Integrated Optics: Platforms and Fabrication Methods
Definition
:1. Introduction
2. Integrated Optics Platforms
2.1. Silicon Photonics
2.2. Indium Phosphide
2.3. Silicon Nitride (Si3N4)
2.4. Lithium Niobate
2.5. Polymers
3. Lithography Methods
3.1. Ultraviolet Lithography (UVL)
3.2. Laser Lithography (LL)
3.3. Electron Beam Lithography (EBL)
3.4. Nanoimprint Lithography (NIL)
4. WG Etching Methods
4.1. Reactive Ion Etching (RIE)
4.2. Chemical Etching
5. Concluding Remarks
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Eldada, L.; Shacklette, L.W. Advances in polymer integrated optics. IEEE J. Sel. Top. Quantum Electron. 2000, 6, 54–68. [Google Scholar] [CrossRef]
- El-Derhalli, H.; Le Beux, S.; Tahar, S. Stochastic computing with integrated optics. In Proceedings of the 2019 Design, Automation Test in Europe Conference Exhibition, Florence, Italy, 25–29 March 2019; pp. 1355–1360. [Google Scholar]
- Ronggui, S.; Righini, G.C. Characterization of reactive ion etching of glass and its applications in integrated optics. J. Vac. Sci. Technol. A 1991, 9, 2709–2712. [Google Scholar] [CrossRef]
- Khonina, S.N.; Karpeev, S.V.; Butt, M.A. Spatial-Light-Modulator-Based Multichannel Data Transmission by Vortex Beams of Various Orders. Sensors 2021, 21, 2988. [Google Scholar] [CrossRef] [PubMed]
- Kazanskiy, N.L.; Khonina, S.N. Nonparaxial effects in lensacon optical systems. Optoelectron. Instrum. Data Process. 2017, 53, 484–493. [Google Scholar] [CrossRef]
- Dangel, R.; Hofrichter, J.; Horst, F.; Jubin, D.; La Porta, A.; Meier, N.; Soganci, I.M.; Weiss, J.; Offrein, B.J. Polymer waveguides for electro-optical integration in data centers and high-performance computers. Opt. Express 2015, 23, 4736–4750. [Google Scholar] [CrossRef] [PubMed]
- Han, L.; Liang, S.; Xu, J.; Qiao, L.; Zhu, H.; Wang, W. Simultaneous Wavelength- and Mode-Division (De)multiplexing for High-Capacity On-Chip Data Transmission Link. IEEE Photon J. 2016, 8, 1–10. [Google Scholar] [CrossRef]
- Xu, D.; Yan, S.; Yang, X.; Wang, J.; Wu, X.; Hua, E. Tunable Nanosensor With a Horizontal Number Eight-Shape Cavity in a MIM Waveguide System. Front. Phys. 2021, 9, 702193. [Google Scholar] [CrossRef]
- Lu, H.; Wang, G.; Liu, X. Manipulation of light in MIM plasmonic waveguide systems. Chin. Sci. Bull. 2013, 58, 3607–3616. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Miniaturized design of a 1 × 2 plasmonic demultiplexer based on metal–insulator-metal waveguide for telecommunication wavelengths. Plasmonics 2023, 18, 635–641. [Google Scholar] [CrossRef]
- Bagheri, A.; Nazari, F.; Moravvej-Farshi, M.K. Tunable Optical Demultiplexer for Dense Wavelength Division Multiplexing Systems Using Graphene–Silicon Microring Resonators. J. Electron. Mater. 2020, 49, 7410–7419. [Google Scholar] [CrossRef]
- Wang, J.; Chen, P.; Chen, S.; Shi, Y.; Dai, D. Improved 8-channel silicon mode demultiplexer with grating polarizers. Opt. Express 2014, 22, 12799–12807. [Google Scholar] [CrossRef] [PubMed]
- Koonen, A.M.J.; Chen, H.; Boom, H.P.A.V.D.; Raz, O. Silicon Photonic Integrated Mode Multiplexer and Demultiplexer. IEEE Photon Technol. Lett. 2012, 24, 1961–1964. [Google Scholar] [CrossRef]
- Khonina, S.N.; Voronkov, G.S.; Grakhova, E.P.; Kazanskiy, N.L.; Kutluyarov, R.V.; Butt, M.A. Polymer Waveguide-Based Optical Sensors—Interest in Bio, Gas, Temperature, and Mechanical Sensing Applications. Coatings 2023, 13, 549. [Google Scholar] [CrossRef]
- Su, Y.; Zhang, Y.; Qiu, C.; Guo, X.; Sun, L. Silicon photonic platform for passive waveguide devices: Materials, fabrication, and applications. Adv. Mater. Technol. 2020, 5, 1901153. [Google Scholar] [CrossRef]
- Yan, Z.; Han, Y.; Lin, L.; Xue, Y.; Ma, C.; Ng, W.K.; Wong, K.S.; Lau, K.M. A monolithic InP/SOI platform for integrated photonics. Light. Sci. Appl. 2021, 10, 1–10. [Google Scholar] [CrossRef]
- Hsu, W.-C.; Zhen, C.; Wang, A.X. Electrically Tunable High-Quality Factor Silicon Microring Resonator Gated by High Mobility Conductive Oxide. ACS Photon 2021, 8, 1933–1936. [Google Scholar] [CrossRef]
- Cohen, R.A.; Amrani, O.; Ruschin, S. Response shaping with a silicon ring resonator via double injection. Nat. Photon 2018, 12, 706–712. [Google Scholar] [CrossRef]
- Koala, R.A.S.D.; Fujita, M.; Nagatsuma, T. Nanophotonics-inspired all-silicon waveguide platforms for terahertz integrated systems. Nanophotonics 2022, 11, 1741–1759. [Google Scholar] [CrossRef]
- Tan, Y.; Dai, D. Silicon microring resonators. J. Opt. 2018, 20, 054004. [Google Scholar] [CrossRef]
- Liao, J.; Tian, Y.; Yang, Z.; Zhang, X. Inverse design of optical couplers with arbitrary splitting ratio based on boundary inverse optimization algorithm. Acta Opt. Sin. 2023, 43, 0113001. [Google Scholar]
- Ding, R.; Baehr-Jones, T.; Kim, W.-J.; Xiong, X.; Bojko, R.; Fedeli, J.-M.; Fournier, M.; Hochberg, M. Low-loss strip-loaded slot waveguides in Silicon-on-Insulator. Opt. Express 2010, 18, 25061–25067. [Google Scholar] [CrossRef]
- Ishutkin, S.; Arykov, V.; Yunusov, I.; Stepanenko, M.; Smirnov, V.; Troyan, P.; Zhidik, Y. The Method of Low-Temperature ICP Etching of InP/InGaAsP Heterostructures in Cl2-Based Plasma for Integrated Optics Applications. Micromachines 2021, 12, 1535. [Google Scholar] [CrossRef]
- Vivien, L.; Marris-Morini, D.; Griol, A.; Gylfason, K.B.; Hill, D.; Alvarez, J.; Sohlström, H.; Hurtado, J.; Bouville, D.; Cassan, E. Vertical multiple-slot waveguide ring resonators in silicon nitride. Opt. Express 2008, 16, 17237–17242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krasnokutska, I.; Tambasco, J.-L.J.; Li, X.; Peruzzo, A. Ultra-low loss photonic circuits in lithium niobate on insulator. Opt. Express 2018, 26, 897–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmadi, L.; Hiltunen, M.; Stenberg, P.; Hiltunen, J.; Aikio, S.; Roussey, M.; Saarinen, J.; Honkanen, S. Hybrid layered polymer slot waveguide Young interferometer. Opt. Express 2016, 24, 10275–10285. [Google Scholar] [CrossRef]
- Melchior, H. Indium Phosphide Photonic Waveguide Devices and their Fiber Pigtailing. In Integrated Photonics Research; Optica Publishing Group: Washington, DC, USA, 1998; p. IMA2. [Google Scholar]
- Moss, D.J.; Morandotti, R.; Gaeta, A.L.; Lipson, M. New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics. Nat. Photonics 2013, 7, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Chia, X.X.; Tan, D.T.H. Deuterated SiNx: A low-loss, back-end CMOS-compatible platform for nonlinear integrated optics. Nanophotonics 2023, 12, 1613–1631. [Google Scholar] [CrossRef]
- Alexander, K.; George, J.P.; Verbist, J.; Neyts, K.; Kuyken, B.; Van Thourhout, D.; Beeckman, J. Nanophotonic Pockels modulators on a silicon nitride platform. Nat. Commun. 2018, 9, 3444. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, B.; Im, C.-S.; Sapkota, O.R.; Lee, S.-S. Highly efficient broadband silicon nitride polarization beam splitter incorporating serially cascaded asymmetric directional couplers. Opt. Lett. 2020, 45, 5974–5977. [Google Scholar] [CrossRef]
- Antonacci, G.; Elsayad, K.; Polli, D. On-Chip Notch Filter on a Silicon Nitride Ring Resonator for Brillouin Spectroscopy. ACS Photon 2022, 9, 772–777. [Google Scholar] [CrossRef]
- Han, Q.; St-Yves, J.; Chen, Y.; Ménard, M.; Shi, W. Polarization-insensitive silicon nitride arrayed waveguide grating. Opt. Lett. 2019, 44, 3976–3979. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Muniswamy, V.; Guha, K.; Iannacci, J.; Krishnaswamy, N. Analysis of integrated silicon nitride lab-on-a-chip optofluidic sensor at visible wavelength for absorbance based biosensing applications. Microsyst. Technol. 2021, 27, 3499–3506. [Google Scholar] [CrossRef]
- Wang, L.; Xie, W.; Van Thourhout, D.; Zhang, Y.; Yu, H.; Wang, S.H. Nonlinear silicon nitride waveguides based on PECVD deposition platform. Opt. Express 2018, 26, 9645–9654. [Google Scholar] [CrossRef] [Green Version]
- Senichev, A.; Peana, S.; Martin, Z.O.; Yesilyurt, O.; Sychev, D.; Lagutchev, A.S.; Boltasseva, A.; Shalaev, V.M. Silicon Nitride Waveguides with Intrinsic Single-Photon Emitters for Integrated Quantum Photonics. ACS Photon 2022, 9, 3357–3365. [Google Scholar] [CrossRef]
- DSun, D.; Zhang, Y.; Wang, D.; Song, W.; Liu, X.; Pang, J.; Geng, D.; Sang, Y.; Liu, H. Microstructure and domain engineering of lithium niobate crystal films for integrated photonic applications. Light. Sci. Appl. 2020, 9, 197. [Google Scholar] [CrossRef]
- Kotlyar, M.V.; Iadanza, S.; O’faolain, L. Lithium Niobate Fabry-Perot microcavity based on strip loaded waveguides. Photon Nanostructures—Fundam. Appl. 2021, 43, 100886. [Google Scholar] [CrossRef]
- Carletti, L.; Li, C.; Sautter, J.; Staude, I.; De Angelis, C.; Li, T.; Neshev, D.N. Second harmonic generation in monolithic lithium niobate metasurfaces. Opt. Express 2019, 27, 33391–33398. [Google Scholar] [CrossRef]
- Li, M.; Ling, J.; He, Y.; Javid, U.A.; Xue, S.; Lin, Q. Lithium niobate photonic-crystal electro-optic modulator. Nat. Commun. 2020, 11, 4123. [Google Scholar] [CrossRef]
- Saravi, S.; Pertsch, T.; Setzpfandt, F. Lithium Niobate on Insulator: An Emerging Platform for Integrated Quantum Photonics. Adv. Opt. Mater. 2021, 9, 2100789. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wu, Z.-L.; Yang, S.-C.; Shen, F.-F.; Liang, Y.-X.; Wang, L.-H.; Wang, J.-Y.; Ren, J.; Jia, L.-Y.; Zhang, H.; et al. Recent Progress of Imprinted Polymer Photonic Waveguide Devices and Applications. Polymers 2018, 10, 603. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Wong, W.H.; Pun, E.Y.B.; Shen, Y.Q.; Zhao, Y.X. Fabrication of low loss optical waveguides with a novel thermo-optical polymer material. Opt. Appl. 2006, 36, 429. [Google Scholar]
- Eldada, L.; Blomquist, R.; Maxfield, M.; Pant, D.; Boudoughian, G.; Poga, C.; Norwood, R. Thermooptic planar polymer Bragg grating OADMs with broad tuning range. IEEE Photon Technol. Lett. 1999, 11, 448–450. [Google Scholar] [CrossRef]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Carbon Dioxide Gas Sensor Based on Polyhexamethylene Biguanide Polymer Deposited on Silicon Nano-Cylinders Metasurface. Sensors 2021, 21, 378. [Google Scholar] [CrossRef]
- Kagami, M.; Kawasaki, A.; Ito, H. A polymer optical waveguide with out-of-plane branching mirrors for surface-normal optical interconnections. J. Light. Technol. 2001, 19, 1949–1955. [Google Scholar] [CrossRef]
- Halldorsson, J.; Arnfinnsdottir, N.B.; Jonsdottir, A.B.; Agnarsson, B.; Leosson, K. High index contrast polymer waveguide platform for integrated biophotonics. Opt. Express 2010, 18, 16217–16226. [Google Scholar] [CrossRef]
- Oh, D.J.; Jung, J.H.; Kang, J.Y.; Lee, S.H. A disposable polymer waveguide lab-on-a-chip for real-time detection of protein c using evanescent wave. In Proceedings of the SENSORS, 2010 IEEE, Waikoloa, HI, USA, 1–4 November 2010; pp. 1605–1608. [Google Scholar]
- Kazanskiy, N.L.; Butt, M.A.; Khonina, S.N. Recent Advances in Wearable Optical Sensor Automation Powered by Battery versus Skin-like Battery-Free Devices for Personal Healthcare—A Review. Nanomaterials 2022, 12, 334. [Google Scholar] [CrossRef]
- Butt, M.A.; Kazanskiy, N.L.; Khonina, S.N. Advances in Waveguide Bragg Grating Structures, Platforms, and Applications: An Up-to-Date Appraisal. Biosensors 2022, 12, 497. [Google Scholar] [CrossRef]
- Sharma, E.; Rathi, R.; Misharwal, J.; Sinhmar, B.; Kumari, S.; Dalal, J.; Kumar, A. Evolution in Lithography Techniques: Microlithography to Nanolithography. Nanomaterials 2022, 12, 2754. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, Q.; Kamyab, L.; Rostami, A.; Capolino, F.; Boyraz, O. Sub-micron silicon nitride waveguide fabrication using conventional optical lithography. Opt. Express 2015, 23, 6780–6786. [Google Scholar] [CrossRef] [Green Version]
- Bednorz, M.; Urbańczyk, M.; Pustelny, T.; Piotrowska, A.; Papis, E.; Sidor, Z.; Kamińska, E. Application of SU8 polymer in waveguide interferometer ammonia sensor. Mol. Quantum Acoust. 2006, 27, 31–40. [Google Scholar]
- Wen, X.; Datta, A.; Traverso, L.M.; Pan, L.; Xu, X.; Moon, E.E. High throughput optical lithography by scanning a massive array of bowtie aperture antennas at near-field. Sci. Rep. 2015, 5, 16192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okazaki, S. High resolution optical lithography or high throughput electron beam lithography: The technical struggle from the micro to the nano-fabrication evolution. Microelectron. Eng. 2015, 133, 23–35. [Google Scholar] [CrossRef]
- Ocier, C.R.; Richards, C.A.; Bacon-Brown, D.A.; Ding, Q.; Kumar, R.; Garcia, T.J.; van de Groep, J.; Song, J.-H.; Cyphersmith, A.J.; Rhode, A.; et al. Direct laser writing of volumetric gradient index lenses and waveguides. Light. Sci. Appl. 2020, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lü, L.; Fuh, J.Y.H.; Wong, Y.S.; Lü, L.; Fuh, J.Y.H.; Wong, Y.S. Fundamentals of laser-lithography processes. In Laser-Induced Materials and Processes for Rapid Prototyping; Springer: Boston, MA, USA, 2001; pp. 9–38. [Google Scholar]
- Patolyatov, A.D.; Shcherbakov, D.A.; Kolymagin, D.A.; Matital, R.P.; Chubich, D.A.; Vitukhovsky, A.G. Erratum to: Refractive X-Ray Lenses Made by the Two-Photon Laser Lithography Method. Phys. Wave Phenom. 2022, 30, 401. [Google Scholar] [CrossRef]
- Bogaerts, W.; Wiaux, V.; Taillaert, D.; Beckx, S.; Luyssaert, B.; Bienstman, P.; Baets, R. Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography. IEEE J. Sel. Top. Quantum Electron. 2002, 8, 928–934. [Google Scholar] [CrossRef] [Green Version]
- Broers, A.N. Resolution limits for electron-beam lithography. IBM J. Res. Dev. 1988, 32, 502–513. [Google Scholar] [CrossRef]
- Broers, A.N.; Hoole, A.C.F.; Ryan, J.M. Electron beam lithography—Resolution limits. Microelectron. Eng. 1996, 32, 131–142. [Google Scholar] [CrossRef]
- Eissa, M.; Mitarai, T.; Amemiya, T.; Miyamoto, Y.; Nishiyama, N. Fabrication of Si photonic waveguides by electron beam lithography using improved proximity effect correction. Jpn. J. Appl. Phys. 2020, 59, 126502. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, P.-P.; Tang, X.; Liu, J.-Z.; Duan, J.-A. Effects of electron beam lithography process parameters on structure of silicon optical waveguide based on SOI. J. Central South Univ. 2022, 29, 3335–3345. [Google Scholar] [CrossRef]
- Geka, G.; Papageorgiou, G.; Chatzichristidi, M.; Karydas, A.G.; Psycharis, V.; Makarona, E. CuO/PMMA Polymer Nanocomposites as Novel Resist Materials for E-Beam Lithography. Nanomaterials 2021, 11, 762. [Google Scholar] [CrossRef]
- Tu, M.; Xia, B.; Kravchenko, D.E.; Tietze, M.L.; Cruz, A.J.; Stassen, I.; Hauffman, T.; Teyssandier, J.; De Feyter, S.; Wang, Z.; et al. Direct X-ray and electron-beam lithography of halogenated zeolitic imidazolate frameworks. Nat. Mater. 2020, 20, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Dey, R.K.; Cui, B. Stitching error reduction in electron beam lithography with in-situ feedback using self-developing resist. J. Vac. Sci. Technol. B 2013, 31, 06F409. [Google Scholar] [CrossRef] [Green Version]
- Choi, K.-H.; Huh, J.; Cui, Y.; Trivedi, K.; Hu, W.; Ju, B.-K.; Lee, J.-B. One-Step Combined-Nanolithography-and-Photolithography for a 2D Photonic Crystal TM Polarizer. Micromachines 2014, 5, 228–238. [Google Scholar] [CrossRef] [Green Version]
- Yun, B.; Hu, G.; Cui, Y. Third-order polymer waveguide Bragg grating array by using conventional contact lithography. Opt. Commun. 2014, 330, 113–116. [Google Scholar] [CrossRef]
- Bogdanov, A.L.; Lapointe, J.; Schmid, J.H. Electron-beam lithography for photonic waveguide fabrication: Measurement of the effect of field stitching errors on optical performance and evaluation of a new compensation method. J. Vac. Sci. Technol. B 2012, 30, 031606. [Google Scholar] [CrossRef]
- Wang, Z.; Gui, L.; Han, D.; Xu, Z.; Han, L.; Xu, S. Measurement and Evaluation of Local Surface Temperature Induced by Irradiation of Nanoscaled or Microscaled Electron Beams. Nanoscale Res. Lett. 2019, 14, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Butt, M.A. Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 2022, 12, 1115. [Google Scholar] [CrossRef]
- Grego, S.; Huffman, A.; Lueck, M.; Stoner, B.R.; Lannon, J. Nanoimprint lithography fabrication of waveguide-integrated optical gratings with inexpensive stamps. Microelectron. Eng. 2010, 87, 1846–1851. [Google Scholar] [CrossRef]
- Prajzler, V.; Chlupaty, V.; Kulha, P.; Neruda, M.; Kopp, S.; Mühlberger, M. Optical Polymer Waveguides Fabricated by Roll-to-Plate Nanoimprinting Technique. Nanomaterials 2021, 11, 724. [Google Scholar] [CrossRef]
- Bruinink, C.M.; Burresi, M.; de Boer, M.J.; Segerink, F.B.; Jansen, H.V.; Berenschot, E.; Reinhoudt, D.N.; Huskens, J.; Kuipers, L. Nanoimprint Lithography for Nanophotonics in Silicon. Nano Lett. 2008, 8, 2872–2877. [Google Scholar] [CrossRef]
- Shneidman, A.V.; Becker, K.P.; Lukas, M.A.; Torgerson, N.; Wang, C.; Reshef, O.; Burek, M.J.; Paul, K.; McLellan, J.; Lončar, M. All-Polymer Integrated Optical Resonators by Roll-to-Roll Nanoimprint Lithography. ACS Photon 2018, 5, 1839–1845. [Google Scholar] [CrossRef]
- Gao, F.; Ylinen, S.; Kainlauri, M.; Kapulainen, M. Smooth silicon sidewall etching for waveguide structures using a modified Bosch process. J. Micro/Nanolithography MEMS MOEMS 2014, 13, 13010. [Google Scholar] [CrossRef]
- Zheng, Y.; Gao, P.; Jiang, L.; Kai, X.; Duan, J. Surface Morphology of Silicon Waveguide after Reactive Ion Etching (RIE). Coatings 2019, 9, 478. [Google Scholar] [CrossRef] [Green Version]
- Hiscocks, M.P.; Ganesan, K.; Gibson, B.C.; Huntington, S.T.; Ladouceur, F.; Prawer, S. Diamond waveguides fabricated by reactive ion etching. Opt. Express 2016, 16, 19512–19519. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.; Moskalev, D.; Salgaeva, U.; Bulatova, A.; Krishtop, V.; Volyntsev, A.; Syuy, A. Reactive Ion Etching of X-Cut LiNbO3 in an ICP/TCP System for the Fabrication of an Optical Ridge Waveguide. Appl. Sci. 2023, 13, 2097. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J. Optimization of deep reactive ion etching for microscale silicon hole arrays with high aspect ratio. Micro Nano Syst. Lett. 2022, 10, 1–7. [Google Scholar] [CrossRef]
- Li, W.; Luo, Y.; Xiong, B.; Sun, C.; Wang, L.; Wang, J.; Lu, H. Fabrication of GaN-based ridge waveguides with very smooth and vertical sidewalls by combined plasma dry etching and wet chemical etching. Phys. Status Solidi 2015, 212, 2341–2344. [Google Scholar] [CrossRef]
- Liao, Z.; Aitchison, J.S. Precision etching for multi-level AlGaAs waveguides. Opt. Mater. Express 2017, 7, 895–903. [Google Scholar] [CrossRef]
- Ashraf, M.; Sundararajan, S.V.; Grenci, G. Low-power, low-pressure reactive-ion etching process for silicon etching with vertical and smooth walls for mechanobiology application. J. Micro/Nanolithography, MEMS, MOEMS 2017, 16, 34501. [Google Scholar] [CrossRef] [Green Version]
- Xia, J.; Yu, J.; Wang, Z.; Fan, Z.; Chen, S. Low power 2 × 2 thermo-optic SOI waveguide switch fabricated by anisotropy chemical etching. Opt. Commun. 2004, 232, 223–228. [Google Scholar] [CrossRef]
- Chuang, M.J.; Hsieh, K.Y.; Chu, A.K. High-Temperature Wet Chemical Etching of Ta2 O 5 in NaOH-Based Solutions for Fabricating Antiresonant Reflecting Optical Waveguides. J. Electrochem. Soc. 1998, 145, 1020. [Google Scholar] [CrossRef]
- Bauhuber, M.; Mikrievskij, A.; Lechner, A. Isotropic wet chemical etching of deep channels with optical surface quality in silicon with HNA based etching solutions. Mater. Sci. Semicond. Process. 2013, 16, 1428–1433. [Google Scholar] [CrossRef]
- Jelinek, M.; Lančok, J.; Sonsky, J.; Oswald, J.; Šimečková, M.; Jastrabik, L.; Studnička, V.; Grivas, C.; Hříbek, P. Planar waveguide lasers and structures created by laser ablation—An overview. Czechoslov. J. Phys. 1998, 48, 577–597. [Google Scholar] [CrossRef]
- Kam, W.; Ong, Y.; Lim, W.; Zakaria, R. Laser ablation and waveguide fabrication using CR39 polymer. Opt. Lasers Eng. 2014, 55, 1–4. [Google Scholar] [CrossRef]
- Butt, M.A.; Kozlowski, L.; Piramidowicz, R. Numerical scrutiny of a silica-titania-based reverse rib waveguide with vertical and rounded sidewalls. Appl. Opt. 2023, 62, 1296–1302. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, M.A. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia 2023, 3, 824-838. https://doi.org/10.3390/encyclopedia3030059
Butt MA. Integrated Optics: Platforms and Fabrication Methods. Encyclopedia. 2023; 3(3):824-838. https://doi.org/10.3390/encyclopedia3030059
Chicago/Turabian StyleButt, Muhammad A. 2023. "Integrated Optics: Platforms and Fabrication Methods" Encyclopedia 3, no. 3: 824-838. https://doi.org/10.3390/encyclopedia3030059
APA StyleButt, M. A. (2023). Integrated Optics: Platforms and Fabrication Methods. Encyclopedia, 3(3), 824-838. https://doi.org/10.3390/encyclopedia3030059