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Abstract: The application of the unique properties of terahertz radiation is increasingly needed in
sensors, especially in those operating at room temperature without an external bias voltage. Bow‑tie
microwave diodes on the base of InGaAs semiconductor structures meet these requirements. These
diodes operate on the basis of free‑carrier heating in microwave electric fields, which allows for the
use of such sensors in millimeter‑ and submillimeter‑wavelength ranges. However, there still ex‑
ists some uncertainty concerning the origin of the voltage detected across these diodes. This work
provides a more detailed analysis of the detection mechanisms in InAlAs/InGaAs selectively doped
bow‑tie‑shaped semiconductor structures. The influence of the InAs inserts in the InGaAs layer is
investigated under various illumination and temperature conditions. A study of the voltage–power
characteristics, the voltage sensitivity dependence on frequency in the Ka range, temperature depen‑
dence of the detected voltage and its relaxation characteristics lead to the conclusion that a photo‑
gradient electromotive force arises in bow‑tie diodes under simultaneous light illumination and mi‑
crowave radiation.

Keywords: microwave detection; voltage sensitivity; bow‑tie microwave diode; indium gallium
arsenide; electromotive force of hot carriers; photo‑gradient electromotive force

1. Introduction
The terahertz (THz) region of electromagnetic radiation is attractive for various ap‑

plications due to its unique properties, such as its ability to penetrate through thin layers
of nonconductive materials and its ability to be absorbed by water. The applications of
THz radiation in imaging range from quality control to security screening [1]. Terahertz
spectroscopy possesses a significant potential in biomedical research because the radiation
excites low‑frequency molecular vibrations, which can be successfully used in tissue de‑
tection, for example, to distinguish between pathological tissue and normal tissue [2]. The
THz frequency band is also expected to be a huge resource for future wireless communica‑
tions in 6G networks [3]. Both the sources and sensors of THz radiation are important com‑
ponents in the development of this promising technology. Schottky barrier diodes (SBDs)
are the most common matured elements in the detection of THz radiation at room temper‑
ature [4,5]. Although SBDs have excellent properties, such as a high voltage sensitivity,
low noise, a wide‑frequency bandwidth and a high reliability, they suffer from a strong
dependence on the process of Schottky junction formation and environmental conditions
because the junction is formed on a semiconductor surface. Therefore, the search for new
THz radiation sensors remains a topical issue. The need for new THz sensors that operate
without cryogenic cooling and without external bias brings new challenges to the scientific
and engineering community. The room‑temperature detection of THz radiation by using
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plasma‑wave resonance and wide‑band non‑resonant effects in various field‑effect transis‑
tor formations on the basis of two‑dimensional [6–8] and one‑dimensional [9,10] structures
has been reported. A ballistic rectifier with an artificial, asymmetric, selectively doped
semiconductor scatterer has been proposed to detect microwave radiation at both cryo‑
genic [11] and room [12] temperatures. Graphene‑based ballistic rectifiers have been suc‑
cessfully used for detection and imaging in the THz frequency range [13,14]. A nanometer‑
scale self‑switching device (SSD) has shown a nonlinear diode‑like I‑V characteristic in a
barrier‑less structure [15]. The arrays of SSDs containing selectively doped semiconduc‑
tor structures have been used to detect electromagnetic radiation in sub‑THz [16,17] and
THz [18] frequency ranges at room temperature. Graphene SSDs have also revealed them‑
selves to be room‑temperature zero‑bias sensors of electromagnetic radiation: in previous
studies, an array of nine graphene SSDs was used to detect microwave radiation of up to
67 GHz and was expected to have a potential ability to detect terahertz radiation up to
1.5 THz [19], and a graphene SSD bridge rectifier was found to able to detect radiation up
to 0.56 THz [20].

In a previous study, a nonuniform distribution of the electric field was built in ho‑
mogeneous asymmetrically necked semiconductor samples [21]. Thus, another barrier‑
less semiconductor structure was proposed for detecting electromagnetic radiation,
the so‑called bigradient diode [22]. Later, the room‑temperature zero‑bias detection of
wide‑frequency‑range electromagnetic radiation was demonstrated using asymmetrically
shaped semiconductor structures, the so‑called planar bow‑tie microwave diodes with n‑
n+ junctions in the narrowest part of the diode [23]. The symmetrical bow‑tie configura‑
tion of the device is used in various applications; for example, this configuration is used
in switchable antenna systems for bi‑directional sensor applications [24], and it is used to
control silicon‑based dielectric nano‑bow‑tie dimers and to manipulate nanometer‑scaled
objects [25]. The principle of the operation of microwave bow‑tie diodes is based on non‑
uniform carrier heating in a microwave electric field due to the broken geometrical sym‑
metry of the diode, as well as the specific doping profile of the structure. This operational
principle determines nearly frequency‑independent voltage sensitivity values within the
10 GHz to 0.7 THz range for planar microwave diodes fabricated on the bases of thick
GaAs epitaxial layers [26] and for those fabricated on the base of two‑dimensional se‑
lectively doped GaAs/AlGaAs semiconductor structures [27]. Asymmetrical microwave
bow‑tie diodes with n‑n+ GaAs junctions have revealed themselves to be diodes that are
more sensitive than the analogous microwave diodes of the symmetrical bow‑tie configu‑
ration [28]. The bow‑tie diodes on the bases of InGaAs semiconductor structures have been
used for the heterodyne [29], spectroscopic [30] and homodyne spectroscopic [31] imaging
of concealed objects. The polarity of the voltage induced across the ends of asymmetrically
shaped bow‑tie Si [23] and GaAs [26] diodes containing n‑n+ junctions has been found to
correspond to the polarity of the electromotive force of hot electrons across the n‑n+ homo‑
junction. However, the origin of the voltage induced across bow‑tie diodes containing
selectively doped semiconductor structures remains ambiguous. For example, there are
no data about the polarity of the voltage detected across the terminals of InGaAs‑based
bow‑tie diodes [29–31]. The wider application of InGaAs‑based bow‑tie diodes requires a
more detailed understanding of the detection mechanisms. Therefore, microwave bow‑tie
diodes with a broken geometrical symmetry fabricated on the bases of selectively doped
InAlAs/InGaAs semiconductor structures with and without InAs inserts are studied in this
article. Moreover, the peculiarities of microwave‑induced voltage are studied by adding
visible light illumination as an additional instrument for analyses.

2. Samples and Measurement Techniques
A selectively doped InAlAs/InGaAs semiconductor heterostructure served as a base

for the bow‑tie diodes. The high electron mobility and saturated drift velocity in the
channels of InAlAs/InGaAs/InAlAs heterostructures make this formation attractive for de‑
veloping field‑effect transistors operating in the millimeter‑wavelength range [32]. High‑
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electron‑mobility transistors have also been used for terahertz generation [33] and detec‑
tion [34]. The uncovered peculiarities of the electron interactions with polar optical and
interfacial phonons in semiconductor quantum wells [35] opened the possibility of con‑
trolling the electric and photoelectric properties of semiconductor heterostructures by us‑
ing electron–phonon scattering engineering when electrons and phonons are confined by
the insertion of phonon walls in a quantum well [36]. Electron mobility was found to ex‑
perimentally increase when an InAs phonon wall was introduced into an InAlAs/InGaAs
quantum well and when a nanometer‑wide GaAs layer was introduced into the InAlAs
barriers close to the interface of the InGaAs quantum well [37].

Two types of selectively doped InAlAs/InGaAs heterostructures were designed for
the fabrication of the bow‑tie diodes: samples with InAs inserts (sample W) and sam‑
ples without the inserts (sample WO). A cross‑sectional view of the structures and their
energy‑band diagrams and electron density distributions are presented in Appendix A.
The energy‑band diagrams and electron distributions were calculated by solving the Pois‑
son equation. The measured electrical parameters of the heterostructures (sheet electron
density, mobility and sheet resistance Rsh) are presented in Table 1.

Table 1. Electrical parameters of the grown semiconductor layered structures.

Heterostructure Sheet Density
nsh, cm−2

Electron Mobility
µ, cm2/(V·s)

Sheet Resistance Rsh, Ω/
�

W 1.52 × 1012 7760 530

WO 1.39 × 1012 8390 536

The electrical parameters of these two heterostructures were not much different. A
slightly bigger difference can be seen in the figures presented in Appendix A: the electron
density in the doping δ‑layer of the WO structure was five times higher than that in the W
heterostructure. A schematic picture and microphotograph of the planar bow‑tie diodes
are presented in Figure 1.
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Figure 1. Schematic view (a) and microphotograph (b) of the planar bow‑tie microwave diodes.

The details of the fabrication of the planar bow‑tie microwave diodes are presented
in [38]. A 60 nm etching depth was chosen to ensure the surefire confinement of the two‑
dimensional electron channels in the selectively doped semiconductor structures. The spe‑
cific contact resistance and the sheet resistance of the conductive layer were measured us‑
ing differently spaced ohmic contacts on a rectangular semiconductor mesa [39]. The val‑
ues of the specific contact resistance ρc of the bow‑tie diodes and the sheet resistance Rsh of
the semiconductor structures are presented in Table 2. These were measured in the dark
and under the illumination of visible light (see below). Two types of bow‑tie diodes with 1
and 2 micrometer‑wide “necks”, i.e., the narrowest part d (see Figure 1a), were fabricated.
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Table 2. Specific contact resistance of the bow‑tie diodes and sheet resistance of the selectively doped
W and WO semiconductor structures in the dark and under visible light illumination.

Bow‑Tie Diodes on
the Base of

In the Dark Illuminated

ρc‑d, Ω·mm Rsh‑d, Ω/ � ρc‑ill, Ω·mm Rsh‑ill, Ω/
�W

heterostructure 1.55 ± 1.01 530 ± 50 1.33 ± 0.77 462 ± 39

WO
heterostructure 1.29 ± 0.60 542 ± 50 1.25 ± 0.64 479 ± 39

High values of the specific contact resistance and strong scattering have substantial
influences on the detected voltage magnitude and its distribution. The values of the mea‑
sured sheet resistance were less scattered. However, as a result, the value of the electrical
resistance of the diodes experienced substantial scattering.

All the measurements of the electrical parameters of the bow‑tie diodes were per‑
formed using dc and high‑frequency probe stations. The current–voltage (I‑V) character‑
istics were measured using the Süss Micro Tec probe station EP6 with dc probes (Form‑
Factor, Inc., Livermore, CA, USA) and Agilent E5270B Precision Measurement equipment
(Agilent Technologies, Inc., Santa Clara, CA, USA). The voltage–power (V‑P) characteris‑
tics of the diodes were measured in the Ka frequency range using a Cascade Microtech
(FormFactor, Inc., Livermore, CA, USA) high‑frequency probe station, and ACP40‑A‑GS‑
250 probes were used to connect the diodes to the measurement station. An SHF BT45
broadband bias tee separated the detected dc voltage signal from the microwave signal.
The high‑frequency measurement setup is presented in Appendix B [40]. The usage of the
probe stations made the investigation more simple and allowed for on‑wafer experiments
to be performed under varying illumination conditions and at different temperatures. The
microwave diodes were illuminated with the photo‑lamp Eiko EKE21V150W (color tem‑
perature of 3240K). The temperature of the diodes in both the dc and high‑frequency mea‑
surements was varied from room temperature up to 80◦C using a commercially available
Peltier modulus. The high‑frequency measurements were performed in the Ka frequency
range (26 ÷ 37.5 GHz). As a source of microwave radiation, a millimeter‑wave sweep
generator, G4403E (Elmika Ltd., Vilnius, Lithuania), on the base of the Hall transducer,
was used.

3. Results and Discussion
The electrical resistance R of the bow‑tie diodes is determined via the geometrical

resistance Rg of the active region and the contact resistance Rc of the diode:

R = Rg + Rc =
Rsh

2tanα
ln

a
d
+

ρc

d
(1)

where Rsh is the sheet resistance of the selectively doped semiconductor structure; a and
d indicate the width of the diode in its widest and narrowest parts, respectively; α notes
the widening angle of the semiconductor structure (see Figure 1a); and ρc stands for the
specific contact resistance of the diode. Considering the exact sheet resistance values of
the W and WO semiconductor structures and the scattered values of the specific contact
resistance in Table 2, the possible electrical resistance range limits of the illuminated diodes
were calculated using Equation (1). The results are presented in Table 3.
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Table 3. Presumed range of electrical resistance of the illuminated bow‑tie diodes.

Semiconductor Heterostructure Width d, µm Presumed Electrical
Resistance, kΩ

W
1 1.54 ÷ 3.08

2 1.12 ÷ 1.89

WO
1 1.62 ÷ 2.90

2 1.17 ÷ 1.81

The statistical distribution of the electrical resistance is presented in Appendix C. The
diodes with the InAs inserts, that is, the W‑diodes, showed mean and median values that
were the electrical resistance, while most of the WO‑diodes had an electrical resistance that
was higher than the mean value. Only the diodes with an electrical resistance within the
presumed range were chosen for further investigation: 40 W‑diodes out of 56 (71%) and 23
WO‑diodes out of 47 (49%). It is worth noting that more diodes with a neck width d = 1 µm
fell within the expected resistance range: 23 (compared to 17 diodes with d = 2 µm) in the
case of the W structure and 14 (compared to 9 diodes with d = 2 µm) in the case of the WO
structure. This experimental fact could be explained by the in‑plane inhomogeneity of the
semiconductor structure.

The electrical properties of the bow‑tie diodes were sensitive to the visible light illu‑
mination. The electrical resistance of the diodes, both the W and WO types, decreased
by approximately 20% under the action of the light. The I‑V characteristics of the bow‑tie
diodes were sublinear (Figure 2). For more details, the inset of Figure 2 shows the depen‑
dence of the relative resistance change ∆R = R(U)−R(0)

R(0) on the voltage applied across the
diodes in the dark and under illumination. The dependence of the electrical resistance on
the voltage was more expressed in the case of the WO‑diodes, while the W‑diodes were
more sensitive to illumination.
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Figure 2. Current–voltage characteristics of the bow‑tie diodes in the dark (solid lines) and under
illumination (dashed lines, illuminance 14,400 lx.). In the inset: dependences of the relative resistance
change on applied voltage.

However, the detection properties of the bow‑tie diodes depended on the illumina‑
tion in a different way. First, the polarity of the voltage detected across the WO‑diodes
corresponded to the polarity of the Schottky diode‑detected voltage; i.e., a negative poten‑
tial arose on the narrower part of the bow‑tie structure (left side of the diode in Figure 1).
This diode terminal was grounded during the measurements, so the sign of the detected
voltage was positive. We called the detected voltage of this polarity the Schottky voltage
and further denoted it as the SCH voltage, and it is displayed in the graphs as a positive
voltage. In the case of illumination, approximately half of the W‑diodes detected a voltage
of the opposite polarity; i.e., a positive potential arose on the narrower part of the bow‑
tie structure. We called this polarity voltage the thermoelectromotive force voltage, the
TEMF voltage, and it is displayed in the graphs as a negative voltage. When the bow‑tie
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WO‑diodes were placed into the microwave electric field, the illumination increased the
detected voltage value while keeping its polarity the same. The influence of the illumina‑
tion on the voltage sensitivity of the nine WO‑diodes can be seen in Figure 3a; here, the
diodes are lined up in ascending order with regard to their voltage sensitivity.
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Figure 3. (a) Statistical representation of voltage sensitivity of some bow‑tie diodes on the base of
WO structures under illumination (open dots, illuminance 14,400 lx.) and in the dark (solid dots);
(b) statistical representation of illumination‑induced relative change in voltage sensitivity ∆S and
electrical resistance ∆R of the same WO‑diodes.

The voltage sensitivity of the diodes S is expressed as

S =
Ud
P

(2)

where Ud notes the detected voltage, and P is the incident microwave power. Figure 3b
depicts the relative change in the voltage sensitivity and the electrical resistance of the
same nine WO‑diodes due to the illumination. The relative percentage changes in the
voltage sensitivity ∆S and the electrical resistance ∆R of the bow‑tie diodes are determined
as follows:

∆S = 100·Sill − Sdark
Sdark

, ∆R = 100·Rdark − Rill
Rdark

, (3)

where the subscripts “ill” and “dark” denote the parameters of the diodes under illumina‑
tion and in the dark, respectively. The effect of the illumination on the voltage sensitivity
and the electrical resistance of the six W‑diodes is shown in Figure 4. The illumination
reduces the electrical resistance of the diodes, in the cases of both the W and WO types,
and it increases the voltage sensitivity of the WO‑diodes. However, different behavior is
observed in the case of the W‑diodes. Some W‑diodes show a decrease in the detected
voltage value, and out of these, those with a lower sensitivity change their voltage polarity
from the TEMF to the SCH sign under the action of the illumination (see Figure 4a). The
relative change in the electrical resistance is scattered between 15 and 25 percent, while the
relative change in the voltage sensitivity is much more significant and reaches hundreds
of percent.
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W structures under illumination (open dots, illuminance 14,400 lx.) and in the dark (solid dots);
(b) statistical representation of illumination‑induced relative change in voltage sensitivity ∆S and
electrical resistance ∆R of the same W‑diodes.

The voltage–power characteristics of the bow‑tie diodes based on the W structure are
presented in Figure 5a. A linear dependence of the detected voltage can be seen at a low
microwave power. The super‑linearity of the V‑P characteristic begins in the dark at an
intense microwave radiation, and this change can be caused by the substantial heating of
the semiconductor crystal lattice via continuous‑wave (CW) microwave radiation. An or‑
dinary lattice‑heating‑induced thermal electromotive force arises, and it contributes to the
thermal electromotive force of hot electrons, thus making the voltage–power characteristic
super‑linear. In the case of illumination, the linear V‑P characteristic of the W‑diode turns
into a sublinear one at a higher incident microwave power. This sublinearity and further
change in the detected voltage polarity may also be caused by the lattice‑attributed ther‑
mal electromotive force and by the appearance of the negative differential resistance in the
semiconductor due to the Gunn effect [41]. Here, the detected TEMF voltage adds to the
SCH voltage of the opposite polarity, resulting in a decrease in the total detected voltage
and even in the change in its polarity at a microwave power exceeding 1 mW. Note that the
“dark” and the “illuminated” detected voltages become almost equal in magnitude when
the maximum microwave power is applied (see Figure 5a).
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Figure 5. Voltage–power characteristics of the bow‑tie diodes on the bases of W (a) and WO (b) semi‑
conductor structures in the dark (solid dots) and under white‑light illumination. The illuminance of
the lamp was 14,400 lx. The lines are guides of linear dependence.

The bow‑tie diodes containing no InAs inserts, that is, the WO‑diodes, generate the
SCH voltage at a low microwave radiation power (see Figure 5b). However, as the power
is increased, the “dark” V‑P characteristic deviates from the linear law, and the detected
voltage changes its polarity from the SCH to the TEMF sign. As the maximum microwave
power is applied (slightly below 10 mW), the V‑P characteristic, again, turns into its linear
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form, indicating the presence of an ordinary thermal electromotive force and the Gunn
effect. When the meander‑modulated microwave signal is applied to the WO‑diode, the
lattice‑heating effect is minimized, and the contribution of the TEMF voltage to the total
detected voltage becomes weaker.

The influence of the illumination on the voltage sensitivity of the W‑diode can be seen
in Figure 6. The voltage sensitivity versus the microwave power at various illuminance
values is presented in Figure 6a. The stronger the light intensity, the lower the voltage
sensitivity resulting from the TEMF polarity voltage within the linear V‑P characteristic
region; the sensitivity drops down to zero at approximately 300 lx (see Figure 6b for the
negative values of sensitivity). A further increase in the light intensity turns the polarity of
the detected voltage into the SCH one, and then the sensitivity increases sublinearly with
the illuminance (Figure 6b). The range of the linear dependence of the detected SCH volt‑
age also increases with the illuminance; i.e., the dynamic range of the power‑independent
voltage sensitivity widens. As mentioned above, a strong microwave radiation heats the
semiconductor crystal lattice, and the thermal electromotive force arises across the ends of
the diode; in this case, the illumination obviously has a weak influence on the detection
properties of the bow‑tie diode on the base of the InGaAs semiconductor structure with
the InAs inserts (see the curves in Figure 6a demonstrating the voltage sensitivity at high
microwave radiation power).
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Figure 6. (a) Dependence of voltage sensitivity of the W‑diode on incident microwave power at
different white‑light illuminance values. (b) Dependence of voltage sensitivity on illuminance at
low microwave power.

Another observable feature of the W‑diodes is the inertness of their response to the mi‑
crowave radiation. Different voltage–power characteristics of the W‑diodes are observed
with the microwave power rising to a maximum value (forward case—fwd) and with it
declining to a minimum one (backward case—bwd). This inertness is not expressed dur‑
ing the measurements in the dark; however, the hysteresis of the V‑P characteristic can be
seen under illumination. As Figure 7a shows, the change in the voltage polarity occurs at a
lower power value in the backward case. This discrepancy in the V‑P characteristic can be
explained by the crystal lattice heating under the action of the microwave radiation. In the
bwd case, after the application of the maximum microwave power, some time is needed
for a crystal lattice to cool down and to eliminate or diminish the contribution of the TEMF
voltage to the total detected voltage. The voltage–power characteristics of the W‑diode
presented in Figure 7b were measured in the dark (square dots), under illumination (open
circles) and in the dark 10 min (upward triangles) and 45 min (downward triangles) after
illumination. To avoid the influence of the crystal lattice heating, the measurements were
carried out in the linear region of the V‑P characteristic, i.e., at low power values. As a
result, the linear V‑P characteristics are presented for measurements made in the dark and
under illumination.
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Figure 7. Demonstration of the detection inertness in the W bow‑tie diodes: (a) influence of mi‑
crowave power and (b) influence of 14,400 lx illumination. Arrows in (a) mark the direction of the
measurement: fwd, when the microwave power is increased, and bwd, when the power is decreased.
The lines in (b) are guides representing the linear law.

The time variation of the detected voltage across the W‑diodes after they were exposed
to a strong microwave electric field and illumination was worth a more detailed analysis.
A low microwave power (~70 µW) was applied to avoid the heating of the diode during the
measurements. First, the diode was affected by a strong microwave electric field of 7 mW
power radiation for a couple of minutes. Then, the power was reduced by two orders of
magnitude, and the detected voltage was measured at several time intervals. The measure‑
ments were carried out in the dark. The dependence of the detected voltage on time after
the impact of the strong electric field is presented in Figure 8a. The induced voltage of the
TEMF polarity relaxes to a stationary value that corresponds to the voltage sensitivity in
the linear region of the voltage–power characteristic. The relaxation is approximated by an
exponential function with two relaxation time constants: the relaxation starts with a time
constant τ1 = 17 s, which can be related to the crystal lattice cooling in the active region of
the W‑diode. A slower relaxation of the detected voltage with a time constant τ2 = 130 s is
unaccountable and requires further investigation. The relaxation of the detected voltage
after illumination with a visible light is demonstrated in Figure 8b. A fast decrease in the
detected SCH voltage and change in its polarity to the opposite TEMF one occurs just after
switching the illumination off. The measurement capabilities did not allow us to estimate
the time constant of this fast relaxation, so only the TEMF voltage relaxation was approx‑
imated, and this was carried out via an exponential function with a single relaxation time
(τ2 = 50 s). The long relaxation times of the detected voltage ranging tens of seconds are
related to temperature‑dependent phenomena.
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The dependence of the W‑diodes’ voltage sensitivity on temperature is different in
the dark and under illumination (Figure 9a). In the dark, the sensitivity corresponding
to the TEMF polarity decreases non‑monotonically with an increase in the temperature.
This decline can be explained by the decrease in electron mobility and electron energy
relaxation time in InGaAs with the increase in the temperature [42,43]. When the W‑diode
is illuminated, the detected SCH voltage decreases with the increase in the temperature,
and further, the total voltage changes its polarity due to the domination of the thermal
electromotive force at higher crystal lattice temperatures. The reduction in the hot‑electron
TEMF input in the dark due to the lattice heating and the increase in the ordinary TEMF of
the illuminated and heated diode lead to the convergence of the “dark” and “illuminated”
detected voltages, as can be seen in Figure 9a.
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Figure 9. Temperature dependence of voltage sensitivity (a) and electrical resistance (b) of the bow‑
tie diodes on the base of a selectively doped InAlAs/InGaAs semiconductor structure with InAs
inserts in the dark and under 14,400 lx illumination.

Illumination also influences the dependence of the electrical resistance of the W‑diode
on temperature (see Figure 9b). The resistance of the illuminated diode depends linearly
on temperature, and it is almost constant at a temperature close to room temperature in the
dark. At higher temperatures, the resistance of the “dark” diode begins to increase faster
with temperature, and it approaches the resistance of the illuminated diode. The different
temperature dependences can be explained as follows: the resistance of the illuminated
diode is related to the dependence of the charge carrier mobility on temperature, while
the resistance of the “dark” diode is additionally influenced by the change in the charge
carrier density caused by the temperature change.

The dependence of the detected voltage on frequency can help better understand the
origin of the voltage. These dependencies, in the dark and under illumination, are pre‑
sented in Figure 10. They are similar; however, this is most probably not due to the proper‑
ties of the W‑diode itself but rather the features of the microwave signal transmitting tract,
specifically the high‑frequency probe station. The experimental frequency dependence of
the voltage sensitivity of the W‑diode in the dark can be compared with the theoretical
voltage sensitivity of the bow‑tie diode with the semiconductor n‑n+ junction [44]:

Si =
Ud
Pi

=
2Rshµ0 tan α

3d2 ln a
d

P
Pi

N, (4)

where P is the microwave power absorbed by the diode; Pi denotes the incident microwave
power; µ0 is the low‑field electron mobility; and N stands for the factor that depends on
the frequency and electron energy, pulse and the Maxwell relaxation times [44]. The cal‑
culated frequency dependence of the voltage sensitivity of the W bow‑tie diode with the
electrical and geometrical parameters is presented in Figure 10 as a line. The frequency‑
independent voltage sensitivity of the illuminated W bow‑tie diode in the Ka frequency
range allows us to assume that the voltage detected by the illuminated diode is not caused
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by the contact phenomena but rather by the phenomena related to the charge carrier heat‑
ing in the microwave electric field.

One of these phenomena is the photo‑gradient effect of hot carriers [45]. The essence
of the photo‑gradient phenomenon lies in the rise of the electromotive force in light‑
illuminated homogeneous semiconductors when a large electric field gradient is created
on one side of the illuminated region. The separation of the excess light‑generated carri‑
ers occurs due to the Dember effect [46] and the different conditions of carrier diffusion
in the semiconductor regions with a strong electric field and with no electric field. The
light‑illuminated bow‑tie diode placed in a microwave electric field perfectly matches the
conditions that give rise to the photo‑gradient emf. A schematic view of the illuminated
bow‑tie diode is presented in Figure 11, and the electric field distribution in the bow‑tie
diode with an applied U = 1 V voltage was calculated as follows:

E =
2U

(d + x tan α) ln a
d

, (5)

where x denotes the longitudinal coordinate of the diode. The metallic Ge‑Ni‑Au contacts
of the diode shield the semiconductor regions from illumination and reduce the electric
field strength to zero. Therefore, the conditions that give rise to the photo‑gradient emf are
achieved since the electric field in the illuminated semiconductor structure is the strongest
in its narrowest part and drops to zero at its widest side. The polarity of the photo‑gradient
emf is determined by the dependence of the diffusion coefficient of the charge carriers
(electrons and holes) on the electric field strength. The photo‑gradient emf is added to or
subtracted from the thermal electromotive force of the hot carriers, which is also induced in
the bow‑tie diode under the action of the microwave electric field. In the case of the bow‑tie
diodes on the base of the InAlAs/InGaAs selectively doped structure with the InAs inserts,
that is, the W‑diodes, the photo‑gradient emf exceeds the thermal emf of the hot carriers in
the diode. Therefore, the polarity of the voltage detected across the W‑diode corresponds
to the TEMF polarity (in the dark), while the polarity of the voltage detected across the
white‑light‑illuminated diode is in accordance with the SCH polarity that corresponds to
the polarity of the photo‑gradient emf. In the case of the WO‑diodes fabricated on the
base of InAlAs/InGaAs without InAs inserts, the voltage detected in the dark has an SCH
polarity, and the illumination only slightly increases the total detected voltage due to the
arising of the photo‑gradient emf.
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Figure 10. Frequency dependence of voltage sensitivity of the W‑diode in the dark and under
14,400 lx illumination. The lines represent theoretical dependence of the voltage sensitivity on fre‑
quency in the case of bow‑tie diode with semiconductor n‑n+ junction.
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4. Conclusions 

This study of the bow-tie diodes on the bases of InAlAs/InGaAs selectively doped 
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to draw the following conclusions: 
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5. Analyses of the voltage–power characteristics, frequency dependence of the voltage 

sensitivity in the Ka frequency range, the temperature dependence of the detected 
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Figure 11. Schematic view of the bow‑tie diode illuminated with light (top) and distribution of elec‑
tric field in the active region of the diode with 1 V of applied voltage.

4. Conclusions
This study of the bow‑tie diodes on the bases of InAlAs/InGaAs selectively doped

semiconductor structures with and without InAs inserts in the InGaAs layer allowed us to
draw the following conclusions:
1. The dc and high‑frequency electrical properties of the bow‑tie diodes, i.e., their elec‑

trical resistance and voltage sensitivity, were sensitive to the illumination of the diode
with visible light.

2. The voltage sensitivity of the diodes with the InAs inserts was more responsive to the
illumination.

3. When the bow‑tie diodes with the InAs inserts with a typical lower voltage sensi‑
tivity were affected by the visible light, the polarity of the voltage detected across
them changed from that of a thermoelectric electromotive force of hot carriers to the
opposite one.

4. The illumination increased the voltage sensitivity of the bow‑tie diodes that had no
InAs inserts.

5. Analyses of the voltage–power characteristics, frequency dependence of the voltage
sensitivity in the Ka frequency range, the temperature dependence of the detected
voltage and the dynamics of the detected voltage through time allowed us to assume
that the photo‑gradient electromotive force arose in the bow‑tie diodes under
illumination.

6. The visible‑light‑induced increase in the photo‑gradient emf changed the polarity of
the detected voltage in the bow‑tie diodes with the InAs inserts and increased the
magnitude of the detected voltage in the diodes without the inserts.
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Appendix A
Cross‑section of the investigated semiconductor structures and their energy‑band di‑

agrams with electron density distributions. The thicknesses of the GaAs and InAs inserts
are 2.4 nm and 1.2 nm, respectively. The thickness of the δ‑Si doped layer is 2 nm.
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Appendix B
A structure block diagram of the probe station for the measurement of the detected

voltage dependencies on microwave power and frequency in the Ka frequency range [40].
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The measurement setup involves a TWT signal generator, “Elmika G4408E”, working
in the CW mode; coaxial‑waveguide adapters, “Elmika CWA‑08/K(f)”; a WR28 waveguide
transmission line; an “Elmika” directional coupler; a thermistor mount, “M5‑45”; a ther‑
mistor power meter, “M3‑22A”; a flap waveguide attenuator; a direct‑reading attenuator;
a broadband bias tee, “SHF BT 45 B”; a “Cascade Microtech EP6” probe station with air
coplanar probes, “ACP 40 A GS 250”; a digital voltmeter, “Agilent 34401A”; and connect‑
ing cables.
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A statistical presentation of the electrical resistance of the bow‑tie diodes under illu‑

mination with a visible light of 14,400 lx.
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