Special Issue "Nanowires and Quantum Dots"

A special issue of Nanomaterials (ISSN 2079-4991). This special issue belongs to the section "Synthesis, Interfaces and Nanostructures".

Deadline for manuscript submissions: closed (31 December 2021).

Special Issue Editors

Prof. Dr. George Cirlin
E-Mail Website
Guest Editor
Khlopina 8/3, Alferov Academic University, 194021 St Petersburg, Russia
Interests: molecular beam epitaxy, quantum dots, nanowires, semiconductor lasers, nanostructured devices
Prof. Dr. Vladimir G. Dubrovskii
E-Mail Website
Guest Editor
Polytechnicheskaya 26, Russian Academy of Sciences - Ioffe Institute, 194021 St Petersburg, Russia
Interests: modeling, synthesis, and properties of semiconductor nanowires; semiconductor nanostructures; nucleation theory with applications
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Nanostructured materials such as quantum dots (zero-dimensional objects) and nanowires (exhibiting in extreme cases one-dimensional quantum behavior) attract great attention due to their intrinsic properties. A combination of one-dimensional and zero-dimensional semiconductor nanostructures may open new horizons in solid state physics and in various applications. In the frame of this Special Issue, different topics will be highlighted. For quantum dots, papers on the Stranski–Krastanow growth mechanism as well as droplet epitaxy fabrication methods are welcomed. Nanowires of different semiconductor materials grown by both top–down and bottom–up approaches will form a significant part of the issue. New types of the hybrid structures such as “quantum dot-in-a-nanowire” or “quantum well-in-a-nanowire” will also be covered. Finally, we will consider the recent progress in fabrication and properties of the so-called “crystal phase quantum dots”, where the charge confinement is defined by a crystal phase change in chemically homogeneous nanowire.

Prof. Dr. George Cirlin
Prof. Dr. Vladimir Dubrovskii
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Nanomaterials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • quantum dots
  • nanowires
  • epitaxy
  • hybrid structures
  • crystal phase

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Theory of MBE Growth of Nanowires on Reflecting Substrates
Nanomaterials 2022, 12(2), 253; https://doi.org/10.3390/nano12020253 - 14 Jan 2022
Viewed by 44
Abstract
Selective area growth (SAG) of III-V nanowires (NWs) by molecular beam epitaxy (MBE) and related epitaxy techniques offer several advantages over growth on unpatterned substrates. Here, an analytic model for the total flux of group III atoms impinging NWs is presented, which accounts [...] Read more.
Selective area growth (SAG) of III-V nanowires (NWs) by molecular beam epitaxy (MBE) and related epitaxy techniques offer several advantages over growth on unpatterned substrates. Here, an analytic model for the total flux of group III atoms impinging NWs is presented, which accounts for specular re-emission from the mask surface and the shadowing effect in the absence of surface diffusion from the substrate. An expression is given for the shadowing length of NWs corresponding to the full shadowing of the mask. Axial and radial NW growths are considered in different stages, including the stage of purely axial growth, intermediate stage with radial growth, and asymptotic stage, where the NWs receive the maximum flux determined by the array pitch. The model provides good fits with the data obtained for different vapor–liquid–solid and catalyst-free III-V NWs. Full article
(This article belongs to the Special Issue Nanowires and Quantum Dots)
Show Figures

Figure 1

Article
Purcell Effect and Beaming of Emission in Hybrid AlGaAs Nanowires with GaAs Quantum Dots
Nanomaterials 2021, 11(11), 2894; https://doi.org/10.3390/nano11112894 - 29 Oct 2021
Viewed by 462
Abstract
Control of directionality of emissions is an important task for the realization of novel nanophotonic devices based on nanowires. Most of the existing approaches providing high directionality of the light emitted from nanowires are based on the utilization of the tapered shape of [...] Read more.
Control of directionality of emissions is an important task for the realization of novel nanophotonic devices based on nanowires. Most of the existing approaches providing high directionality of the light emitted from nanowires are based on the utilization of the tapered shape of nanowires, serving as nanoantenna coupling with the light waveguided in nanowire and the directional output beam. Here we report the beaming of the emitted light with wavelength near 800 nm by naturally formed core-shell AlGaAs NW with multiply GaAs quantum dots (QDs) diameter 30 nm and height 10 nm, while the diameter of NW 130 nm, what does not support efficient emission into waveguided modes, including the mode HE11. Experimental measurements show that intensity of emission for directions in the vicinity of the axis of NW is about two orders of magnitude higher than for perpendicular directions. The developed theoretical approach allowed us to calculate the probability of spontaneous emission for various directions and into waveguided modes and showed that highly directional radiation can be provided by the intrinsic emission properties of cylindrical NW. Our results suggest that for the small diameter of NW, directional emissions are associated with an TM0 leaky mode (when electric field oriented in axial direction) and therefore manifests in an existence of axial electric dipole transitions in quantum dots. Full article
(This article belongs to the Special Issue Nanowires and Quantum Dots)
Show Figures

Figure 1

Article
Influence of TOPO and TOPO-CdSe/ZnS Quantum Dots on Luminescence Photodynamics of InP/InAsP/InPHeterostructure Nanowires
Nanomaterials 2021, 11(3), 640; https://doi.org/10.3390/nano11030640 - 05 Mar 2021
Cited by 1 | Viewed by 706
Abstract
The passivation influence by ligands coverage with trioctylphosphine oxide (TOPO) and TOPO including colloidal CdSe/ZnS quantum dots (QDs) on optical properties of the semiconductor heterostructure, namely an array of InP nanowires (NWs) with InAsP nanoinsertion grown by Au-assisted molecular beam epitaxy on Si [...] Read more.
The passivation influence by ligands coverage with trioctylphosphine oxide (TOPO) and TOPO including colloidal CdSe/ZnS quantum dots (QDs) on optical properties of the semiconductor heterostructure, namely an array of InP nanowires (NWs) with InAsP nanoinsertion grown by Au-assisted molecular beam epitaxy on Si (111) substrates, was investigated. A significant dependence of the photoluminescence (PL) dynamics of the InAsP insertions on the ligand type was shown, which was associated with the changes in the excitation translation channels in the heterostructure. This change was caused by a different interaction of the ligand shells with the surface of InP NWs, which led to the formation of different interfacial low-energy states at the NW-ligand boundary, such as surface-localized antibonding orbitals and hybridized states that were energetically close to the radiating state and participate in the transfer of excitation. It was shown that the quenching of excited states associated with the capture of excitation to interfacial low-energy traps was compensated by the increasing role of the “reverse transfer” mechanism. As a result, the effectiveness of TOPO-CdSe/ZnS QDs as a novel surface passivation coating was demonstrated. Full article
(This article belongs to the Special Issue Nanowires and Quantum Dots)
Show Figures

Figure 1

Back to TopTop