Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = indium gallium arsenide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 3390 KiB  
Article
Material Sensing with Spatial and Spectral Resolution Based on an Integrated Near-Infrared Spectral Sensor and a CMOS Camera
by Ben Delaney, Sjors Buntinx, Don M. J. van Elst, Anne van Klinken, René P. J. van Veldhoven and Andrea Fiore
Sensors 2025, 25(11), 3295; https://doi.org/10.3390/s25113295 - 23 May 2025
Viewed by 485
Abstract
Measuring the composition of materials at a distance is a key requirement in industrial process monitoring, recycling, precision agriculture, and environmental monitoring. Spectral imaging in the visible or near-infrared (NIR) spectral bands provides a potential solution by combining spatial and spectral information, and [...] Read more.
Measuring the composition of materials at a distance is a key requirement in industrial process monitoring, recycling, precision agriculture, and environmental monitoring. Spectral imaging in the visible or near-infrared (NIR) spectral bands provides a potential solution by combining spatial and spectral information, and its application has seen significant growth over recent decades. Low-cost solutions for visible multispectral imaging (MSI) have been developed due to the widespread availability of silicon detectors, which are sensitive in this spectral region. In contrast, development in the NIR has been slower, primarily due to the high cost of indium gallium arsenide (InGaAs) detector arrays required for imaging. This work aims to bridge this gap by introducing a standoff material sensing concept which combines spatial and spectral resolution without the hardware requirements of traditional spectral imaging systems. It combines spatial imaging in the visible range with a CMOS camera and NIR spectral measurement at selected points of the scene using an NIR spectral sensor. This allows the chemical characterization of different objects of interest in a scene without acquiring a full spectral image. We showcase its application in plastic classification, a key functionality in sorting and recycling systems. The system demonstrated the capability to classify visually identical plastics of different types in a standoff measurement configuration and to produce spectral measurements at up to 100 points in a scene. Full article
Show Figures

Figure 1

15 pages, 15113 KiB  
Article
Performance Evaluation of GaAs and InGaAs Schottky Mixers at 0.3 THz: A Comparative Analysis Between Optical and Electrical Pumping in THz Wireless Communication Systems
by Javier Martinez-Gil, Iñigo Belio-Apaolaza, Jonas Tebart, Jose Luis Fernández Estévez, Diego Moro-Melgar, Cyril C. Renaud, Andreas Stöhr and Oleg Cojocari
Electronics 2025, 14(10), 1957; https://doi.org/10.3390/electronics14101957 - 11 May 2025
Viewed by 634
Abstract
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer [...] Read more.
Gallium Arsenide (GaAs) Schottky technology stands out for its superior performance in terms of conversion loss for terahertz mixers at room temperatures, which establishes it as a dominant solution in receivers for high-data-rate wireless communications. However, Indium Gallium Arsenide (InGaAs) Schottky mixers offer a notable advantage in terms of reduced power requirements due to their lower barrier height, enabling optical pumping with the incorporation of photodiodes acting as photonic local oscillators (LOs). In this study, we present the first comparative analysis of GaAs and InGaAs diode technologies under both electrical and optical pumping, which are also being compared for the first time, particularly in the context of a wireless communication system, transmitting up to 80 Gbps at 0.3 THz using 16-quadrature amplitude modulation (QAM). The terahertz transmitter and the optical receiver’s LO are based on modified uni-traveling-carrier photodiodes (MUTC-PDs) driven by free-running lasers. The investigation covers a total of two mixers, including narrow-band GaAs and InGaAs. The results reveal that, despite InGaAs mixers exhibiting higher conversion loss, the bit error rate (BER) can be as low as that with GaAs. This is attributed to the purity of optically generated LO signals in the receiver. This work positions InGaAs Schottky technology as a compelling candidate for terahertz reception in the context of optical wireless communication systems. Full article
(This article belongs to the Section Optoelectronics)
Show Figures

Figure 1

35 pages, 10977 KiB  
Review
From Indoor to Daylight Electroluminescence Imaging for PV Module Diagnostics: A Comprehensive Review of Techniques, Challenges, and AI-Driven Advancements
by Rodrigo del Prado Santamaría, Mahmoud Dhimish, Gisele Alves dos Reis Benatto, Thøger Kari, Peter B. Poulsen and Sergiu V. Spataru
Micromachines 2025, 16(4), 437; https://doi.org/10.3390/mi16040437 - 4 Apr 2025
Viewed by 1726
Abstract
This review paper presents a comprehensive analysis of electroluminescence (EL) imaging techniques for photovoltaic (PV) module diagnostics, focusing on advancements from conventional indoor imaging to outdoor and daylight EL imaging. It examines key challenges, including ambient light interference and environmental variability, and highlights [...] Read more.
This review paper presents a comprehensive analysis of electroluminescence (EL) imaging techniques for photovoltaic (PV) module diagnostics, focusing on advancements from conventional indoor imaging to outdoor and daylight EL imaging. It examines key challenges, including ambient light interference and environmental variability, and highlights innovations such as infrared-sensitive indium gallium arsenide (InGaAs) cameras, optical filtering, and periodic current modulation to enhance defect detection. The review also explores the role of artificial intelligence (AI)-driven methodologies, including deep learning and generative adversarial networks (GANs), in automating defect classification and performance assessment. Additionally, the emergence of drone-based EL imaging has facilitated large-scale PV inspections with improved efficiency. By synthesizing recent advancements, this paper underscores the critical role of EL imaging in ensuring PV module reliability, optimizing performance, and supporting the long-term sustainability of solar energy systems. Full article
(This article belongs to the Special Issue Emerging Trends in Optoelectronic Device Engineering)
Show Figures

Figure 1

20 pages, 5610 KiB  
Article
Calibration of Short-Wave Infrared Spectrometer for Atmosphere Methane Monitoring
by Haoran Li, Fuqi Si, Liang Xi, Fang Lin, Yu Jiang, Fenglei Liu, Yi Zeng, Yunkun Han and Kaili Wu
Remote Sens. 2025, 17(5), 851; https://doi.org/10.3390/rs17050851 - 28 Feb 2025
Viewed by 746
Abstract
The short-wave infrared (SWIR) grating imaging spectrometer based on indium gallium arsenide (InGaAs) material inverts the atmospheric methane concentration by measuring the scattered light signals in the sky. This study proposes spectral and radiometric calibration methods for the characteristics of the spectrometer, such [...] Read more.
The short-wave infrared (SWIR) grating imaging spectrometer based on indium gallium arsenide (InGaAs) material inverts the atmospheric methane concentration by measuring the scattered light signals in the sky. This study proposes spectral and radiometric calibration methods for the characteristics of the spectrometer, such as the small-area array, high signal-to-noise ratio, and high spectral resolution. Four spectral response function models, namely, the Gauss, Lorentz, Voigt and super-Gaussian models, were compared during spectral calibration. With a fitting residual of 0.032, the Gauss model was found to be the most suitable spectral response function for the spectrometer. Based on the spectral response function, the spectral range and spectral resolution of the spectrometer were determined to be 1592.4–1677.2 and 0.1867 nm, respectively. In addition, radiometric calibration of the spectrometer was achieved by combining an integrating sphere and linear measuring instrument. Moreover, absolute and relative radiometric calibrations of the spectrometer were performed. The low signal response problem caused by the quantum efficiency of the detector at long wavelength was corrected, and the uncertainty and non-stability uncertainty of absolute radiometric calibration were calculated to be less than 0.2%. Finally, the calibrated spectrometer was used to accurately measure the solar scattering spectrum in the SWIR band, and the solar spectrum was simulated by the radiative transfer model for verification; the measurement error was found to be 5%. Concurrently, a methane sample gas experiment was performed using the integrating-sphere light source, and the measurement error was less than 4%. This fully proves the effectiveness of the spectral and radiometric calibrations of the SWIR spectrometer and strongly guarantees a subsequent, rapid and accurate inversion of atmospheric methane concentration. Full article
Show Figures

Figure 1

16 pages, 4648 KiB  
Article
Semiconductor Material Damage Mechanisms Due to Non-Ionizing Energy in Space-Based Solar Systems
by Anthony Peters, Matthias Preindl and Vasilis Fthenakis
Energies 2025, 18(3), 509; https://doi.org/10.3390/en18030509 - 23 Jan 2025
Viewed by 1024
Abstract
Radiation impacts on space-based systems operating on various orbits are evaluated in this paper. Specifically, satellite operations in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geosynchronous Orbit (GEO) are analyzed. Special focus is given on quantifying the effect of high-energy particle [...] Read more.
Radiation impacts on space-based systems operating on various orbits are evaluated in this paper. Specifically, satellite operations in Low Earth Orbit (LEO), Medium Earth Orbit (MEO), and Geosynchronous Orbit (GEO) are analyzed. Special focus is given on quantifying the effect of high-energy particle space radiation on materials used for critical power components, where component fault can lead to total mission failure. Methods, using multiple computational platforms for the quantification of non-ionizing energy loss (NIEL) and displacement damage dose (DDD), are used to assess semiconductor damage at specific orbital altitudes. Detailed simulations were conducted for Gallium Arsenide Indium Phosphide (GaInP/GaAs/Ge) solar cells with various cover glass thicknesses, and the survivability of GaInP/GaAs/Ge cells was compared with that of Si cells. It was assessed that radiation exposure due to high-energy protons at 10,000 km is more prevalent than 20,000 km orbits and that electron bombardment is a major electronic damage culprit. For MEO at 10,000 km, MEO at 20,000 km, and GEO at 36,000 km, we determined the 1-year maximum power (Pmax) losses due to protons to be 23%, 8%, and 1% and losses due to electrons to be 11%, 14%, and 10%. Total integrated spectra Pmax losses for those altitudes are 25%, 16%, and 10%, respectively. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Graphical abstract

11 pages, 3834 KiB  
Article
Shortwave Infrared InGaAs Detectors On-Chip Integrated with Subwavelength Polarization Gratings
by Huijuan Huang, Yizhen Yu, Xue Li, Duo Sun, Guixue Zhang, Tao Li, Xiumei Shao and Bo Yang
Nanomaterials 2023, 13(18), 2512; https://doi.org/10.3390/nano13182512 - 7 Sep 2023
Cited by 5 | Viewed by 2396
Abstract
Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the [...] Read more.
Shortwave infrared polarization imaging can increase the contrast of the target to the background to improve the detection system’s recognition ability. The division of focal plane polarization indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice due to the advantages of compact structure, real-time imaging, and high stability. However, because of the mismatch between nanostructures and photosensitive pixels as well as the crosstalk among the different polarization directions, the currently reported extinction ratio (ER) of superpixel-polarization-integrated detectors cannot meet the needs of high-quality imaging. In this paper, a 1024 × 4 InGaAs FPA detector on-chip integrated with a linear polarization grating (LPG) was realized and tested. The detector displayed good performance throughout the 0.9–1.7 um band, and the ERs at 1064 nm, 1310 nm and 1550 nm reached up to 22:1, 29:1 and 46:1, respectively. For the crosstalk investigation, the optical simulation of the grating-integrated InGaAs pixel was carried out, and the limitation of the ER was calculated. The result showed that the scattering of incident light in the InP substrate led to the crosstalk. Moreover, the deviation of the actual grating morphology from the designed structure caused a further reduction in the ER. Full article
Show Figures

Figure 1

12 pages, 2820 KiB  
Perspective
Design and Fabrication of Broadband InGaAs Detectors Integrated with Nanostructures
by Bo Yang, Yizhen Yu, Guixue Zhang, Xiumei Shao and Xue Li
Sensors 2023, 23(14), 6556; https://doi.org/10.3390/s23146556 - 20 Jul 2023
Cited by 8 | Viewed by 3600
Abstract
A visible–extended shortwave infrared indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice for reducing the size, weight and power (SWaP) of infrared imaging systems, especially in low-light night vision and other fields that require simultaneous visible and near-infrared [...] Read more.
A visible–extended shortwave infrared indium gallium arsenide (InGaAs) focal plane array (FPA) detector is the ideal choice for reducing the size, weight and power (SWaP) of infrared imaging systems, especially in low-light night vision and other fields that require simultaneous visible and near-infrared light detection. However, the lower quantum efficiency in the visible band has limited the extensive application of the visible–extended InGaAs FPA. Recently, a novel optical metasurface has been considered a solution for a high-performance semiconductor photoelectric device due to its highly controllable property of electromagnetic wave manipulation. Broadband Mie resonator arrays, such as nanocones and nanopillars designed with FDTD methods, were integrated on a back-illuminated InGaAs FPA as an AR metasurface. The visible–extended InGaAs detector was fabricated using substrate removal technology. The nanostructures integrated into the Vis-SWIR InGaAs detectors could realize a 10–20% enhanced quantum efficiency and an 18.8% higher FPA response throughout the wavelength range of 500–1700 nm. Compared with the traditional AR coating, nanostructure integration has advantages, such as broadband high responsivity and omnidirection antireflection, as a promising route for future Vis-SWIR InGaAs detectors with higher image quality. Full article
(This article belongs to the Special Issue Semiconductor Sensors towards Optoelectronic Device Applications)
Show Figures

Figure 1

15 pages, 3115 KiB  
Entry
Integrated Optics: Platforms and Fabrication Methods
by Muhammad A. Butt
Encyclopedia 2023, 3(3), 824-838; https://doi.org/10.3390/encyclopedia3030059 - 28 Jun 2023
Cited by 31 | Viewed by 6254
Definition
Integrated optics is a field of study and technology that focuses on the design, fabrication, and application of optical devices and systems using integrated circuit technology. It involves the integration of various optical components, such as waveguides, couplers, modulators, detectors, and lasers, into [...] Read more.
Integrated optics is a field of study and technology that focuses on the design, fabrication, and application of optical devices and systems using integrated circuit technology. It involves the integration of various optical components, such as waveguides, couplers, modulators, detectors, and lasers, into a single substrate. One of the key advantages of integrated optics is its compatibility with electronic integrated circuits. This compatibility enables seamless integration of optical and electronic functionalities onto the same chip, allowing efficient data transfer between optical and electronic domains. This synergy is crucial for applications such as optical interconnects in high-speed communication systems, optical sensing interfaces, and optoelectronic integrated circuits. This entry presents a brief study on some of the widely used and commercially available optical platforms and fabrication methods that can be used to create photonic integrated circuits. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

17 pages, 6731 KiB  
Article
Breadboard of Microchip Laser and Avalanche Photodiode in Geiger and Linear Mode for LiDAR Applications
by Ana de Sousa, Rafael Pinto, Bruno Couto, Beltran Nadal, Hugo Onderwater, Paulo Gordo, Manuel Abreu, Rui Melicio and Patrick Michel
Appl. Sci. 2023, 13(9), 5631; https://doi.org/10.3390/app13095631 - 3 May 2023
Cited by 3 | Viewed by 2941
Abstract
This paper reports the implementation of two critical technologies used in light detection and ranging for space applications: (1) a microchip Q-switched laser breadboard; (2) a breadboard of an indium gallium arsenide avalanche photodiode working at 292 K with high reverse polarization voltages. [...] Read more.
This paper reports the implementation of two critical technologies used in light detection and ranging for space applications: (1) a microchip Q-switched laser breadboard; (2) a breadboard of an indium gallium arsenide avalanche photodiode working at 292 K with high reverse polarization voltages. Microchip Q-switched lasers are small solid-state back-pumped lasers that can generate high-energy short pulses. The implemented breadboard used an erbium and ytterbium co-doped phosphate glass, a Co:Spinel crystal with 98% initial transparency, and an output coupler with 98% reflectivity. For the sensor test, a system for simultaneous operation in vacuum and a wide range of temperatures was developed. Avalanche photodiodes are reverse-polarized photodiodes with high internal gain due to their multiple layer composition, capable of building up high values of photocurrent from small optical signals by exploiting the avalanche breakdown effects. The test avalanche photodetector was assembled to be operated in two modes: linear and Geiger mode. The produced photocurrent was measured by using: (1) a passive quenching circuit; (2) a transimpedance amplifier circuit. These two technologies are important for mobile light detection and ranging applications due to their low mass and high efficiencies. The paper describes the breadboard’s implementation methods and sensor characterization at low and room temperatures with high bias voltages (beyond breakdown voltage). Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

16 pages, 3709 KiB  
Article
Enhanced Optically–Excited THz Wave Emission by GaAs Coated with a Rough ITO Thin Film
by Anup Kumar Sahoo, Shi-Ying Kang, Peichen Yu and Ci-Ling Pan
Coatings 2023, 13(2), 461; https://doi.org/10.3390/coatings13020461 - 17 Feb 2023
Cited by 3 | Viewed by 2622
Abstract
In this study, we report enhancement of terahertz (THz) radiation with indium-tin-oxide (ITO) thin-film deposited on semi-insulating gallium arsenide substrate (SI-GaAs). The amplitude of THz emission from both ITO/SI-GaAs and bare SI-GaAs substrate as a function of optical pump (i) incident angle, (ii) [...] Read more.
In this study, we report enhancement of terahertz (THz) radiation with indium-tin-oxide (ITO) thin-film deposited on semi-insulating gallium arsenide substrate (SI-GaAs). The amplitude of THz emission from both ITO/SI-GaAs and bare SI-GaAs substrate as a function of optical pump (i) incident angle, (ii) polarization angle, and (iii) power were investigated. The enhancement of peak amplitude of a THz pulse transmitted through the ITO/SI-GaAs sample in comparison to bare SI-GaAs substrate varied from 100% to 0% when the pump incidence angle changed from 0° to 50°. The maximum enhancement ratio of peak amplitude for a coated sample relative to the bare substrate is approximately up to 2.5 times at the minimum pump intensity of 3.6 TW/m2 and gradually decreased to one at the maximum pump intensity of 20 TW/m2. From outcomes of these studies, together with data on surface and material characterization of the samples, we show that THz emission originates from the ITO/GaAs interfaces. Further, both interface-field-induced transient current and field-induced optical rectification contribute to the observed THz signal. Observed enhancement was tentatively attributed to surface-plasmon-induced local field enhancement, coupled with constructive interference of forward and retro-reflected backward THz emission from the ITO/GaAs interfaces. The polarity-flip reported previously for very thin Au-coated GaAs was not observed. This was explained by the wide-bandgap, transparency and lower free carriers of ITO. For best results, the incident angle should be in the range of 0 to 30° and the incident polarization should be 0 to 45°. We further predict that the ITO thin film of suitable thickness or with engineered nanostructures, post-annealed under optimum conditions may lead to further enhancement of THz radiation from ITO-coated semiconductor surfaces. Full article
(This article belongs to the Special Issue New Advances in Novel Optical Materials and Devices)
Show Figures

Figure 1

16 pages, 5672 KiB  
Article
Competition between Direct Detection Mechanisms in Planar Bow-Tie Microwave Diodes on the Base of InAlAs/InGaAs/InAlAs Heterostructures
by Algirdas Sužiedėlis, Steponas Ašmontas, Jonas Gradauskas, Aurimas Čerškus, Karolis Požela and Maksimas Anbinderis
Sensors 2023, 23(3), 1441; https://doi.org/10.3390/s23031441 - 28 Jan 2023
Cited by 2 | Viewed by 1791
Abstract
The application of the unique properties of terahertz radiation is increasingly needed in sensors, especially in those operating at room temperature without an external bias voltage. Bow-tie microwave diodes on the base of InGaAs semiconductor structures meet these requirements. These diodes operate on [...] Read more.
The application of the unique properties of terahertz radiation is increasingly needed in sensors, especially in those operating at room temperature without an external bias voltage. Bow-tie microwave diodes on the base of InGaAs semiconductor structures meet these requirements. These diodes operate on the basis of free-carrier heating in microwave electric fields, which allows for the use of such sensors in millimeter- and submillimeter-wavelength ranges. However, there still exists some uncertainty concerning the origin of the voltage detected across these diodes. This work provides a more detailed analysis of the detection mechanisms in InAlAs/InGaAs selectively doped bow-tie-shaped semiconductor structures. The influence of the InAs inserts in the InGaAs layer is investigated under various illumination and temperature conditions. A study of the voltage–power characteristics, the voltage sensitivity dependence on frequency in the Ka range, temperature dependence of the detected voltage and its relaxation characteristics lead to the conclusion that a photo-gradient electromotive force arises in bow-tie diodes under simultaneous light illumination and microwave radiation. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2022)
Show Figures

Figure 1

7 pages, 2426 KiB  
Review
Role of Interdiffusion and Segregation during the Life of Indium Gallium Arsenide Quantum Dots, from Cradle to Grave
by Thomas Walther
Nanomaterials 2022, 12(21), 3850; https://doi.org/10.3390/nano12213850 - 31 Oct 2022
Cited by 4 | Viewed by 1932
Abstract
This article summarizes our understanding of the interplay between diffusion and segregation during epitaxial growth of InGaAs and InAs quantum dots. These quantum dots form spontaneously on flat GaAs (001) single-crystalline substrates by the so-called Stranski-Krastanow growth mechanism once a sufficient amount of [...] Read more.
This article summarizes our understanding of the interplay between diffusion and segregation during epitaxial growth of InGaAs and InAs quantum dots. These quantum dots form spontaneously on flat GaAs (001) single-crystalline substrates by the so-called Stranski-Krastanow growth mechanism once a sufficient amount of indium has accumulated on the surface. Initially a perfectly flat wetting layer is formed. This strained layer then starts to roughen as strain increases, leading first to small, long-range surface undulations and then to tiny coherent islands. These continue to grow, accumulating indium both from the underlying wetting layer by lateral indium segregation and from within these islands by vertical segregation, which for InGaAs deposition results in an indium-enriched InGaAs alloy in the centre of the quantum dots. For pure InAs deposition, interdiffusion also results in an InGaAs alloy. Further deposition can lead to the formation of misfit dislocations that nucleate at the edges of the islands and are generally sought to be avoided. Overgrowth by GaAs or InGaAs alloys with low indium content commences preferentially between the islands, avoiding their strained edges, which initially leads to trench formation. Further deposition is necessary to cap these quantum dots effectively and to re-gain an almost flat surface that can then be used for subsequent deposition of multiple layers of quantum dots as needed for many optoelectronic devices. Full article
(This article belongs to the Special Issue Transmission Electron Microscopy for Nanomaterials Research Advances)
Show Figures

Figure 1

17 pages, 2440 KiB  
Article
The Comparison of InSb-Based Thin Films and Graphene on SiC for Magnetic Diagnostics under Extreme Conditions
by Semir El-Ahmar, Marta Przychodnia, Jakub Jankowski, Rafał Prokopowicz, Maciej Ziemba, Maciej J. Szary, Wiktoria Reddig, Jakub Jagiełło, Artur Dobrowolski and Tymoteusz Ciuk
Sensors 2022, 22(14), 5258; https://doi.org/10.3390/s22145258 - 14 Jul 2022
Cited by 10 | Viewed by 2923
Abstract
The ability to precisely measure magnetic fields under extreme operating conditions is becoming increasingly important as a result of the advent of modern diagnostics for future magnetic-confinement fusion devices. These conditions are recognized as strong neutron radiation and high temperatures (up to 350 [...] Read more.
The ability to precisely measure magnetic fields under extreme operating conditions is becoming increasingly important as a result of the advent of modern diagnostics for future magnetic-confinement fusion devices. These conditions are recognized as strong neutron radiation and high temperatures (up to 350 °C). We report on the first experimental comparison of the impact of neutron radiation on graphene and indium antimonide thin films. For this purpose, a 2D-material-based structure was fabricated in the form of hydrogen-intercalated quasi-free-standing graphene on semi-insulating high-purity on-axis 4H-SiC(0001), passivated with an Al2O3 layer. InSb-based thin films, donor doped to varying degrees, were deposited on a monocrystalline gallium arsenide or a polycrystalline ceramic substrate. The thin films were covered with a SiO2 insulating layer. All samples were exposed to a fast-neutron fluence of ≈7×1017 cm−2. The results have shown that the graphene sheet is only moderately affected by neutron radiation compared to the InSb-based structures. The low structural damage allowed the graphene/SiC system to retain its electrical properties and excellent sensitivity to magnetic fields. However, InSb-based structures proved to have significantly more post-irradiation self-healing capabilities when subject to proper temperature treatment. This property has been tested depending on the doping level and type of the substrate. Full article
Show Figures

Figure 1

14 pages, 5644 KiB  
Article
Measuring Non-Destructively the Total Indium Content and Its Lateral Distribution in Very Thin Single Layers or Quantum Dots Deposited onto Gallium Arsenide Substrates Using Energy-Dispersive X-ray Spectroscopy in a Scanning Electron Microscope
by Thomas Walther
Nanomaterials 2022, 12(13), 2220; https://doi.org/10.3390/nano12132220 - 28 Jun 2022
Cited by 5 | Viewed by 2670
Abstract
The epitaxial deposition of a precise number, or even fractions, of monolayers of indium (In)-rich semiconductors onto gallium arsenide (GaAs) substrates enables the creation of quantum dots based on InAs, InGaAs and indium phosphide (InP) for infrared light-emitting and laser diodes and the [...] Read more.
The epitaxial deposition of a precise number, or even fractions, of monolayers of indium (In)-rich semiconductors onto gallium arsenide (GaAs) substrates enables the creation of quantum dots based on InAs, InGaAs and indium phosphide (InP) for infrared light-emitting and laser diodes and the formation of indium antimonide (InSb)/GaAs strained layer superlattices. Here, a facile method based on energy-dispersive X-ray spectroscopy (EDXS) in a scanning electron microscope (SEM) is presented that allows the indium content of a single semiconductor layer deposited on a gallium arsenide substrate to be measured with relatively high accuracy (±0.7 monolayers). As the procedure works in top-down geometry, where any part of a wafer can be inspected, measuring the In content of the surface layer in one location without destroying it can also be used to map the lateral indium distribution during quantum dot formation and is a method suitable as an in-situ quality control tool for epitaxy. Full article
(This article belongs to the Special Issue Nanowires and Quantum Dots)
Show Figures

Figure 1

18 pages, 5405 KiB  
Article
Comparative Performance of NIR-Hyperspectral Imaging Systems
by Te Ma, Laurence Schimleck, Joseph Dahlen, Seung-Chul Yoon, Tetsuya Inagaki, Satoru Tsuchikawa, Anna Sandak and Jakub Sandak
Foundations 2022, 2(3), 523-540; https://doi.org/10.3390/foundations2030035 - 22 Jun 2022
Cited by 8 | Viewed by 4403
Abstract
Near-infrared spectroscopy (NIRS) allows for the rapid estimation of a wide range of wood properties. Typically, NIRS studies on wood have utilized benchtop spectrometers, but efforts to utilize NIR hyperspectral imaging to examine wood and wood products have increased. Compared to benchtop NIR [...] Read more.
Near-infrared spectroscopy (NIRS) allows for the rapid estimation of a wide range of wood properties. Typically, NIRS studies on wood have utilized benchtop spectrometers, but efforts to utilize NIR hyperspectral imaging to examine wood and wood products have increased. Compared to benchtop NIR systems, hyperspectral imaging has several advantages (speed, visualization of spatial variability), but the data typically have a lower signal-to-noise ratio as well as fewer wavelengths saved; thus, hyperspectral imaging systems have a larger spectral sampling interval (SSI). Furthermore, the SSI and wavelength range varies considerably among different HSI cameras. NIR-HSI systems based on indium gallium arsenide (InGaAs) detectors have a wavelength range typically from 900 to 1700 nm, while short-wave infrared hyperspectral imaging (SWIR-HSI) systems based on mercury cadmium telluride (MCT) detectors have the ‘full’ NIR wavelength range from 1000 to 2500 nm. These factors may influence the performance of wood property calibrations. We compared one NIR-HSI (900–1700 nm) and three SWIR-HSI (1000–2500 nm) commercially available cameras with an NIRS benchtop spectrometer (1100–2500 nm). The performance of specific gravity (SG) and stiffness (MOE) calibration models was compared with one-hundred Douglas-fir (Pseudotsuga menziesii) samples. The limited wavelength range of an NIR-HSI camera provided the best models for MOE, whereas the NIR-HSI and two SWIR-HSI cameras provided similar SG results. SWIR-HSI models heavily favored wavelengths greater than 1900 nm. Full article
(This article belongs to the Special Issue Infrared Spectroscopy: Principles and Instrumentation)
Show Figures

Figure 1

Back to TopTop