Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = in-plane equilibrium equation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 49059 KiB  
Article
On the Mechanics of a Fiber Network-Reinforced Elastic Sheet Subjected to Uniaxial Extension and Bilateral Flexure
by Wenhao Yao, Heung Soo Kim and Chun Il Kim
Mathematics 2025, 13(13), 2201; https://doi.org/10.3390/math13132201 - 5 Jul 2025
Viewed by 219
Abstract
The mechanics of an elastic sheet reinforced with fiber mesh is investigated when undergoing bilateral in-plane bending and stretching. The strain energy of FRC is formulated by accounting for the matrix strain energy contribution and the fiber network deformations of extension, flexure, and [...] Read more.
The mechanics of an elastic sheet reinforced with fiber mesh is investigated when undergoing bilateral in-plane bending and stretching. The strain energy of FRC is formulated by accounting for the matrix strain energy contribution and the fiber network deformations of extension, flexure, and torsion, where the strain energy potential of the matrix material is characterized via the Mooney–Rivlin strain energy model and the fiber kinematics is computed via the first and second gradient of deformations. By applying the variational principle on the strain energy of FRC, the Euler–Lagrange equilibrium equations are derived and then solved numerically. The theoretical results highlight the matrix and meshwork deformations of FRC subjected to bilateral bending and stretching simultaneously, and it is found that the interaction between bilateral extension and bending manipulates the matrix and network deformation. It is theoretically observed that the transverse Lagrange strain peaks near the bilateral boundary while the longitudinal strain is intensified inside the FRC domain. The continuum model further demonstrates the bidirectional mesh network deformations in the case of plain woven, from which the extension and flexure kinematics of fiber units are illustrated to examine the effects of fiber unit deformations on the overall deformations of the fiber network. To reduce the observed matrix-network dislocation in the case of plain network reinforcement, the pantographic network reinforcement is investigated, suggesting that the bilateral stretch results in the reduced intersection angle at the mesh joints in the FRC domain. For validation of the continuum model, the obtained results are cross-examined with the existing experimental results depicting the failure mode of conventional fiber-reinforced composites to demonstrate the practical utility of the proposed model. Full article
(This article belongs to the Special Issue Progress in Computational and Applied Mechanics)
Show Figures

Figure 1

31 pages, 4895 KiB  
Article
Dynamic Analysis and Experimental Research on Anti-Swing Control of Distributed Mass Payload for Marine Cranes
by Guoliang Jin, Shenghai Wang, Yufu Gao, Maokai Sun, Haiquan Chen and Yuqing Sun
J. Mar. Sci. Eng. 2025, 13(6), 1112; https://doi.org/10.3390/jmse13061112 - 2 Jun 2025
Viewed by 456
Abstract
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes [...] Read more.
To address distributed mass payload (DMP) anti-swing control problems typified by offshore wind turbine blades, this paper adopts multi-body dynamics and rigid-flexible coupling modelling approaches. It derives the geometric constraints and static equilibrium equations for marine crane multipoint lifting of DMP, and establishes a dynamic coupling model considering ship roll and pitch environmental excitations. Then, under the maximum environmental excitation set in the experiment, the flexible cable parallel anti-swing system achieves swing suppression rates of 41.0% and 58.0% for the in-plane and out-of-plane angles of the DMP with regular geometric shape and mass distribution, respectively. For the DMP with irregular geometry and mass distribution, the suppression rates are 48.4% and 39.3% for the in-plane and out-of-plane angles, respectively. It is found that, after adjusting the lifting method and increasing the distance between the lifting points, the maximum in-plane angle of the payload decreases by 2.3%, while the out-of-plane angle maximum decreases by 52.0%. These results demonstrate the effectiveness of adjusting lifting methods in suppressing swing for irregular DMPs, thereby verifying the reliability and applicability of the flexible cable parallel anti-swing system and providing a reference for improving anti-swing performance and lifting efficiency in offshore DMP operations. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

24 pages, 1148 KiB  
Article
Three-Dimensional Magneto-Elastic Analysis of Functionally Graded Plates and Shells
by Salvatore Brischetto and Domenico Cesare
J. Compos. Sci. 2025, 9(5), 214; https://doi.org/10.3390/jcs9050214 - 28 Apr 2025
Viewed by 436
Abstract
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the [...] Read more.
This work shows a three-dimensional (3D) layerwise model for static and free vibration analyses of functionally graded piezomagnetic materials (FGPM) spherical shell structures where magnetic and elastic fields are completely coupled. The 3D magneto-elastic governing equations for spherical shells are made of the three equations of equilibrium in three-dimensional form and the three-dimensional divergence equation for the magnetic induction. Governing equations are written in the orthogonal mixed curvilinear reference system (α, β, z) allowing the analysis of several curved and flat geometries (plates, cylindrical shells and spherical shells) thanks to proper considerations of the radii of curvature. The static cases, actuator and sensor configurations and free vibration investigations are proposed. The resolution method uses the imposition of the Navier’s harmonic forms in the two in-plane directions and the exponential matrix methodology in the transverse normal direction. Single-layered and multilayered simply-supported FGPM structures have been investigated. In order to understand the behavior of FGPM structures, numerical values and trends along the thickness direction for displacements, stresses, magnetic potential, magnetic induction and free vibration modes are proposed. In the results section, a first assessment phase is proposed to demonstrate the validity of the formulation and to fix proper values for the convergence of results. Therefore, a new benchmark section is presented. Different cases are proposed for several material configurations, load boundary conditions and geometries. The possible effects involved in this problem (magneto-elastic coupling and effects related to embedded materials and thickness values of the layers) are discussed in depth for each thickness ratio. The innovative feature proposed in the present paper is the exact 3D study of magneto-elastic coupling effects in FGPM plates and shells for static and free vibration analyses by means of a unique and general formulation. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

28 pages, 4802 KiB  
Article
An Analytical Study on the Thermal Post-Buckling Behaviors of Geometrically Imperfect FRC-Laminated Beams Using a Modified Zig-Zag Beam Model
by Zhoumi Wang and Qingchun Meng
Aerospace 2025, 12(2), 138; https://doi.org/10.3390/aerospace12020138 - 12 Feb 2025
Cited by 1 | Viewed by 785
Abstract
An asymptotic analytical method is proposed to study the thermal post-buckling behaviors of fiber-reinforced composite (FRC)-laminated beams with geometric imperfections employing a modified zig-zag beam model. The beam model satisfied the discontinuity of the shear deformation at the interlayer interfaces and the stress [...] Read more.
An asymptotic analytical method is proposed to study the thermal post-buckling behaviors of fiber-reinforced composite (FRC)-laminated beams with geometric imperfections employing a modified zig-zag beam model. The beam model satisfied the discontinuity of the shear deformation at the interlayer interfaces and the stress boundary conditions on the upper and lower surfaces. Each imperfection was assumed to possess the same shape as the buckling mode, and the in-plane boundary conditions were presumed to be immovable. A two-step perturbation method was used to solve the nonlinear governing equations and obtain the equilibrium path. Subsequently, the initial defect sensitivity of the post-buckling behaviors was analyzed. The existence of the bifurcation-type equilibrium path for perfect beams is discussed in depth. Load–deflection curves for beams with various boundary conditions and ply modes were plotted to illustrate these findings. The effects of the slenderness ratio, elastic modulus ratio, thermal expansion coefficient ratio, ply modes, and supported boundaries on the buckling and post-buckling behaviors were also investigated. The numerical results indicate that the slenderness ratio significantly influences the critical buckling temperature, with thicker beams exhibiting higher buckling resistance. The elastic modulus ratio also plays a crucial role, with higher ratios leading to increased buckling strength. Additionally, the thermal expansion coefficient ratio affects the post-buckling load-bearing capacity, with lower ratios resulting in greater stability. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

37 pages, 2370 KiB  
Article
Improved Synchronous Characterization Theory for Surface and Interface Mechanical Properties of Thin-Film/Substrate Systems: A Theoretical Study on Shaft-Loaded Blister Test Technique
by Xiao-Ting He, Xiang Li, He-Hao Feng and Jun-Yi Sun
Materials 2024, 17(20), 5054; https://doi.org/10.3390/ma17205054 - 16 Oct 2024
Cited by 1 | Viewed by 1045
Abstract
In this paper, the previously proposed shaft-loaded blister test technique for the synchronous characterization of the surface and interface mechanical properties of a thin-film/substrate system is further studied theoretically. The large deflection problem of the steady shaft-loaded blistering thin film is reformulated by [...] Read more.
In this paper, the previously proposed shaft-loaded blister test technique for the synchronous characterization of the surface and interface mechanical properties of a thin-film/substrate system is further studied theoretically. The large deflection problem of the steady shaft-loaded blistering thin film is reformulated by surrendering the small-rotation-angle assumption of the membrane, which was previously adopted in the out-of-plane and in-plane equilibrium and radial geometric equations. A new and more accurate analytical solution to this large deflection problem is presented and is used to improve the previously presented synchronous characterization theory. The new analytical solution is numerically compared with the previous analytical solution to confirm the superiority of the new analytical solution over the previous analytical solution. An experiment is conducted to verify the beneficial effect of the improved synchronous characterization theory on improving the characterization accuracy. Full article
(This article belongs to the Special Issue Recent Progress on Thin 2D Materials)
Show Figures

Figure 1

27 pages, 5824 KiB  
Article
Analytical Framework for Tension Characterization in Submerged Anchor Cables via Nonlinear In-Plane Free Vibrations
by Long Yang, Dahai Wang, Huadong Zheng, Zhengyuan Ma and Yixin Zhang
J. Mar. Sci. Eng. 2024, 12(8), 1286; https://doi.org/10.3390/jmse12081286 - 31 Jul 2024
Cited by 1 | Viewed by 970
Abstract
Submerged tensioned anchor cables (STACs) are pivotal components utilized extensively for anchoring and supporting offshore floating structures. Unlike tensioned cables in air, STACs exhibit distinctive nonlinear damping characteristics. Although existing studies on the free vibration response and tension identification of STACs often employ [...] Read more.
Submerged tensioned anchor cables (STACs) are pivotal components utilized extensively for anchoring and supporting offshore floating structures. Unlike tensioned cables in air, STACs exhibit distinctive nonlinear damping characteristics. Although existing studies on the free vibration response and tension identification of STACs often employ conventional Galerkin and average methods, the effect of the quadratic damping coefficient (QDC) on the vibration frequency remains unquantified. This paper re-examines the effect of bending stiffness on the static equilibrium configuration of STACs, and establishes the in-plane transverse free motion equations considering bending stiffness, sag, and hydrodynamic force. By introducing the bending stiffness influence coefficient and the Irvine parameter, the exact analytical solutions of symmetric and antisymmetric frequencies and modal shapes of STACs are derived. An improved Galerkin method is proposed to discretize the nonlinear free motion equations ensuring the accuracy and applicability of the analytical results. Additionally, this paper presents an analytical solution for the nonlinear free vibration response of the STACs using the improved averaging method, along with improved frequency formulas and tension identification methods considering the QDC. Through a case study, it is demonstrated that the improved methods introduced in this paper offer higher accuracy and wider applicability compared to the conventional approaches. These findings provide theoretical guidance and reference for the precise dynamic analysis, monitoring, and evaluation of marine anchor cable structures. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4362 KiB  
Article
Model and Dynamic Analysis of a Three-Body Tethered Satellite System in Three Dimensions
by Teng He and ZhanXia Zhu
Appl. Sci. 2024, 14(5), 1762; https://doi.org/10.3390/app14051762 - 21 Feb 2024
Cited by 2 | Viewed by 1225
Abstract
The three-body tethered satellite system is a new potential technology for the purposes of orbital transportation. In contrast to conventional orbit transfer methods, this system is expected to transport space supplies to a predetermined orbital altitude without consuming fuel; however, the unwanted libration [...] Read more.
The three-body tethered satellite system is a new potential technology for the purposes of orbital transportation. In contrast to conventional orbit transfer methods, this system is expected to transport space supplies to a predetermined orbital altitude without consuming fuel; however, the unwanted libration resulting from the Coriolis force acting on moving subsatellites may induce tumbling within the system. In order to analyze the strongly coupled characteristics of the libration motion and the variable-length tethers, a six-DOF dynamic model of the system based on Newton’s law is established. By utilizing the dynamic equations and stability criterion for linear systems, three equilibrium configurations of the satellite system with two constant-length tethers are given. The coupling characteristics of the libration angles are analyzed based on mechanical features and simulations. The results demonstrate that part of the libration energy can transfer from out-of-plane motion to in-plane motion during out-of-plane libration, but not vice versa or when in-plane libration occurs alone. Furthermore, the dynamic characteristic of this system with a predesigned deployment strategy is surveyed. This investigation reveals that such a strategy can rapidly suppress the out-of-plane libration motion while maintaining purely sinusoidal oscillations in the in-plane motion. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

45 pages, 4433 KiB  
Article
An Improved Theory for Designing and Numerically Calibrating Circular Touch Mode Capacitive Pressure Sensors
by Xiao-Ting He, Xin Wang, Fei-Yan Li and Jun-Yi Sun
Sensors 2024, 24(3), 907; https://doi.org/10.3390/s24030907 - 30 Jan 2024
Cited by 4 | Viewed by 1521
Abstract
The design, especially the numerical calibration, of a circular touch mode capacitive pressure sensor is highly dependent on the accuracy of the analytical solution of the contact problem between the circular conductive membrane and the rigid plate of the sensor. In this paper, [...] Read more.
The design, especially the numerical calibration, of a circular touch mode capacitive pressure sensor is highly dependent on the accuracy of the analytical solution of the contact problem between the circular conductive membrane and the rigid plate of the sensor. In this paper, the plate/membrane contact problem is reformulated using a more accurate in-plane equilibrium equation, and a new and more accurate analytical solution is presented. On this basis, the design and numerical calibration theory for circular touch mode capacitive pressure sensors has been greatly improved and perfected. The analytical relationships of pressure and capacitance are numerically calculated using the new and previous analytical solutions, and the gradually increasing difference between the two numerical calculation results with the gradual increase in the applied pressure is graphically shown. How to use analytical solutions and analytical relationships to design and numerically calibrate a circular touch mode capacitive pressure sensor with a specified pressure detecting range is illustrated in detail. The effect of changing design parameters on capacitance–pressure analytical relationships is comprehensively investigated; thus, the direction of changing design parameters to meet the required or desired range of pressure or capacitance is clarified. Full article
(This article belongs to the Collection Instrument and Measurement)
Show Figures

Figure 1

45 pages, 13262 KiB  
Article
An Exact In-Plane Equilibrium Equation for Transversely Loaded Large Deflection Membranes and Its Application to the Föppl-Hencky Membrane Problem
by Jun-Yi Sun, Ji Wu, Xue Li and Xiao-Ting He
Mathematics 2023, 11(15), 3329; https://doi.org/10.3390/math11153329 - 28 Jul 2023
Cited by 5 | Viewed by 1554
Abstract
In the existing literature, there are only two in-plane equilibrium equations for membrane problems; one does not take into account the contribution of deflection to in-plane equilibrium at all, and the other only partly takes it into account. In this paper, a new [...] Read more.
In the existing literature, there are only two in-plane equilibrium equations for membrane problems; one does not take into account the contribution of deflection to in-plane equilibrium at all, and the other only partly takes it into account. In this paper, a new and exact in-plane equilibrium equation is established by fully taking into account the contribution of deflection to in-plane equilibrium, and it is used for the analytical solution to the well-known Föppl-Hencky membrane problem. The power series solutions of the problem are given, but in the form of the Taylor series, so as to overcome the difficulty in convergence. The superiority of using Taylor series expansion over using Maclaurin series expansion is numerically demonstrated. Under the same conditions, the newly established in-plane equilibrium equation is compared numerically with the existing two in-plane equilibrium equations, showing that the new in-plane equilibrium equation has obvious superiority over the existing two. A new finding is obtained from this study, namely, that the power series method of using Taylor series expansion is essentially different from that of using Maclaurin series expansion; therefore, the recurrence formulas for power series coefficients of using Maclaurin series expansion cannot be derived directly from that of using Taylor series expansion. Full article
Show Figures

Figure 1

16 pages, 3434 KiB  
Article
In-Plane Libration Suppression of a Two-Segment Tethered Towing System
by Shouxu Chen, Weidong Chen, Ti Chen and Junjie Kang
Aerospace 2023, 10(3), 286; https://doi.org/10.3390/aerospace10030286 - 13 Mar 2023
Cited by 3 | Viewed by 2099
Abstract
A tethered towing system provides an effective method for capturing pieces of space debris and dragging them out of orbit. This paper focuses on the in-plane stability analysis and libration control of a two-segment tethered towing system. The first segment is the same [...] Read more.
A tethered towing system provides an effective method for capturing pieces of space debris and dragging them out of orbit. This paper focuses on the in-plane stability analysis and libration control of a two-segment tethered towing system. The first segment is the same as the traditional single-tether towing system. The second segment is similar to a simplified space tether net. The dynamic equations are established in the orbit frame. Considering the elasticity of the tethers, the equilibrium solutions are obtained and the stability of equilibrium solutions is proved. An in-plane libration controller based on the sliding mode control scheme is designed to ensure the safety of the towing mission and save fuel. The controller suppressed the librations of the in-plane angles in the desired state by applying two external torques. Finally, simulation results are provided to validate the effectiveness of the proposed controller. Full article
(This article belongs to the Special Issue Advanced Motion Planning and Control in Aerospace Applications)
Show Figures

Figure 1

27 pages, 7330 KiB  
Article
Mathematical and Physical Analyses of Middle/Neutral Surfaces Formulations for Static Response of Bi-Directional FG Plates with Movable/Immovable Boundary Conditions
by Ammar Melaibari, Salwa A. Mohamed, Amr E. Assie, Rabab A. Shanab and Mohamed A. Eltaher
Mathematics 2023, 11(1), 2; https://doi.org/10.3390/math11010002 - 20 Dec 2022
Cited by 7 | Viewed by 1968
Abstract
This article is prompted by the existing confusion about correctness of responses of beams and plates produced by middle surface (MS) and neutral surface (NS) formulations. This study mathematically analyzes both formulations in the context of the bending of bi-directional functionally graded (BDFG) [...] Read more.
This article is prompted by the existing confusion about correctness of responses of beams and plates produced by middle surface (MS) and neutral surface (NS) formulations. This study mathematically analyzes both formulations in the context of the bending of bi-directional functionally graded (BDFG) plates and discusses where the misconceptions are. The relation between in-plane displacement field variables on NS and on MS are derived. These relations are utilized to define a modified set of boundary conditions (BCs) for immovable simply supported plates that enables either formulation to apply fixation conditions on the refence plane of the other formulation. A four-variable higher order shear deformation theory is adopted to present the displacement fields of BDFG plates. A 2D plane stress constitution is used to govern stress–strain relations. Based on MS and NS, Hamilton’s principles are exploited to derive the equilibrium equations which are described by variable coefficient partial differential equations. The governing equations in terms of stress resultants are discretized by the differential quadrature method (DQM). In addition, analytical expressions that relate rigidity terms and stress resultants associated with the two formulations are proved. Both the theoretical analysis and the numerical results demonstrate that the responses of BDFG plates based on MS and NS formulations are identical in the cases of clamped BCs and movable simply supported BCs. However, the difference in responses of immovable simply supported BCs is expected since each formulation assumes plate fixation at different planes. Further, numerical results show that the responses of immovable simply supported BDFG plates obtained using the NS formulation are identical to those obtained by the MS formulation if the transferred boundary condition (from NS- to MS-planes) are applied. Theoretical and numerical results demonstrate also that both MS and NS formulations are correct even for immovable simply supported BCs if fixation constraints at different planes are treated properly. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

25 pages, 5687 KiB  
Article
Static Response of 2D FG Porous Plates Resting on Elastic Foundation Using Midplane and Neutral Surfaces with Movable Constraints
by Ammar Melaibari, Salwa A. Mohamed, Amr E. Assie, Rabab A. Shanab and Mohamed A. Eltaher
Mathematics 2022, 10(24), 4784; https://doi.org/10.3390/math10244784 - 15 Dec 2022
Cited by 20 | Viewed by 2128
Abstract
The current manuscript develops a novel mathematical formulation to portray the static deflection of a bi-directional functionally graded (BDFG) porous plate resting on an elastic foundation. The correctness of the static response produced by middle surface (MS) vs. neutral surface (NS) formulations, and [...] Read more.
The current manuscript develops a novel mathematical formulation to portray the static deflection of a bi-directional functionally graded (BDFG) porous plate resting on an elastic foundation. The correctness of the static response produced by middle surface (MS) vs. neutral surface (NS) formulations, and the position of the boundary conditions, are derived in detail. The relation between in-plane displacement field variables on NS and on MS are derived. Bi-directional gradation through the thickness and axial direction are described by the power function; however, the porosity is depicted by cosine function. The displacement field of a plate is controlled by four variables higher order shear deformation theory to satisfy the zero shear at upper and lower surfaces. Elastic foundation is described by the Winkler–Pasternak model. The equilibrium equations are derived by Hamilton’s principles and then solved numerically by being discretized by the differential quadrature method (DQM). The proposed model is confirmed with former published analyses. The numerical parametric studies discuss the effects of porosity type, porosity coefficient, elastic foundations variables, axial and transverse gradation indices, formulation with respect to MS and NS, and position of boundary conditions (BCs) on the static deflection and stresses. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

21 pages, 3104 KiB  
Article
A Monotonic Smeared Truss Model to Predict the Envelope Shear Stress—Shear Strain Curve for Reinforced Concrete Panel Elements under Cyclic Shear
by Luís Bernardo and Saffana Sadieh
Appl. Mech. 2021, 2(1), 174-194; https://doi.org/10.3390/applmech2010011 - 22 Mar 2021
Cited by 2 | Viewed by 2899
Abstract
In previous studies, a smeared truss model based on a refinement of the rotating-angle softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”, was validated [...] Read more.
In previous studies, a smeared truss model based on a refinement of the rotating-angle softened truss model (RA-STM) was proposed to predict the full response of structural concrete panel elements under in-plane monotonic loading. This model, called the “efficient RA-STM procedure”, was validated against the experimental results of reinforced and prestressed concrete panels, steel fiber concrete panels, and reinforced concrete panels externally strengthened with fiber-reinforced polymers. The model incorporates equilibrium and compatibility equations, as well as appropriate smeared constitutive laws of the materials. Besides, it incorporates an efficient algorithm for the calculation procedure to compute the solution points without using the classical trial-and-error technique, providing high numerical efficiency and stability. In this study, the efficient RA-STM procedure is adapted and checked against some experimental data related to reinforced concrete (RC) panels tested under in-plane cyclic shear until failure and found in the literature. Being a monotonic model, the predictions from the model are compared with the experimental envelopes of the hysteretic shear stress–shear strain loops. It is shown that the predictions for the shape (at least until the peak load is reached) and for key shear stresses (namely, cracking, yielding, and maximum shear stresses) of the envelope shear stress–shear strain curves are in reasonably good agreement with the experimental ones. From the obtained results, the efficient RA-STM procedure can be considered as a reliable model to predict some important features of the response of RC panels under cyclic shear, at least for a precheck analysis or predesign. Full article
(This article belongs to the Special Issue Mechanics Applied in Construction Engineering)
Show Figures

Figure 1

22 pages, 2863 KiB  
Article
A Refined Theory for Characterizing Adhesion of Elastic Coatings on Rigid Substrates Based on Pressurized Blister Test Methods: Closed-Form Solution and Energy Release Rate
by Yong-Sheng Lian, Jun-Yi Sun, Zhi-Hang Zhao, Shou-Zhen Li and Zhou-Lian Zheng
Polymers 2020, 12(8), 1788; https://doi.org/10.3390/polym12081788 - 10 Aug 2020
Cited by 13 | Viewed by 2792
Abstract
Adhesion between coatings and substrates is an important parameter determining the integrity and reliability of film/substrate systems. In this paper, a new and more refined theory for characterizing adhesion between elastic coatings and rigid substrates is developed based on a previously proposed pressurized [...] Read more.
Adhesion between coatings and substrates is an important parameter determining the integrity and reliability of film/substrate systems. In this paper, a new and more refined theory for characterizing adhesion between elastic coatings and rigid substrates is developed based on a previously proposed pressurized blister method. A compressed air driven by liquid potential energy is applied to the suspended circular coating film through a circular hole in the substrate, forcing the suspended film to bulge, and then to debond slowly from the edge of the hole as the air pressure intensifies, and finally to form a blister with a certain circular delamination area. The problem from the initially flat coating to the stable blistering film under a prescribed pressure is simplified as a problem of axisymmetric deformation of peripherally fixed and transversely uniformly loaded circular membranes. The adhesion strength depends on the delamination area and is quantified in terms of the energy released on per unit delamination area, the so-called energy release rate. In the present work, the problem of axisymmetric deformation is reformulated with out-of-plane and in-plane equilibrium equations and geometric equations, simultaneously improved, and a new closed-form solution is presented, resulting in the new and more refined adhesion characterization theory. Full article
(This article belongs to the Special Issue Advances in Polymer Based Composite Coatings)
Show Figures

Graphical abstract

19 pages, 3852 KiB  
Article
A New Solution to Well-Known Hencky Problem: Improvement of In-Plane Equilibrium Equation
by Xue Li, Jun-Yi Sun, Zhi-Hang Zhao, Shou-Zhen Li and Xiao-Ting He
Mathematics 2020, 8(5), 653; https://doi.org/10.3390/math8050653 - 25 Apr 2020
Cited by 9 | Viewed by 3097
Abstract
In this paper, the well-known Hencky problem—that is, the problem of axisymmetric deformation of a peripherally fixed and initially flat circular membrane subjected to transverse uniformly distributed loads—is re-solved by simultaneously considering the improvement of the out-of-plane and in-plane equilibrium equations. In which, [...] Read more.
In this paper, the well-known Hencky problem—that is, the problem of axisymmetric deformation of a peripherally fixed and initially flat circular membrane subjected to transverse uniformly distributed loads—is re-solved by simultaneously considering the improvement of the out-of-plane and in-plane equilibrium equations. In which, the so-called small rotation angle assumption of the membrane is given up when establishing the out-of-plane equilibrium equation, and the in-plane equilibrium equation is, for the first time, improved by considering the effect of the deflection on the equilibrium between the radial and circumferential stress. Furthermore, the resulting nonlinear differential equation is successfully solved by using the power series method, and a new closed-form solution of the problem is finally presented. The conducted numerical example indicates that the closed-form solution presented here has a higher computational accuracy in comparison with the existing solutions of the well-known Hencky problem, especially when the deflection of the membrane is relatively large. Full article
(This article belongs to the Special Issue Applied Mathematics and Solid Mechanics)
Show Figures

Figure 1

Back to TopTop