel, M.; Rehman, K.; Ahmad, S.; Amin, M.; Iqbal, N.; Khan, A. A low-cost printed organic thermoelectric generator for low-temperature energy harvesting. Renew. Energy 2021, 167, 853–860. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Mahmoud, M.S.; Elsaid, K.; Sayed, E.T.; Wilberforce, T.; Al-Murisi, M.; Maghrabie, H.M.; Olabi, A.G. Prospects of Thermoelectric Generators with Nanofluid. Therm. Sci. Eng. Prog. 2022, 29, 101207. [Google Scholar] [CrossRef]
- Jaziri, N.; Boughamoura, A.; Müller, J.; Mezghani, B.; Tounsi, F.; Ismail, M. A comprehensive review of Thermoelectric Generators: Technologies and common applications. Energy Rep. 2020, 6, 264–287. [Google Scholar] [CrossRef]
- Masoumi, S.; O’Shaughnessy, S.; Pakdel, A. Organic-based flexible thermoelectric generators: From materials to devices. Nano Energy 2022, 92, 106774. [Google Scholar] [CrossRef]
- Doraghi, Q.; Khordehgah, N.; Żabnieńska-Góra, A.; Ahmad, L.; Norman, L.; Ahmad, D.; Jouhara, H. Investigation and Computational Modelling of Variable TEG Leg Geometries. ChemEngineering 2021, 5, 45. [Google Scholar] [CrossRef]
- El-Nahass, M.M.; Abd-El-Rahman, K.F.; Farag, A.A.M.; Darwish, A.A.A. Photovoltaic properties of NiPc/p-Si (organic/inorganic) heterojunctions. Org. Electron. 2005, 6, 129–136. [Google Scholar] [CrossRef]
- Nasir, E.M.; Hussein, M.T.; Al-Aarajiy, A.H. Investigation of nickel phthalocyanine thin films for solar cell applications. Adv. Mater. Phys. Chem. 2019, 9, 158–173. [Google Scholar] [CrossRef]
- Wang, D.; Shi, W.; Chen, J.; Xi, J.; Shuai, Z. Modeling thermoelectric transport in organic materials. Phys. Chem. Chem. Phys. 2012, 14, 16505–16520. [Google Scholar] [CrossRef]
- Xing, W.; Chen, J.; Liang, Y.; Zou, Y.; Sun, Y.; Xu, W.; Zhu, D. Optimization of the thermoelectric performance of layer-by-layer structured copper-phthalocyanine (CuPc) thin films doped with hexacyano-trimethylene-cyclopropane (CN6-CP). RSC Adv. 2019, 9, 31840–31845. [Google Scholar] [CrossRef]
- Chen, Y.; Qu, S.; Shi, W.; Yao, Q.; Chen, L. Enhanced thermoelectric properties of copper phthalocyanine/single-walled carbon nanotubes hybrids. Carbon 2020, 159, 471–477. [Google Scholar] [CrossRef]
- Hou, C.; Tai, G.; Liu, Y.; Liu, X. Borophene gas sensor. Nano Res. 2022, 15, 2537–2544. [Google Scholar] [CrossRef]
- Najiya, K.P.P.; Konnola, R.; Sreena, T.S.; Solomon, S.; Gopchandran, K.G. Liquid phase exfoliation of few-layer borophene with high hole mobility for low-power electronic devices. Inorg. Chem. Commun. 2024, 168, 112962. [Google Scholar] [CrossRef]
- Güngör, S.; Taşaltın, C.; Gürol, İ.; Baytemir, G.; Karakuş, S.; Taşaltın, N. Copper phthalocyanine-borophene nanocomposite-based non-enzymatic electrochemical urea biosensor. Appl. Phys. A 2022, 128, 89. [Google Scholar] [CrossRef]
- Gürol, I.; Ahsena, V.; Bekarǒlu, Ö.J. Synthesis of tetraalkylthio-substituted phthalocyanines and their complexation with AgI and PdII. Chem. Soc. Dalton Trans. 1994, 4, 497–500. [Google Scholar] [CrossRef]
- Chen, S.; Ma, J. Charge transport in stacking metal and metal-free phthalocyanine iodides. Effects of packing, dopants, external electric field, central metals, core modification, and substitutions. J. Comput. Chem. 2009, 30, 1959–1972. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.P.; Schlettwein, D.; Wohrle, D.; Jaeger, N.I. Charge transport in thin films of molecular semiconductors as investigated by measurements of thermoelectric power and electrical conductivity. Thin Solid Films 1995, 258, 317–324. [Google Scholar] [CrossRef]
- Yamakado, H.; Ida, T.; Ugawa, A.; Yakushi, K.; Awaga, K.; Maruyama, Y.; Imaeda, K.; Inokuchi, H. Structure and solid-state properties of the stable ring-oxidized conductor CoPc(AsF6)0.5: Interaction between ring π-electrons and cobalt d-electrons. Synth. Met. 1994, 62, 169–178. [Google Scholar] [CrossRef]
- Yonehara, Y.; Yakushi, K. High-Pressure Study of One-dimensional Phthalocyanine Conductor, NiPc(AsF6)0.5. Synth. Met. 1998, 94, 149–155. [Google Scholar] [CrossRef]
- Chen, Y.; Yao, Q.; Qu, S.; Shi, W.; Li, H.; Chen, L. Enhanced thermoelectric performance of phthalocyanine complexes/single-walled carbon nanotube hybrids by tuning the types of metal coordination ions. Compos. Commun. 2021, 27, 100891. [Google Scholar] [CrossRef]
Compound | S (μV K−1) | σ (Scm−1) | PF (μW m−1 K−2) | Ref. |
---|---|---|---|---|
ZnPc | 285 | 8 × 10−7 | 6 × 10−6 | [47] |
CoPc(AsF6)0.5 | 50 | 1 × 102 | 25 | [48] |
NiPc(AsF6)0.5 | 25 | 1 × 103 | 62 | [49] |
NiPc/SWCNT with 80 wt% SWCNTs | 48.5 | 540 | 120 | [50] |
CuPc/SWCNT with 80 wt% SWCNTs | 47 | 450 | 90 | [50] |
CoPc/SWCNT with 80 wt% SWCNTs | 46 | 380 | 80 | [50] |
NiPc NiPc: borophene | 5 30 | 3 × 10−13 9.5 × 10−9 | 7.5 × 10−16 8.6 × 10−10 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Taşaltın, N.; Gürol, İ.; Taşaltın, C.; Karakuş, S.; Baştuğ Azer, B.; Gülsaran, A.; Yavuz, M. Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator. Materials 2025, 18, 2850. https://doi.org/10.3390/ma18122850
Taşaltın N, Gürol İ, Taşaltın C, Karakuş S, Baştuğ Azer B, Gülsaran A, Yavuz M. Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator. Materials. 2025; 18(12):2850. https://doi.org/10.3390/ma18122850
Chicago/Turabian StyleTaşaltın, Nevin, İlke Gürol, Cihat Taşaltın, Selcan Karakuş, Bersu Baştuğ Azer, Ahmet Gülsaran, and Mustafa Yavuz. 2025. "Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator" Materials 18, no. 12: 2850. https://doi.org/10.3390/ma18122850
APA StyleTaşaltın, N., Gürol, İ., Taşaltın, C., Karakuş, S., Baştuğ Azer, B., Gülsaran, A., & Yavuz, M. (2025). Nickel Phthalocyanine: Borophene P-N Junction-Based Thermoelectric Generator. Materials, 18(12), 2850. https://doi.org/10.3390/ma18122850