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Abstract: The design, especially the numerical calibration, of a circular touch mode capacitive pressure
sensor is highly dependent on the accuracy of the analytical solution of the contact problem between
the circular conductive membrane and the rigid plate of the sensor. In this paper, the plate/membrane
contact problem is reformulated using a more accurate in-plane equilibrium equation, and a new and
more accurate analytical solution is presented. On this basis, the design and numerical calibration
theory for circular touch mode capacitive pressure sensors has been greatly improved and perfected.
The analytical relationships of pressure and capacitance are numerically calculated using the new
and previous analytical solutions, and the gradually increasing difference between the two numerical
calculation results with the gradual increase in the applied pressure is graphically shown. How to
use analytical solutions and analytical relationships to design and numerically calibrate a circular
touch mode capacitive pressure sensor with a specified pressure detecting range is illustrated in
detail. The effect of changing design parameters on capacitance—pressure analytical relationships is
comprehensively investigated; thus, the direction of changing design parameters to meet the required
or desired range of pressure or capacitance is clarified.

Keywords: pressure sensor; capacitive sensor; touch mode of operation; circular conductive
membrane; analytical solution; numerical calibration

1. Introduction

Membranes have a wide range of applications in engineering, technology and other
fields, such as space engineering [1], wastewater treatment [2], bionic structure of tympanic
membranes [3] and so on. Many membranes have the ability to exhibit large elastic
deflections under transverse loading [4-10], which provides the possibility of designing
and developing deflection-based devices [11-19]. For instance, the circular capacitive
pressure sensor addressed here is such a deflection-based device, which is a pressure sensor
using a circular conductive membrane as the sensitive element and a variable capacitor
as the sensing element. The circular conductive membrane, which works as the movable
electrode plate of the variable capacitor, elastically deflects toward the fixed electrode
plate of the variable capacitor under pressure, resulting in the capacitance change in the
variable capacitor. So, the testing principle of such a capacitive pressure sensor is to detect
the applied pressure by measuring the capacitance change under the applied pressure,
where the sensitive element (the circular conductive membrane) converts the pressure to
be detected to the membrane deflection, and the sensing element (the variable capacitor)
converts the membrane deflection to the capacitance. Such sensors usually operate in
non-touch (or normal) mode or touch mode, and can be embedded or packaged for use,
for example, embedded in industrial structures such as tires, or packaged as conventional
sensors for industrial field applications. Considering that the touch mode of operation
has many advantages over the non-touch mode of operation, this paper is devoted to
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the improvement of the design and numerical calibration theory for circular touch mode
capacitive pressure sensors.

The key element of a circular capacitive pressure sensor is a circular variable capacitor
using a circular conductive membrane and a thin plate as the movable and fixed electrode
plates, as shown in Figure 1, where a is the radius of the initially flat circular conductive
membrane; g is the initially parallel gap between the initially flat circular conductive
membrane and the insulator layer; t is the thickness of the insulator layer; the dash-
dotted line represents the geometric middle plane of the initially flat circular conductive
membrane; g is the pressure to be detected; grpp is the touch point pressure when the
circular conductive membrane under the pressure g just touches the insulator layer; b is
the radius of the circular contact area between the deflected conductive membrane and the
insulator layer; o denotes the origin of the introduced cylindrical coordinate system (7, ¢,
w); r is the radial coordinate; ¢ is the angle coordinate but is not represented due to the
characteristics of axial symmetry and w is the transverse coordinate that also denotes the
deflection in the circular conductive membrane under the pressure .

Before application of the pressure g, as shown in Figure 1a, the circular conductive
membrane is initially flat (undeflected), the circular conductive thin plate is fixed on the
substrate and coated with a thin layer of insulator and the initially parallel gap between
the initially flat circular conductive membrane and the insulator layer is filled with air. On
application of the pressure g, as shown in Figure 1b, the initially flat circular conductive
membrane elastically deflects towards the insulator layer and is thus known as a movable
electrode plate, while the circular conductive thin plate fixed on the substrate is known
as a fixed electrode plate. When the pressure g reaches the touch point pressure grpp, the
deflected conductive membrane just touches the insulator layer, as shown in Figure 1c.

\ 2a

Undeflected conductive membrane
(Movable electrode plate)

(a) U g

An opening for air Fixed electrode plate Insulator layer
ol / ——————————
3 1
Substrate
2a

‘F r 0 / T‘

(b)

\ Substrate \

\ An opening for air \ Deflected conductive membrane \ Insulator layer \ Fixed electrode plate
(Movable electrode plate)

| 2a |

’ r 0 r ‘

(©)

'w
|

Substrate

\ An opening for air \ Deflected conductive membrane\ Insulator layer \ Fixed electrode plate
(Movable electrode plate)

Figure 1. Cont.



Sensors 2024, 24, 907

3 of 38

‘ 2a
| 2b
/ 0 /
(d) 'wo g g
BN — ¢
Substrate \

An opening for air  \ Deflected conductive membrane \ Insulator layer \ Fixed electrode plate
(Movable electrode plate)

Figure 1. Sketch of a circular capacitive pressure sensor from non-touch mode of operation to
touch mode of operation: (a) initial state, (b) non-touch mode of operation, (c) critical state between
non-touch mode of operation and touch mode of operation, and (d) touch mode of operation.

Therefore, before the pressure g reaches the touch point pressure grpp, the total capaci-
tor between the movable and fixed electrode plates can be regarded as one consisting of
two capacitors in series. The first capacitor is the one between the conductive membrane
and the insulator layer, and the second capacitor is the one between the insulator layer and
the conductive thin plate. Obviously, the application of the pressure g only causes a change
in the capacitance of the first capacitor and does not affect the capacitance of the second
capacitor. So, the first capacitor is known as a variable capacitor and the second capacitor is
known as a fixed capacitor. The first capacitor changes from the parallel plate capacitor be-
fore application of the pressure g to the non-parallel plate capacitor after application of the
pressure g (from the initially parallel gap g to the non-parallel gap g-w(r), see Figure 1a,b),
and the second capacitor always remains as a parallel plate capacitor (whose parallel gap is
the thickness ¢ of the insulator layer). Of course, the total capacitor between the movable
and fixed electrode plates is also a variable capacitor.

After the pressure g exceeds the touch point pressure gpp, that is, when g > g1pp,
a circular contact area will be formed between the deflected conductive membrane and
the insulator layer, and the radius b of the circular contact area will gradually increase as
the pressure g further increases, as shown in Figure 1d. At this time, the total capacitor
between the movable and fixed electrode plates (which will be denoted by C in Section 3)
can be regarded as one consisting of two capacitors in parallel (which will be denoted
by C; and C; in Section 3). Cj refers to the parallel plate capacitor in the contact area of
0 < r < b (the parallel gap between its two electrode plates is equal to the thickness ¢ of the
insulator layer, see Figure 1d), and is a variable capacitor due to the gradually increasing b.
C; refers to the non-parallel plate capacitor in the non-contact area of b < r < 4, and can be
regarded as one consisting of two capacitors in series (which will be denoted by C3 and Cy
in Section 3). Cs refers to the parallel plate capacitor in the non-contact areaof b <r <a
(the parallel gap between its two electrode plates is equal to the thickness ¢ of the insulator
layer, see Figure 1d) and is a variable capacitor due to the gradually increasing b. C, refers
to the non-parallel plate capacitor in the non-contact area of b < r < g (the non-parallel gap
between its two electrode plates is equal to g—w(r), see Figure 1d) and is also a variable
capacitor due to the gradually increasing b as well as the non-parallel gap g—w(r) varying
with the applied pressure 4.

The circular capacitive pressure sensor in Figure 1 is said to operate in touch mode
when g4 > grpp, to operate in non-touch (or normal) mode when g < gtpp, to be in a
critical state when g = grpp, and to be in an initial state when 4 = 0, corresponding to
Figure 1a—d, respectively.

Capacitive pressure sensors are less sensitive to side stress and other environmental
effects, and have high sensitivity, robust structure and no turn-on temperature drift [20,21].
A capacitive pressure sensor is called a non-touch (or normal) mode capacitive pressure
sensor if it operates in non-touch (or normal) mode, and is called a touch mode capacitive
pressure sensor if it operates in touch mode. Obviously, since the substrate can directly bear
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the pressure g applied in the plate/membrane contact area of 0 < r < b (see Figure 1d), the
touch mode capacitive pressure sensor has larger overload protection, in comparison with
the non-touch mode capacitive pressure sensor. This implies that the pressure range when
a capacitive pressure sensor operates in touch mode is much wider than that when this
capacitive pressure sensor operates in non-touch (or normal) mode. Therefore, the touch
mode capacitive pressure sensors can show better performance, especially in industrial
applications. In the specific design and fabrication of a capacitive pressure sensor, it is
very important to accurately understand the stress, strain and displacement in the circular
conductive membrane under the pressure 4. Therefore, it is often necessary to analytically
solve the elastic behavior of the circular conductive membrane under the pressure 4.

On the other hand, it can be seen from Figure 1b,d that under the pressure g, the circular
conductive membrane is in a state of free deflection when the sensor operates in non-touch
(or normal) mode, and when the sensor operates in touch mode, it is in a state of limited
maximum deflection. The former is a large deflection problem of a circular membrane
under transverse uniform loading (the well-known Féppl-Hencky membrane problem),
while the latter is an axisymmetric contact problem between a deflected circular membrane
and a rigid plate (which is usually called the plate/membrane contact problem for short).
In comparison with the analytical solution to the plate/membrane contact problem, the
well-known Féppl-Hencky membrane problem is much easier to be analytically solved.

In fact, the Foppl-Hencky membrane problem has been very well solved analyti-
cally [22-25], but the analytical solution of the plate/membrane contact problem still needs
to be further improved. Xu and Liechti solved this plate/membrane contact problem based
on the assumptions of an equi-biaxial constant stress state and small rotation angle of the
membrane [26]. Wang et al. presented a closed-form solution of this plate/membrane
contact problem by giving up the assumption of equi-biaxial constant stress state for the
first time [27]. Lian et al. also presented a closed-form solution of this plate/membrane
contact problem [28], where the equi-biaxial constant stress state assumption was given up,
and the out-of-plane equilibrium equation used was established by giving up the small
rotation angle assumption of the membrane. Li et al. presented a more refined closed-form
solution of this plate/membrane contact problem [29], where the out-of-plane equilibrium
equation and geometric equations used were established by giving up the small rotation an-
gle assumption of the membrane, except for giving up the equi-biaxial constant stress state
assumption. However, the in-plane equilibrium equation used in [26-29] is the classic one,
which does not take into account the contribution of deflection to in-plane equilibrium at all
and is only applicable to plane-stretched or compressed membranes and not to large deflec-
tion membranes. In other words, the classic in-plane equilibrium equation used in [26-29]
is only applicable to the plane-stretched membrane in the plate/membrane contact area of
0 <r < band not to the large deflection membrane in the plate/membrane non-contact area
of b <r < a (see Figure 1d). So, in [26-29], the use of the classic in-plane equilibrium equa-
tion inevitably introduces calculation errors. In this paper, the plate/membrane contact
problem is reformulated using a more accurate in-plane equilibrium equation which fully
takes into account the contribution of deflection to the in-plane equilibrium [25], resulting
in a new and more accurate analytical solution of the problem. On this basis, the design
and numerical calibration theory for circular touch mode capacitive pressure sensors have
been greatly improved and perfected.

This paper is organized in the order of, first, the sensitive element, then the sensing
element, then the results and discussion, and finally the concluding remarks. In the
following section, depending on the magnitude of the applied pressure q (see Figure 1), the
elastic behavior of the sensitive element (the circular conductive membrane) is reduced to a
large deflection problem (Figure 1b) and a plate/membrane contact problem (Figure 1d),
respectively. The new and more accurate analytical solution of the plate/membrane contact
problem in Figure 1d is presented, where the stress solution is used for the strength design
of the sensitive element, and the deflection solution is used for determining the total
capacitance of the sensing element (the capacitor between the movable and fixed electrode
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plates, see Figure 1d). In Section 3, based on the newly presented deflection solution, the
analytical relationship between the total capacitance and the applied pressure g is derived
and discussed. In Section 4, an example is first given to illustrate how to use the analytical
solutions of the large deflection problem and plate/membrane contact problem as well
as the pressure—capacitance analytical relationship to design and numerically calibrate a
circular touch mode capacitive pressure sensor with a specified pressure detecting range.
Then, the analytical relationships of the capacitance as input and the applied pressure as
output are calculated using the newly and previously presented analytical solutions, and are
compared to show the rapidly increasing difference between the two calculated results with
the increase in the applied pressure. Finally, the effect of changing design parameters on
input capacitance—output pressure relationships is comprehensively investigated, including
changing the radius g, thickness h, Poisson’s ratio v and Young’s modulus of elasticity E
of the circular conductive membrane, as well as the thickness t of the insulator layer and
the initially parallel gap g between the initially flat circular conductive membrane and the
insulator layer. Concluding remarks are given in Section 5.

The contribution of this study mainly lies in the following two aspects. One is purely
a mechanical contribution: using a more accurate in-plane equilibrium equation, a new and
more accurate analytical solution of the plate/membrane contact problem is presented for
the first time. The other aspect is the technical contribution: based on the newly presented
analytical solution, the design and numerical calibration theory for circular touch mode
capacitive pressure sensors has been greatly improved and perfected on the basis of the
existing theory.

2. More Refined Analytical Solution to the Sensitive Element of the Sensor

The circular conductive membrane, as the sensitive element of the circular capacitive
pressure sensor, produces axisymmetric deformation with a large deflection in response
to the applied pressure g, as shown in Figure 1. Before the pressure g reaches the touch
point pressure grpp (see Figure 1c), the initially flat circular conductive membrane (see
Figure 1a) is in a state of free deflection, as shown in Figure 1b, which is usually called the
large deflection problem of circular membranes under uniformly distributed transverse
loads. This large deflection problem of circular membranes was dealt with originally by
Foppl [30] and Hencky [31], and is usually called the Foppl-Hencky membrane problem.
After the pressure g reaches the touch point pressure g7pp, the deflected circular conductive
membrane is in a state of limited maximum deflection, as shown in Figure 1d, which is
known as an axisymmetric contact problem between a deflected circular membrane and a
rigid plate, or the plate/membrane contact problem for short.

The plate/membrane contact problem has many potential applications such as the
membrane/substrate delamination [32-34], adhesion [35—40] and especially capacitive
pressure sensors [41-51]. However, the plate/membrane contact problem involves both the
plane-stretched membrane in the plate/membrane contact area of 0 < r < b and the large
deflection membrane in the plate/membrane non-contact area of b < r < a (see Figure 1d).
But the existing analytical solutions of the plate/membrane contact problem [26-29] are
all obtained using the classic in-plane equilibrium equation that is only applicable to the
plane-stretched membrane problems, which inevitably introduces calculation errors. In
this paper, this plate/membrane contact problem is further analytically solved by giving
up the equi-biaxial constant stress state assumption and using more accurate out-of-plane
and in-plane equilibrium equations and geometric equations, and a new and more refined
closed-form solution is presented, which is detailed as follows.

Suppose that the circular conductive membrane in Figure 1 has Young’s modulus E,
Poisson’s ratio v, thickness / and radius a. After the pressure g reaches the touch point
pressure gtpp, the circular conductive membrane comes into axisymmetric contact with
the insulator layer, resulting in a contact radius b. The maximum deflection w of the
circular membrane is always equal to the initially parallel gap g, that is, w(r) = ¢ when
r < b (see Figure 1d). Throughout the following formulation, it is assumed that the circular



Sensors 2024, 24, 907

6 of 38

membrane always has a constant thickness /1 during its deflection. In this plate/membrane
axisymmetric contact problem, the whole deflected circular membrane may be divided
into two parts: one is a circular plate/membrane contact area with a contact radius b
and the other part is an annular plate/membrane non-contact area with an inner radius
b and an outer radius 4. In the plate/membrane contact area, the circular membrane
only undergoes the in-plane axisymmetric stretching (only a plane problem), while in
the plate/membrane non-contact area, the annular membrane undergoes the out-of-plane
axisymmetric deflection. The stress, strain and displacement of the membrane should be
continuous at the connecting ring between the annular region and the circular region, i.e., at
r = b (see Figure 1d). Such a continuity condition will be used as conditions for determining
special solutions.

A free body of radius r (b < r < a) is assumed to be taken from the circular conductive
membrane in contact with the insulator layer in Figure 1d, as shown in Figure 2, to study
its static problem of equilibrium, where o is the radial stress at r and 6 is the meridional
rotation angle of the deflected membrane at r.

Insulator layer - o

. a -

Figure 2. A free body with radius r (b < r < a) taken from the circular conductive membrane in
contact with the insulator layer in Figure 1d.

In the vertical direction perpendicular to the initially flat circular membrane (repre-
sented by the dash—dotted line in Figure 2), the vertical forces are 7t7%q (the total force of the
uniformly distributed transverse loads g within radius r), 7tb?q (the total reaction force from
the rigid plate) and 27ro,hsinf (the total vertical force produced by the membrane force
o+h), where b < r < a. Therefore, the out-of-plane equilibrium equation can be derived from
the condition that the resultant force should be equal to zero in the vertical direction, i.e.,

nrtq — tb*q — 2mroyhsin = 0, (1)

where

sin()z1/\/1+1/tan29:1/\/1+1/(—dw/dr)2. )

Substituting Equation (2) into Equation (1) yields

(” —b*)g\/141/(dw/dr)* = 2ro;h. 3)

The classic in-plane equilibrium equation does not take into account the contribution
of deflection to in-plane equilibrium at all [22,26-29,31]. So, Li et al. modified the classic
in-plane equilibrium equation, but presented only an in-plane equilibrium equation partly
taking into account the contribution of deflection to in-plane equilibrium [4]. The in-plane
equilibrium equation that fully takes into account the contribution of deflection to in-plane
equilibrium was established by Sun et al. [25], and is given by

) o\ 1+ (— 4)

where 0; denotes the circumferential stress.
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Obviously, if the membrane is in the plane-stretched or compressed state, then the
membrane is flat, the first derivative of the deflection w(r) is thus equal to zero, i.e.,
dw/dr = 0. Therefore, after substituting dw/dr = 0 into Equation (4), we can obtain
the classic in-plane equilibrium equation in [22,26-29,31], that is, d(roy) /dr — ¢ = 0. So,
the classic in-plane equilibrium equation used in [22,26-29,31] is only applicable to the
membrane in the plate/membrane contact area of 0 < r < b, and not to the large deflection
membrane in the plate/membrane non-contact area of b < r < a (see Figure 2).

In order to take into account the effect of deflection on geometric relationship, the geo-
metric equations (the relationships between strain and displacement) have been modified
from the classic one [22,31] into the following form [24]

2 2 1/2
o=10+9 +(59] - ®)
and y
e = P (6)

where ¢;, ¢; and u denote the radial and circumferential strains and radial displacement,
respectively. Moreover, the relationships between stress and strain are still assumed to be
linearly elastic and given by the generalized Hooke’s law

E
oy = m(er + vey) (7)
and
o = L(e + vey) (8)
t — 1 _ 1/2 t r).
Substituting Equations (5) and (6) into Equations (7) and (8) yields
E du 2 dw 2 12 u
o=+ 5 +(T) ] —1+v5) ©)
and 2
E u du 2  dw 2
o=l i+ g) + ()] —vh (10)
By means of Equations (4), (9) and (10), one has
U 1
S = E(O} —voy). (11)

After substituting the u in Equation (11) into Equation (9), the consistency equation
may be written as

1 2 d 1 2 (dw)?
(EUrJrl—%Ut) {1+dr[Er(Utvar)}} (;:) =0. (12)

Therefore, the radial and circumferential stresses o, and o; and the deflection w(r)
within b <7 < a can be determined by simultaneously solving Equations (3), (4) and (12).
The conditions for determining the special solutions of o;, 0; and w(r) are the boundary
conditions at r = g, as well as the continuity conditions at r = b, which can be determined
only by solving the plane problem of axisymmetric stretching of the circular membrane in
the plate/membrane contact area with radius 0 < r < b, which is detailed as follows.
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Obviously, in the plate/membrane contact area with radius 0 < r < b, the membrane
is flat, then the first derivative of the deflection w(r) is always zero, i.e., dw/dr = 0 for
0 <r < b. Therefore, it can be obtained from Equations (5) and (6) that

du
s 1
er ar (13)
and y
ey = ? (14)
Substituting Equations (13) and (14) into Equations (7) and (8) yields
E  du u
07_71—1/2(5 +1/?) (15)
and £ d
u u
0 = 1_1/2(?‘*'1/5) (16)
Substituting Equations (15) and (16) into Equation (4), one has
d®u du u

Since Equation (17) satisfies the form of the Euler equation, the general solution of
Equation (17) can be written as

K
u(r) = Kyr+ 72, (18)
where K; and K5 are two unknown constants. It is not difficult to understand that since the
radial displacement u is finite at r = 0, the unknown constant K; has to be equal to zero. So,

if the radial displacement u(r) at r = b is denoted by u(b), then Ky = u(b)/b. Therefore, the
radial displacement may be written as

u(r) = @r. (19)

Substituting Equation (19) into Equations (13)—(16) yields

0 (20)
b
and £ )
Ur:atzl_v—ub . (21)

Equations (20) and (21) suggest that the strain and stress are uniformly distributed in
the plate/membrane contact area with radius 0 < r < b.
Therefore, the boundary conditions at r = a are

w=0atr=a (22)
and ,
er = E(U}—VO‘,) =0atr=a. (23)

The continuity conditions at » = b are

w=gatr=1», (24)

) =——~atr=» (25)
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and E u(b)
u

(a,)A—(a,)B—l_VT atr = b, (26)
where ()4 and () represent the values of various variables on two sides of the intercon-
necting circle of r = b and the subscript A refers to the side of plate/membrane non-contact
area of b < r < a while the subscript B refers to the side of plate/membrane contact area of
0<r<hb.

Let us introduce the following dimensionless variables

I O S/ YO SV S
Q_Ehlw_alsl’_E/St_E/x_a/a_al (27)
and transform Equations (3), (4), (12) and (22)-(26) into
2, dW 2 2
(4252 — QP(x* — o)) () — QP —a?) =0, (28)
2
ds, dw 2 dwd*w dw 2"
5 ds; ds, > dw.?
(Sr+1—VSt) —<1+St+xE—VSr_VxE) _(a) —0, (30)
W=0atx =1, (31)
Si—vS,=0atx =1, (32)
W:%atxzzx, (33)
u(b
(St —vSy) 4 = (St —vS))g = %atx:a (34)
and . )
u
(Sr)A:(S,)le_VTatx:oc. (35)

Since the stress and deflection are all finite in the plate/membrane non-contact annular
areaof b <r <a(ie,a <x <1),S,and W can be expanded as the power series of x — f3,

S =Y bi(x—B), (36)

i=0
S =Y ci(x—p) 37)

i=0

and -
W =Y di(x—p) (38)

i=0

where = (1+«)/2and a = b/a. After substituting Equations (36)—(38) into Equations (28)—(30),
all the coefficients b;, c; and d; (i=1, 2, 3, ...) can be expressed as the polynomials of by,
co and S (i.e., (1 + «)/2), which are listed in Appendix A. The coefficients by, ¢y and § are
called undetermined constants, where since f = (1 + «)/2 and « = b/a, the undetermined
constant 8 actually represents the unknown plate/membrane contact radius b that needs
to be determined. The remaining coefficient dj is the other undetermined constant that
depends on by, ¢y and B. All the undetermined constants by, ¢y, f and dy can be determined
using the boundary conditions and continuity conditions as follows.
From Equation (38), Equations (31) and (33) give

di(1-p)' =0 (39)

ngk:

0
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and .
Y dilw—p) =1L, (40)
i=0
Eliminating dg by Equation (40) minus Equation (39) yields
Y dil(a—p) —(1-p)] =5, (41)
i=1
From Equations (36) and (37), Equations (32), (34) and (35) give
n ; n ;
Y ci(1=p) —v) bi(1-p)' =0, (42)
i=0 i=0
n . n . u b
Y-cila— B ~v) bl - py =) )
i=0 i=0
and »)
ad i 1 u
;)bz(“—ﬁ) =171 (44)
Eliminating the u(b)/b from Equations (43) and (44), one has
< i i
Y cila—p) =) bia—p) =0. (45)
i=0 i=0

So, for a given problem where 4, 1, E, v, g, and g are known in advance, the undetermined
constants ¢y, ¢;, and B can be determined by simultaneously solving Equations (41), (42)
and (45). Furthermore, with the known ¢, c; and B, the undetermined constant dy can be
determined by Equations (39) or (40). Thus, the plate/membrane contact problem dealt
with here is solved analytically.

In addition, after considering Equation (27) and = (1 + «)/2 and « = b/a, from
Equations (36)—(38), the dimensional stress and deflection may finally be written as

ad r a+b
ar—El;)bl(;— > ), (46)
ad r a+b!
0y = El;O Ci(a — 24 ) (47)
and )
ad r a+b
= d;(— — . 4
w=a)di(z =) (48)
The maximum stress in membrane should be at 7 = b, then
0 b—a i
O = EY_ bi( ") (49)
i=0 a
or )
o) b*a 1

i=0

3. Pressure—Capacitance Relationship Derivation of the Sensing Element of the Sensor

The circular capacitive pressure sensor in Figure 1 uses the variable capacitor between
the movable and fixed electrode plates as a sensing element, and when the pressure g
exceeds the touch point pressure g7pp, a circular plate/membrane contact area with radius
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b is formed between the deflected circular conductive membrane and the insulator layer, as
shown in Figure 1d, where the contact radius b will increase with the further increase in the
pressure q. The circular capacitive pressure sensor in Figure 1d is said to operate in touch
mode and is referred to as the circular touch mode capacitive pressure sensor for short.
In order to facilitate the calculation of the total capacitance of the circular touch
mode capacitive pressure sensor in Figure 1d, the total capacitor (denoted by C) between
the movable and fixed electrode plates can be regarded as one consisting of two capac-
itors in parallel (denoted by C; and C;). C; refers to the parallel plate capacitor in the
plate/membrane contact area of 0 < r < b (the parallel gap between its two electrode
plates is equal to the thickness ¢ of the insulator layer, see Figure 1d), and is a variable
capacitor due to the gradually increasing b. C, refers to the non-parallel plate capacitor in
the plate/membrane non-contact area of b < r < g, and can be regarded as one consisting
of two capacitors in series (denoted by C3 and Cy4). C3 refers to the parallel plate capacitor
in the plate/membrane non-contact area of b < r < a (the parallel gap between its two
electrode plates is equal to the thickness t of the insulator layer, see Figure 1d) and is a
variable capacitor due to the gradually increasing b with the gradually increasing pressure
g. C4 refers to the non-parallel plate capacitor in the plate/membrane non-contact area of
b <r < a (the non-parallel gap between its two electrode plates is g—w(r), see Figure 1d)
and is also a variable capacitor due to the gradually increasing b as well as the non-parallel
gap g—w(r) varying with the pressure 4. In addition, it can be seen from Figure 1d that the
two electrode plates of the capacitors C; and Cj3 are separated by the insulator layer and
the two electrode plates of the capacitors Cy4 are separated by the air. Let us denote the
vacuum permittivity by ¢y (about 8.854 x 1072 pF/mm), the relative permittivity of the
insulator layer by &1 and the relative permittivity of the air by &, (about 1.00053). The
series and parallel relationships of the capacitors Cq, Cy, C3 and Cy4 are shown in Figure 3.

]
:C3‘
C o=

—,

L
| =
.

Figure 3. Sketch of series and parallel relationships of the capacitors in the circular capacitive pressure
sensor of touch mode of operation in Figure 1d.

As can be seen from Figure 1d, the parallel plate capacitor C; locates in the plate/
membrane contact area of 0 < r < b, so its capacitance may be written as

€0 b?

G P (51)
and the parallel plate capacitor C3 locates in the plate/membrane non-contact area of

b <r < a, so its capacitance may be written as

C3 _ 8057‘17-[(?2 B b2> ) (52)

It can also be seen from Figure 1d that the non-parallel plate capacitor Cy also locates

in the plate/membrane non-contact area of b < r < g, so its capacitance expression can be
derived as follows. A micro area element with radial increment Ar and circumferential incre-
ment Ap, ABCD, is taken from the deflected membrane in the plate/membrane non-contact
region of b < r < a in Figure 1d, as shown in Figure 4. Therefore, the non-parallel plate
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capacitor Cy4 can be regarded as one consisting of infinitely many tiny capacitors in parallel,
where each tiny capacitor occupies a micro area element ABCD and is approximated by a
tiny parallel plate capacitor.

Figure 4. A micro area element ABCD taken from the deflected membrane in the plate/membrane
non-contact region of b < r < a in Figure 1d.

The area of the micro area element ABCD is

2 2
AS apcp = (r+ Azr) Ap 1 ?9” = rArAg + %(Ar)qu). (53)

In Equation (53), the high order infinitesimal term (Ar)ZA(p can be ignored, and the
area ASapcp can thus be approximated by rArA¢. The air gap of the tiny parallel plate
capacitor corresponding to the micro area element ABCD can be approximated by g—w(r)
(see Figures 1d and 4). Therefore, after considering Equation (48), the capacitance of this
tiny parallel plate capacitor may be written as

AC = sosrzgrérﬁ(q;) = €0€2 = r P iArAgo. (54)
§— ﬂ,zodi(g — 2%~ 2)
1=

Then, the capacitance of infinitely many tiny parallel plate capacitors in parallel, that
is, the capacitance of the non-parallel plate capacitor Cy4, can be obtained by the integration
of Equation (54) over the plate /membrane non-contact region of b <r <aand 0 < ¢ <27

a 2 7 a 7
Cy = /b / €0€s2 = id(pdr = 27I£0£r2/b = idr. (55)
° §—aX dilf 4~ 1) §—aX dilf 4~ 1)
i= i=

Then, from Equations (52) and (55), the capacitance of the non-parallel plate capacitor
C; (formed by C3 and Cy in series) may be written as

L0EnT\A=0) ﬂt(”_b)z 27eges [y — = _dr
CiC g X di(i—%—3)
= GG (56)
2 C+C goe1 (a—b)> a r ’
3T M 4 2mepen |, -dr

Therefore, from Equations (51) and (56), the capacitance of the total capacitor C (formed
by C; and C; in parallel) between the movable and fixed electrode plates may finally be
written as

2
eoert(a—Db a
e 5 ) 27[808721‘0 L _dr

g d(r_b_1
€O€r17-[b2 8 aigod](ﬂ 2a 2)

C=CG+C= ;
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It can be seen from Equation (57) that the total capacitances C can be determined as long
as the deflection expression w(r) is available, i.e., as long as the power series coefficients d;
(1=0,1,2,3,...) in Equation (48) are known. However, Equation (57) gives only the analyt-
ical relationship of the pressure g as an independent variable (or input variable) and the
capacitance C as a dependent variable (or output variable), that is, the pressure—capacitance
analytical relationship, where the pressure g is included in the expressions of the power
series coefficients d; (=10, 1, 2, 3, . ..) (see Appendix A). But the sensor mechanism of such
capacitive pressure sensors is to detect the applied pressure g by measuring the capacitance
C under the applied pressure 4. So, it is necessary to give the analytical relationship of
the capacitance C as an independent variable (or input variable) and the pressure g as a
dependent variable (or output variable), i.e., the capacitance—pressure analytical relation-
ship. Obviously, due to the strong nonlinearity of Equation (57), the capacitance—pressure
analytical relationship cannot be derived directly using Equation (57). Therefore, the
capacitance—pressure analytical relationship has to resort to numerical calculations, where
the analytical solution obtained in Section 2 as well as Equation (57) are first used to cal-
culate the total capacitances C and their corresponding pressure g for a specific problem,
and then, based on the obtained large number of capacitances and pressure numerical
calculation values, the capacitance—pressure analytical relationship can be obtained using
least-squares data fitting, which will be shown in Section 4.1.

4. Results and Discussion

In this section, an example is first given to illustrate how to use the analytical solu-
tions of the large deflection problem and plate/membrane contact problem as well as the
pressure—capacitance analytical relationship to design and numerically calibrate a specific
circular touch mode capacitive pressure sensor, which is shown in Section 4.1. Then, the
effect of changing design parameters on the capacitance—pressure analytical relationships
is comprehensively investigated, including all design parameters (the initially parallel gap
g, membrane thickness /1, Young’s modulus of elasticity E, Poisson’s ratio v, insulator layer
thickness t, circular membrane radius a and the number of parallel capacitors 1), which is
shown in Sections 4.2—4.8

4.1. Design and Numerical Calibration Based on Analytical Solutions

How to use the analytical solution of the plate/membrane contact problem (derived
in Section 2) and the analytical solution of the large deflection problem (derived in [25]),
as well as the pressure—capacitance analytical relationship (i.e., Equation (57) derived in
Section 3) to design and numerically calibrate a circular touch mode capacitive pressure
sensor with a specified pressure detecting range is detailed as follows.

The initially parallel gap between the initially flat circular conductive membrane and
the insulator layer (see Figure 1a), g, needs to be first determined. Obviously, the touch point
pressure gpp should be equal to the lower limit of the pressure detecting range required
or desired by the design of the circular touch mode capacitive pressure sensor. Therefore,
the initially parallel gap g should be equal to the maximum deflection wy, of the circular
conductive membrane under the required or desired lower limit pressure, i.e., under the
touch point pressure grpp. To this end, the analytical solution for the large deflection
problem of a circular membrane under transverse loading, which is presented in [25], is
used to determine the maximum deflection wy, of the circular conductive membrane under
the touch point pressure gtpp, where the undetermined constants by, cy and dy should be
first determined, and then the maximum deflection wy, and maximum stress ¢, should
be calculated. If the calculated maximum stress o, is relatively small (about 0.2 times the
yield strength oy of the used membrane materials), then the calculated maximum deflection
wm can be used as the initially parallel gap g; otherwise, it is necessary to change the design
parameters of the circular conductive membrane (such as radius 4, thickness #, Poisson’s
ratio v and Young’s modulus of elasticity E) and repeat the above calculation until the
requirement for oy, < 0.20y is met.
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After the initially parallel gap g is determined, the maximum stress o, of the circular
conductive membrane under the upper limit pressure of the required or desired detecting
range needs to be calculated using the analytical solution of the plate/membrane contact
problem derived in Section 2. If the calculated maximum stress o, does not exceed 0.7 times
the yield strength Ty, then the next step can perform the numerical calibration, otherwise,
it is necessary to change the design parameters of the circular conductive membrane (such
as radius g, thickness /i, Poisson’s ratio v and Young’s modulus of elasticity E) and repeat
the above calculation until the requirement for o, < 0.70y is met.

The numerical calibration can be performed using the analytical solution of the
plate/membrane contact problem derived in Section 2 and the pressure—capacitance an-
alytical relationship (i.e., Equation (57) derived in Section 3). The numerical calculations
can start from the required or desired lower limit pressure (i.e., the touch point pressure
gtpp) plus a pressure increment as small as possible. Equations (41), (42) and (45) are first
used to determine the undetermined constants ¢y, ¢1, and B (B = (1 + a)/2 and « = b/a),
and with the known ¢, ¢1, and S, the other undetermined constant dy can be determined
by Equations (39) or (40). Further, with the known cy, c1, § and dj, all the power series
coefficient c; and d; can be determined. The maximum stress oy, can be determined by
Equation (49) or by Equation (50) (whichever is the maximum), and the total capacitances
C under this pressure can be determined by Equation (57). Then, a pressure increment was
added to continue the numerical calculation until the repeatedly increased pressure is equal
to the upper limit pressure of the required or desired detecting range. And finally, all the
numerical calculation values of the total capacitances C and their corresponding pressures
q are collected, and used to establish the capacitance-pressure analytical relationship using
least-squares data fitting.

Suppose that the required or desired pressure detecting range of a circular touch mode
capacitive pressure sensor to be designed is g = 2.718-45 KPa, and a circular conductive
membrane with radius a = 100 mm, thickness # = 1 mm, Young’s modulus of elasticity
E =7.84 MPa, Poisson’s ratio v = 0.47, and yield strength ¢y = 2.4 MPa is assumed to be used.
The insulator layer is assumed to take 0.1 mm thickness of polystyrene, then t = 0.1 mm
and g = 2.7. In addition, the vacuum permittivity is gy = 8.854 x 10~2 pF/mm, and the air
relative permittivity is &5 = 1.00053. The design and numerical calibration of this circular
touch mode capacitive pressure sensor are as follows.

The analytical solution for the large deflection problem of a circular membrane under
transverse loading, which is presented in [25], is first used to calculate the maximum
deflection wy, of the circular conductive membrane under q = 2.718 KPa (the lower limit
of the required or desired pressure detecting range, i.e., gtpp = 2.718KPa). The calculated
maximum deflection wy, is about 19.998 mm and the calculated maximum stress oy, is
about 0.332 MPa, where the undetermined constants are by = 0.04603, ¢y = 0.04113 and
dp = 0.15332. Therefore, the initially parallel gap g can take 20 mm, and the calculated
maximum stress o (0.332 MPa) is less than 0.20y (0.48 MPa).

The analytical solution for the plate/membrane contact problem derived in Section 2
is used to calculate the maximum stress o, of the circular conductive membrane under
g= 45 KPa (the upper limit pressure of the required or desired detecting range). The
calculated maximum stress o, is about 1.679 MPa and is less than 0.7cy (1.68 MPa).
Therefore, the numerical calibration can be further performed using the analytical solution
for the plate/membrane contact problem derived in Section 2 and the pressure—capacitance
analytical relationship (i.e., Equation (57) derived in Section 3).

The numerical calculations of the total capacitances C under different pressures g
start from the pressure g = 2.718 KPa, and then the pressure g is gradually increased,
as shown in Table 1, where the undetermined constants ¢y, c; and B (8 = (1 + «)/2 and
« = b/a) are determined by simultaneously solving Equations (41), (42) and (45), the
undetermined constant dy is determined by Equations (39) or (40) with the known cy, c; and
B, the maximum stress op, is determined using Equation (49) (the radial maximum stress
obtained by Equation (49) is greater than the circumferential maximum stress obtained
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by Equation (50)), the total capacitances C of the total capacitor C between the movable
and fixed electrode plates are determined using Equation (57), the capacitance C; of the
parallel plate capacitor C; in the plate/membrane contact area of 0 < r < b is determined
using Equation (51) and the capacitance C; of the non-parallel plate capacitor C; in the
plate/membrane non-contact area of b < r < a is determined using Equation (56).

Table 1. The calculation results for a = 100 mm, 7 = 1 mm, { = 0.1 mm, E = 7.84 MPa, v = 0.47,
g =20 mm.

q/KPa b/mm bo co do om/MPa C1/pF C,/pF ClpF
2.718 0.000 - - - 0.332 0.000 140.669 140.669
2.720 0.820 0.04591 0.04591 0.15227 0.338 0.505 148.023 148.528
2.800 5.035 0.04658 0.04122 0.14939 0.344 19.038 152.636 171.674
3.000 9.723 0.04820 0.04237 0.14748 0.360 71.006 169.488 240.494
4.000 21.580 0.05517 0.04810 0.14555 0.426 349.756 251.497 601.253
5.000 28.450 0.06093 0.05306 0.14529 0.484 607.885 319.743 927.629
6.000 33.339 0.06596 0.05742 0.14528 0.535 834.737 379.005 1213.742
7.000 37.095 0.07049 0.06136 0.14533 0.582 1033.427 431.535 1464.962
8.000 40.115 0.07465 0.06496 0.14539 0.626 1208.567 478.694 1687.260
9.000 42.621 0.07852 0.06830 0.14545 0.667 1364.256 521.413 1885.668
10.000 44.748 0.08215 0.07142 0.14552 0.707 1503.819 560.370 2064.189
11.000 46.586 0.08560 0.07437 0.14557 0.745 1629.896 596.086 2225.982
12.500 48.932 0.09047 0.07852 0.14564 0.799 1798.190 644.450 2442.639
15.000 52.060 0.09796 0.08486 0.14574 0.884 2035.489 713.531 2749.021
20.000 56.533 0.11131 0.09600 0.14586 1.040 2400.217 818.943 3219.159
25.000 59.654 0.12317 0.10579 0.14594 1.182 2672.563 892.028 3564.591
30.000 62.002 0.13403 0.114660 0.14598 1.315 2887.090 940.485 3827.574
35.000 63.856 0.14416 0.12287 0.14601 1.441 3062.374 968.835 4031.210
40.000 65.372 0.15372 0.13056 0.14602 1.562 3209.466 980.887 4190.353
45.000 66.642 0.16283 0.13787 0.14603 1.679 3335.431 978.746 4314.177
45.060 66.6562 0.16294 0.13795 0.14603 1.680 3336.835 979.311 4316.146

In Table 1, the capacitance C; of the parallel plate capacitor C; in the plate/membrane
contact area of 0 < r < b and the capacitance C; of the non-parallel plate capacitor C; in
the plate/membrane non-contact area of b < r < a are calculated specifically for discussion
of the following issue. The total capacitance C of a touch mode capacitive pressure sensor
is often assumed to be mainly equal to the capacitance Cy, that is, the capacitance C, can
be neglected [15,20,21,44,47,48]. However, it can be seen from Figure 5 that adopting this
assumption will cause the designed touch mode capacitive pressure sensor to lose too
much accuracy. So, it is suggested that full attention should be paid to this, especially for
detecting a lower pressure range, for example, the low pressure range 3-10 MPa in Figure 5.

In Figure 5, the dashed line, C’, represents the total capacitances calculated using
the previously derived analytical solution in [11,29]. It can be seen from Figure 5 that the
dashed line C’ gradually deviates from the solid line C (the total capacitances calculated
using the newly derived analytical solution in this paper), and in particular, the degree
of deviation becomes larger and larger as the pressure increases. This suggests that in
comparison with the previously derived analytical solution in [11,29], the newly derived
analytical solution in this paper has indeed been greatly improved and can provide a better
support for designing circular touch mode capacitive pressure sensors.

As mentioned above, the sensor mechanism of such capacitive pressure sensors is to
detect the applied pressure q by measuring the capacitance C under the applied pressure
g. Therefore, it is necessary to give the analytical relationship of the capacitance C as an
independent variable or an input variable and the pressure g as a dependent variable
or an output variable, i.e., the capacitance—pressure analytical relationship. Based on
the numerical calculation values of capacitance and pressure in Table 1, the capacitance—
pressure analytical relationships are obtained using least-squares data fitting, as shown in
Figure 6 and Table 2, where “Function 1” refers to the fitting result using a sixth-power
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function, and “Function 2” and “Function 3” refer to the fitting results using a straight line
(see Table 2).

5000
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C/pF

2000 ¢

1000

Figure 5. The variation in the total capacitances C with the applied pressure 4 when a = 100 mm,
h=1mm,t=01mm, E=7.84 MPa, v =0.47 and g = 20 mm.
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Figure 6. The variation in the applied pressure q with the total capacitances C when a = 100 mm,
h=1mm,t=01mm, E=7.84 MPa, v = 0.47 and g = 20 mm.

Table 2. The fitted analytical expressions of Functions 1, 2 and 3 in Figure 6.

Functions C/pF q/KPa Analytical Expressions :‘;i:)arg;;:;?;g
q="5.727382 x 10720C® — 6.342403 x 10~16C5 + 2.743908
Function1  140.669~4316.146 2.718~45.06 x 10~12C* — 5.418370 x 10~2C3 0.0028814
+5.581685 x 1070 C2 + 3.712548 x 10~4C + 2.592449
Function2  140.669~2225.982 2.718~11 g =3.766098 x 1073C + 1.928101 0.1255083
Function3  140.669~4316.146  2.718~45.06 7 =9.115659 x 1073C — 3.585634 25.5704600

It can be seen from Figure 6 and Table 2 that the circular touch mode capacitive pressure
sensor to be designed, whose pressure detecting range is g = 2.718-45 KPa, can be achieved
using “Function 1” or “Function 3” in Figure 6 and Table 2. However, as shown in Table 2,
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“Function 1” is a sixth-power function but with high fitting accuracy, while “Function 3” is a
straight line function but with unacceptable fitting accuracy. Therefore, although “Function
3” can be used to develop a linear sensor and “Function 1” can only be used to develop
a nonlinear sensor, the fitting accuracy of “Function 3” is completely unacceptable, so
“Function 1” has to be used to develop a nonlinear sensor. Of course, “Function 2” is a
straight line function with acceptable fitting accuracy, but it can only be used to develop a
linear sensor with a pressure detecting range of 2.718~11 KPa (see Table 2).

Therefore, if it is necessary to develop a linear sensor with a pressure detecting range
of 2.718~45 KPa, the only way is to continuously change the design parameters, such as the
initially parallel gap g, membrane thickness /1, Young’s modulus of elasticity E, Poisson’s
ratio v, insulator layer thickness ¢ and the circular membrane radius a4, until a linear
relationship (with a pressure detecting range of 2.718~45 KPa and with an acceptable fitting
accuracy) is fitted. In fact, the analytical relationship of capacitance C as an independent
variable or an input variable and pressure g as a dependent variable or an output variable
(hereinafter referred to as the C—g relationship) to be fitted usually has requirements of
both the output pressure range and the input capacitance range. The requirement of the
output pressure range is to meet the required or desired pressure detecting range, and the
requirement of the input capacitance range is to meet the requirement of sensitivity when
the sensor is designed.

Therefore, it is very important for sensor design to know the effect of changing the
design parameters on the C—q relationships. In other words, one needs to know which
design parameters (g, /1, E, v, t or a) can be changed (increased or decreased) to increase
the output pressure range to meet the required or desired pressure detecting range, and
which design parameters can be changed to increase the input capacitance range to meet
the sensitivity requirement. So, in this sense, it is very important to correctly understand
how changing design parameters will affect the C—g relationships (which will be addressed
in Sections 4.2—-4.8); after all, the fabrication of sensors can only be considered after all the
design parameters (g, , E, v, t and a) have been determined.

4.2. The Effect of Changing Initially Parallel Gap g on C—q Relationships

In this section, the initially parallel gap g takes 10 mm, 20 mm and 30 mm, respectively,
while the other design parameters remain unchanged, that is, the circular membrane radius
a =100 mm, membrane thickness /1 = 1 mm, insulator layer thickness f = 0.1 mm, Young’s
modulus of elasticity E = 7.84 MPa and Poisson’s ratio v = 0.47. In addition, the vacuum
permittivity is gy = 8.854 x 1073 pF/mm, the relative permittivity of the insulator layer
(polystyrene) is 1 = 2.7 and the air relative permittivity is &, = 1.00053. The calculation
results of the total capacitances C under different pressures g are listed in Table 3 when
g =10 mm, in Table 1 when g = 20 mm and in Table 4 when ¢ = 30 mm. The effect of
changing the initially parallel gap g on the C—g relationships is shown in Figure 7, where
the solid lines Fg - 10mm, Fg =20mm and Fg - 3omm refer to the calculation results when
g =10 mm, 20 mm and 30 mm, which are obtained using the newly derived analytical
solution in this paper, and the dotted lines F'g — 1omm, F'g = 20mm and F'g — 30mm refer to
the calculation results when g = 10 mm, 20 mm and 30 mm, which are obtained using the
previously derived analytical solutions in [11,29].

From Figure 7, it can be seen that decreasing the initially parallel gap g can increase
both the output pressure range and the input capacitance range, but it can also increase the
nonlinear strength of the C—q relationships. In addition, the obvious differences between
the solid and dotted lines once again suggest that the newly derived analytical solution
in this paper has been greatly improved, and can provide a better support for designing
circular touch mode capacitive pressure sensors, in comparison with the previously derived
analytical solutions in [11,29].
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Table 3. The calculation results for 4 = 100 mm, & =1 mm, ¢t = 0.1 mm, E =7.84 MPa, v =0.47, g = 10 mm.

q/KPa b/mm bo co do om/MPa C/pF
0.3512 0.000 0.01164 0.01058 0.07784 0.076 313.512
0.3514 0.895 0.01179 0.01064 0.07639 0.080 324.196
0.3530 2.093 0.01181 0.01063 0.07591 0.081 340.354
0.4000 11.378 0.01252 0.01113 0.07383 0.087 464.029
0.5000 20.431 0.01384 0.01227 0.07316 0.098 808.403
1.0000 39.389 0.01847 0.01648 0.07311 0.138 2099.409
2.5000 56.215 0.02655 0.02385 0.07349 0.211 3810.873
5.0000 65.407 0.03497 0.03139 0.07371 0.293 4655.640
7.5000 69.776 0.04121 0.03689 0.07381 0.356 4917.764
10.0000 72.503 0.04642 0.04143 0.07387 0.412 5050.278
20.0000 78.000 0.06256 0.05528 0.07396 0.593 5327.927
40.0000 82.233 0.08647 0.07544 0.07399 0.880 5599.954
60.0000 84.221 0.10623 0.09201 0.07399 1.128 5751.129
80.0000 85.440 0.12406 0.10705 0.07397 1.356 5851.602
100.0000 86.285 0.14074 0.12126 0.07395 1.572 5924.701
110.0000 86.621 0.14877 0.12816 0.07394 1.677 5954.636
110.2000 86.627 0.14893 0.12830 0.07394 1.680 5955.198

Table 4. The calculation results for a = 100 mm, 7 =1 mm, f = 0.1 mm, E = 7.84 MPa, v = 0.47 and

g =30 mm.

q/KPa b/mm bg co do om/MPa C/pF

8.702 0.000 0.09818 0.08636 0.23015 0.796 116.259
8.710 1.202 0.09905 0.08662 0.22651 0.805 130.806
9.100 6.357 0.10156 0.08779 0.22163 0.830 147.293
9.500 9.180 0.10393 0.08938 0.21996 0.854 190.312
10.000 11.898 0.10674 0.09142 0.21878 0.884 246.070
12.500 20.863 0.11919 0.10109 0.21672 1.020 526.564
15.000 26.686 0.12996 0.10973 0.21622 1.167 791.823
17.500 31.033 0.13965 0.11755 0.21606 1.256 1037.767
20.000 34.479 0.14856 0.12473 0.21602 1.363 1266.945
22.500 37.311 0.15689 0.13142 0.21602 1.464 1483.482
25.000 39.701 0.16476 0.13770 0.21603 1.561 1692.108
26.000 40.558 0.16779 0.14011 0.21604 1.599 1774.515
27.000 41.368 0.17077 0.14248 0.21605 1.636 1856.934
27.500 41.756 0.17224 0.14365 0.21365 1.650 1898.278
28.000 42.134 0.17370 0.14480 0.21606 1.673 1939.797
28.100 42.208 0.17399 0.14503 0.21606 1.677 1948.130
28.150 42.245 0.17413 0.14514 0.21606 1.679 1952.296
28.170 42.260 0.17419 0.14519 0.21606 1.680 1953.975

200,
?
4 ¢
150 g:IOmmrl

q/KPa

Figure 7. The effect of changing the initially parallel gap g on the C—q relationships when a = 100 mm,
h=1mm,t=01mm, E=7.84 MPa, v = 0.47 and g takes 10 mm, 20 mm and 30 mm, respectively.
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4.3. The Effect of Changing Circular Membrane Thickness h on C—q Relationships

In this section, the circular membrane thickness / takes 1 mm, 1.5 mm and 2 mm,
respectively, while the other design parameters remain unchanged, that is, the circular
membrane radius 2 = 100 mm, the initially parallel gap ¢ = 20 mm, insulator layer thickness
t = 0.1 mm, Young’s modulus of elasticity E = 7.84 MPa and Poisson’s ratio v = 0.47. In
addition, the vacuum permittivity is still gy = 8.854 x 1073 pF/mm, the relative permit-
tivity of the insulator layer (polystyrene) is &1 = 2.7, and the air relative permittivity is
& = 1.00053. The calculation results of the total capacitances C under different pressures
q are listed in Table 1 when & = 1 mm, in Table 5 when / = 1.5 mm and in Table 6 when
h = 2 mm. The effect of changing the circular membrane thickness / on the C—q relationships
is shown in Figure 8.

Table 5. The calculation results for 2 = 100 mm, g = 20 mm, { = 0.1 mm, E = 7.84 MPa, v = 0.47 and
h=15mm.

q/KPa b/mm by co dy om/MPa C/pF
4.08 0.820 0.04591 0.04591 0.15227 0.338 148.528
5.00 14.759 0.05071 0.04436 0.14631 0.383 362.457
6.00 21.580 0.05517 0.04810 0.14555 0.426 601.253
8.00 30.243 0.06267 0.05457 0.14527 0.501 1027.261
10.00 35.939 0.06903 0.06009 0.14531 0.566 1384.715
12.50 41.000 0.07597 0.06610 0.14542 0.640 1755.832
15.00 44.748 0.08215 0.07142 0.14552 0.707 2064.189
20.00 50.067 0.09305 0.08071 0.14568 0.828 2551.568
25.00 53.761 0.10262 0.08877 0.14579 0.938 2923.610
30.00 56.533 0.11131 0.09600 0.14586 1.040 3219.159
35.00 58.719 0.11935 0.10265 0.14591 1.136 3460.166
40.00 60.505 0.12689 0.10883 0.14595 1.227 3659.999
45.00 62.002 0.13403 0.11466 0.14598 1.315 3827.574
50.00 63.282 0.14085 0.12019 0.14600 1.400 3968.910
55.00 64.393 0.14740 0.12548 0.14601 1.482 4088.528
60.00 65.372 0.15372 0.13056 0.14602 1.562 4189.975
67.59 66.656 0.16294 0.13795 0.14603 1.680 4316.146

Table 6. The calculation results for 2 = 100 mm, g = 20 mm, { = 0.1 mm, E = 7.84 MPa, v = 0.47 and
h=2mm.

q/KPa b/mm bo co dy om/MPa C/pF
5.44 0.820 0.04591 0.04591 0.15227 0.338 148.528
6.00 9.723 0.04820 0.04237 0.14748 0.360 240.494
8.00 21.580 0.05517 0.04810 0.14555 0.426 601.253
10.00 28.450 0.06093 0.05306 0.14529 0.484 927.629
12.50 34.364 0.06713 0.05844 0.14529 0.547 1279.574
15.00 38.681 0.07261 0.06319 0.14536 0.604 1579.385
20.00 44.748 0.08215 0.07142 0.14552 0.707 2064.189
25.00 48.932 0.09047 0.07852 0.14564 0.799 2442.639
30.00 52.060 0.09796 0.08486 0.14574 0.884 2749.021
40.00 56.533 0.11131 0.09600 0.14586 1.040 3219.159
50.00 59.654 0.12317 0.10579 0.14594 1.182 3564.591
60.00 62.002 0.13403 0.11466 0.14598 1.315 3827.574
70.00 63.856 0.14416 0.12287 0.14601 1.441 4031.210
80.00 65.372 0.15372 0.13056 0.14602 1.562 4190.353
90.00 66.642 0.16283 0.13787 0.14603 1.679 4314.177

90.12 66.656 0.16294 0.13795 0.14603 1.680 4316.146
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Figure 8. The effect of changing the circular membrane thickness 1 on the C—q relationships when
a =100 mm, g =20 mm, t = 0.1 mm, E = 7.84 MPa, v = 0.47 and & takes 1 mm, 1.5 mm and 2 mm,
respectively.

From Figure 8, it can be seen that decreasing the circular membrane thickness / can
decrease the output pressure range, and does not change the input capacitance range, so it
can decrease the nonlinear strength of the C—q relationships.

4.4. The Effect of Changing Young’'s Modulus of Elasticity E on C—q Relationships

In this section, Young’s modulus of elasticity E takes 7.84 MPa, 5 MPa and 2.5 MPa,
respectively, while the other design parameters remain unchanged, that is, the circular
membrane radius a = 100 mm, the initially parallel gap ¢ = 20 mm, circular membrane
thickness i = 1 mm, insulator layer thickness t = 0.1 mm and Poisson’s ratio v = 0.47. In
addition, the vacuum permittivity is still gy = 8.854 x 1073 pF/mm, the relative permit-
tivity of the insulator layer (polystyrene) is ;1 = 2.7, and the air relative permittivity is
& = 1.00053. The calculation results of the total capacitances C under different pressures q
are listed in Table 1 when E = 7.84 MPa, in Table 7 when E = 5 MPa and in Table 8 when
E =2.5 MPa. The effect of changing Young’s modulus of elasticity E on the C—g relationships
is shown in Figure 9.

Table 7. The calculation results for 2 = 100 mm, g = 20 mm, 7 = 1 mm, t = 0.1 mm, v = 0.47 and
E =5 MPa.

q/KPa b/mm bg co dy om/MPa C/pF

1.735 0.897 0.04591 0.04097 0.15221 0.215 155.165
1.800 5.720 0.04676 0.04134 0.14904 0.221 178.632
2.000 12.010 0.04925 0.04318 0.14686 0.236 290.047
2.500 20.893 0.05467 0.04767 0.14559 0.269 573.373
3.000 26.684 0.05932 0.05166 0.14532 0.298 835.366
4.000 34.451 0.06724 0.05853 0.14529 0.349 1285.266
5.000 39.671 0.07400 0.06440 0.14538 0.395 1653.415
6.000 43.528 0.08003 0.06960 0.14548 0.436 1960.710
8.000 48.994 0.09061 0.07864 0.14564 0.510 2448.583
10.000 52.785 0.09989 0.08648 0.14576 0.578 2822.750
12.500 56.236 0.11030 0.09517 0.14585 0.655 3186.919
15.000 58.828 0.11978 0.10300 0.14592 0.728 3472.338

20.000 62.547 0.13685 0.11695 0.14599 0.861 3888.116
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Table 7. Cont.

q/KPa b/mm bg co do om/MPa C/pF

25.000 65.148 0.15222 0.12936 0.14602 0.984 4167.118
30.000 67.105 0.16644 0.14075 0.14603 1.100 4356.798
40.000 69.913 0.19252 0.16148 0.14601 1.317 4580.665
50.000 71.873 0.21648 0.18040 0.14598 1.520 4705.456
55.000 72.657 0.22788 0.18938 0.14596 1.617 4751.286
58.000 73.081 0.23457 0.19465 0.14594 1.675 4775.727
58.200 73.108 0.23501 0.19500 0.14594 1.680 4777.261

Table 8. The calculation results for 2 = 100 mm, g = 20 mm, 7 = 1 mm, t = 0.1 mm, v = 0.47 and

E =2.5 MPa.

q/KPa b/mm bg co dy om/MPa C/pF

0.868 1.744 0.04598 0.04095 0.15113 0.108 158.298
0.900 5.720 0.04676 0.04134 0.14904 0.110 178.632
1.000 12.010 0.04925 0.04318 0.14686 0.118 290.047
2.000 34.451 0.06724 0.05853 0.14529 0.175 1285.266
3.000 43.528 0.08003 0.06960 0.14548 0.436 1960.710
4.000 48.994 0.09061 0.07864 0.14564 0.255 2448.583
6.000 55.628 0.10831 0.09351 0.14584 0.320 3121.327
8.000 59.701 0.12337 0.10595 0.14594 0.378 3569.879
10.000 62.547 0.13685 0.11695 0.14599 0.431 3888.116
15.000 67.105 0.16644 0.14075 0.14603 0.550 4356.798
20.000 69.913 0.19252 0.16148 0.14601 0.659 4580.665
25.000 71.873 0.21648 0.18040 0.14598 0.760 4705.456
30.000 73.347 0.23897 0.19812 0.14593 0.856 4790.991
40.000 75.457 0.28089 0.23116 0.14583 1.039 4915.433
50.000 76.932 0.31991 0.26202 0.14573 1.211 5009.968
60.000 78.045 0.35681 0.29135 0.14562 1.375 5087.531
70.000 78.930 0.39202 0.31948 0.14553 1.533 5153.463
79.000 79.591 0.42249 0.34395 0.14544 1.671 5205.312
79.500 79.625 0.42415 0.34529 0.14544 1.680 5208.021
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Figure 9. The effect of changing Young’s modulus of elasticity E on the C—g relationships when
a=100 mm, g =20 mm, h =1 mm, t =0.1 mm, v = 0.47 and E takes 7.84 MPa, 5 MPa and 2.5 MPa,
respectively.
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From Figure 9, it can be seen that decreasing Young’s modulus of elasticity E can
increase both the output pressure range and the input capacitance range, but it can also
increase the nonlinear strength of the C—q relationships.

4.5. The Effect of Changing Poisson’s Ratio v on C—q Relationships

In this section, Poisson’s ratio v takes 0.47, 0.38 and 0.3, respectively, while the other
design parameters remain unchanged, that is, the circular membrane radius 4 = 100 mm,
the initially parallel gap g = 20 mm, circular membrane thickness &1 = 1 mm, insulator
layer thickness t = 0.1 mm and Young’s modulus of elasticity E = 7.84 MPa. In addition,
the vacuum permittivity is still gy = 8.854 x 1073 pF/mm, the relative permittivity of the
insulator layer (polystyrene) is €1 = 2.7 and the air relative permittivity is e = 1.00053.
The calculation results of the total capacitances C under different pressures g are listed in
Table 1 when v = 0.47, in Table 9 when v = 0.38 and in Table 10 when v = 0.3. The effect of
changing Poisson’s ratio v on the C—g relationships is shown in Figure 10.

Table 9. The calculation results for a = 100 mm, g =20 mm, i =1 mm, ¢ = 0.1 mm, E = 7.84 MPa and
v =0.38.

q/KPa b/mm by Co dy om/MPa C/pF
2.392 0.379 0.04067 0.03586 0.15323 0.292 174.459
2.400 1.657 0.04073 0.03579 0.15215 0.293 180.222
2.500 6.282 0.04154 0.03614 0.14935 0.301 186.514
2.600 8.915 0.04234 0.03668 0.14831 0.308 224.696
3.000 15.811 0.04530 0.03893 0.14669 0.336 389.251
4.000 25.829 0.05153 0.04407 0.14584 0.397 783.394
5.000 32.123 0.05675 0.04848 0.14573 0.450 1126.314
6.000 36.673 0.06134 0.05237 0.14575 0.497 1421.968
7.000 40.190 0.06549 0.05588 0.14581 0.541 1679.219
8.000 43.027 0.06932 0.05910 0.14587 0.582 1905.663
9.000 45.385 0.07290 0.06209 0.14593 0.621 2107.173
10.000 47.390 0.07626 0.06489 0.14598 0.658 2288.223
12.500 51.338 0.08399 0.07126 0.14609 0.745 2672.042
15.000 54.293 0.09098 0.07696 0.14616 0.825 2983.817
20.000 58.520 0.10348 0.08701 0.14626 0.973 3466.839
25.000 61.470 0.11465 0.09586 0.14632 1.108 3827.439
30.000 63.689 0.12491 0.10390 0.14635 1.235 4104.314
35.000 65.441 0.13451 0.11136 0.14636 1.356 4315.009
40.000 66.872 0.14360 0.11838 0.14637 1.472 4468.178
45.000 68.071 0.15229 0.12506 0.14637 1.583 4572.718
49.500 68.999 0.15981 0.13082 0.14636 1.680 4634.432

Table 10. The calculation results for a = 100 mm, g = 20 mm, i = 1 mm, t = 0.1 mm, E = 7.84 MPa and
v=0.3.

q/KPa b/mm bg co dy om/MPa C/pF
2.173 0.792 0.03714 0.03235 0.15333 0.262 169.126
2.200 3.304 0.03735 0.03231 0.15146 0.264 172.501
2.400 9.935 0.03893 0.03323 0.14846 0.279 246.287
2.600 13.912 0.04041 0.03431 0.14748 0.293 337.604
3.000 19.641 0.04311 0.03642 0.14666 0.319 520.458
4.000 28.820 0.04886 0.04111 0.14616 0.376 938.829
5.000 34.754 0.05372 0.04513 0.14611 0.425 1294.335
6.000 39.075 0.05801 0.04869 0.14615 0.470 1597.681
7.000 42.427 0.06191 0.05190 0.14620 0.512 1860.274
8.000 45.135 0.06552 0.05485 0.14626 0.551 2090.900
9.000 47.389 0.06889 0.05759 0.14631 0.588 2296.061
10.000 49.306 0.07207 0.06016 0.14635 0.623 2480.588

12.500 53.084 0.07939 0.06601 0.14644 0.706 2873.643
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Table 10. Cont.

q/KPa b/mm bg co do om/MPa C/pF

15.000 55.914 0.08603 0.07125 0.14651 0.783 3196.845
20.000 59.962 0.09796 0.08050 0.14659 0.925 3713.862
25.000 62.787 0.10865 0.08868 0.14663 1.056 4130.838
30.000 64.912 0.11850 0.09612 0.14665 1.178 4499.176
35.000 66.588 0.12774 0.10304 0.14666 1.295 4791.569
40.000 67.956 0.13651 0.10957 0.14666 1.407 5036.617
45.000 69.103 0.14490 0.11579 0.14666 1.515 5223.193
50.000 70.082 0.15297 0.12176 0.14665 1.621 5346.050
52.800 70.572 0.15738 0.12500 0.14664 1.680 5379.050
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Figure 10. The effect of changing Poisson’s ratio v on the C—g relationships when a = 100 mm,
¢=20mm, h=1mm, t =0.1 mm, E =7.84 MPa and v takes 0.47, 0.38 and 0.3, respectively.

From Figure 10, it can be seen that decreasing Poisson’s ratio v can increase both
the output pressure range and the input capacitance range, and it has little effect on the
nonlinear strength of the C—g relationships.

4.6. The Effect of Changing Insulator Layer Thickness t on C—q Relationships

In this section, the insulator layer thickness ¢ takes 0.1 mm, 0.15 mm and 0.3 mm,
respectively, while the other design parameters remain unchanged, that is, the circular
membrane radius 2 = 100 mm, the initially parallel gap ¢ = 20 mm, circular membrane
thickness # = 1 mm, Young’s modulus of elasticity E = 7.84 MPa and Poisson’s ratio
v = 0.47. In addition, the vacuum permittivity is still ¢y = 8.854 x 10~2 pF/mm, the relative
permittivity of the insulator layer (polystyrene) is &1 = 2.7 and the air relative permittivity
is &p = 1.00053. The calculation results of the total capacitances C under different pressures
q are listed in Table 1 when ¢ = 0.1 mm, in Table 11 when ¢ = 0.15 mm and in Table 12 when
t = 0.3 mm. The effect of changing the insulator layer thickness ¢t on the C—g relationships is
shown in Figure 11.

Table 11. The calculation results for 4 = 100 mm, g = 20 mm, i1 = 1 mm, E =7.84 MPa, v = 0.47 and
t =0.15 mm.

q/KPa b/mm by Co dy om/MPa C/pF
2.72 0.820 0.04591 0.04591 0.15227 0.338 146.585
2.80 5.035 0.04658 0.04122 0.14939 0.344 162.993
3.00 9.723 0.04820 0.04237 0.14748 0.360 213.413
4.00 21.580 0.05517 0.04810 0.14555 0.426 477.139

5.00 28.450 0.06093 0.05306 0.14529 0.484 713.705
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Table 11. Cont.

q/KPa b/mm bg co do om/MPa C/pF
6.00 33.339 0.06596 0.05742 0.14528 0.535 920.432
7.00 37.095 0.07049 0.06136 0.14533 0.582 1101.607
8.00 40.115 0.07465 0.06496 0.14539 0.626 1261.671
10.00 44.748 0.08215 0.07142 0.14552 0.707 1532.428
12.50 48.932 0.09047 0.07852 0.14564 0.799 1803.162
15.00 52.060 0.09796 0.08486 0.14574 0.884 2021.169
20.00 56.533 0.11131 0.09600 0.14586 1.040 2352.714
25.00 59.654 0.12317 0.10579 0.14594 1.182 2592.964
30.00 62.002 0.13403 0.11466 0.14598 1.315 2773.046
35.00 63.856 0.14416 0.12287 0.14601 1.441 2910.032
40.00 65.372 0.15372 0.13056 0.14602 1.562 3014.646
45.00 66.642 0.16283 0.13787 0.14603 1.679 3094.516
45.06 66.656 0.16294 0.13795 0.14603 1.680 3095.387

Table 12. The calculation results for 4 = 100 mm, g = 20 mm, 7 = 1 mm, E =7.84 MPa, v = 0.47 and

t =0.3 mm.
q/KPa b/mm bo co do om/MPa C/pF
2.72 0.820 0.04591 0.04591 0.15227 0.338 143.284
2.80 5.035 0.04658 0.04122 0.14939 0.344 151.505
3.00 9.723 0.04820 0.04237 0.14748 0.360 182.955
4.00 21.580 0.05517 0.04810 0.14555 0.426 345.800
5.00 28.450 0.06093 0.05306 0.14529 0.484 488.127
6.00 33.339 0.06596 0.05742 0.14528 0.535 610.728
7.00 37.095 0.07049 0.06136 0.14533 0.582 716.981
8.00 40.115 0.07465 0.06496 0.14539 0.626 809.911
10.00 44.748 0.08215 0.07142 0.14552 0.707 964.911
12.50 48.932 0.09047 0.07852 0.14564 0.799 1116.742
15.00 52.060 0.09796 0.08486 0.14574 0.884 1236.315
20.00 56.533 0.11131 0.09600 0.14586 1.040 1412.682
25.00 59.654 0.12317 0.10579 0.14594 1.182 1535.543
30.00 62.002 0.13403 0.11466 0.14598 1.315 1624.285
35.00 63.856 0.14416 0.12287 0.14601 1.441 1689.360
40.00 65.372 0.15372 0.13056 0.14602 1.562 1737.354
45.00 66.642 0.16283 0.13787 0.14603 1.679 1772.129
45.06 66.656 0.16294 0.13795 0.14603 1.680 1772.506
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Figure 11. The effect of changing insulator layer thickness t on the C—4 relationships when a = 100 mm,
g=20mm, h =1mm, E =7.84 MPa, v = 0.47 and f takes 0.1 mm, 0.15 mm and 0.3 mm, respectively.
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From Figure 11, it can be seen that decreasing the insulator layer thickness ¢ can
increase the input capacitance range and does not change the output pressure range, so it
can decrease the nonlinear strength of the C—q relationships.

4.7. The Effect of Changing Circular Membrane Radius a on C—q Relationships

In this section, the circular membrane radius a takes 100 mm, 90 mm and 80 mm,
respectively, while the other design parameters remain unchanged, that is, the initially
parallel gap g = 20 mm, circular membrane thickness & = 1 mm, insulator layer thickness
t = 0.1 mm, Young’s modulus of elasticity E = 7.84 MPa and Poisson’s ratio v = 0.47. In addi-
tion, the vacuum permittivity is still g = 8.854 x 1073 pF/mm, the relative permittivity of
the insulator layer (polystyrene) is &1 = 2.7 and the air relative permittivity is &, = 1.00053.
The calculation results of the total capacitances C under different pressures g are listed in
Table 1 when a = 100 mm, in Table 13 when a2 = 90 mm and in Table 14 when a = 80 mm.
The effect of changing the circular membrane radius a on the C—q relationships is shown in
Figure 12.

Table 13. The calculation results for g = 20 mm, 1 =1 mm, ¢t = 0.1 mm, E = 7.84 MPa, v = 0.47 and
a =90 mm.

q/KPa b/mm by co dy om/MPa C/pF

19.46 0.556 0.12009 0.10423 0.25143 1.010 55.810
20.00 2.959 0.12217 0.10497 0.24678 1.030 66.442
22.00 6.667 0.12873 0.10930 0.24272 1.100 107.551
24.00 9.077 0.13467 0.11367 0.24125 1.166 148.419
26.00 10.982 0.14022 0.11788 0.24048 1.229 189.159
28.00 12.583 0.14545 0.12192 0.24002 1.290 229.332
30.00 13.969 0.15043 0.12579 0.23973 1.348 268.756
32.00 15.194 0.15519 0.12952 0.23954 1.405 307.370
34.00 16.289 0.15977 0.13311 0.23940 1.460 345.185
36.00 17.280 0.16419 0.13658 0.23931 1.514 382.246
38.00 18.184 0.16847 0.13994 0.23925 1.566 418.632
40.00 19.013 0.17263 0.14319 0.23920 1.618 454.440
42.49 19.957 0.17764 0.14712 0.23917 1.680 498.372

Table 14. The calculation results for g = 20 mm, 7 =1 mm, ¢ = 0.1 mm, E = 7.84 MPa, v = 0.47 and
a =80 mm.

q/KPa b/mm by Co dy om/MPa C/pF
6.48 0.570 0.07034 0.06226 0.18993 0.543 90.433
7.00 6.811 0.07326 0.06385 0.18428 0.571 138.438
8.00 12.066 0.07829 0.06770 0.18222 0.622 236.738
9.00 15.696 0.08281 0.07137 0.18150 0.669 334.167
10.00 18.556 0.08698 0.07481 0.18117 0.712 427.901
12.50 23.862 0.09628 0.08259 0.18090 0.813 642.502
15.00 27.662 0.10447 0.08946 0.18088 0.904 830.354
17.50 30.588 0.11191 0.09568 0.18093 0.988 995.958
20.00 32.944 0.11879 0.10140 0.18098 1.068 1143.713
25.00 36.556 0.13132 0.11175 0.18109 1.216 1399.378
30.00 39.245 0.14269 0.12102 0.18117 1.354 1618.568
35.00 41.354 0.15321 0.12951 0.18122 1.484 1816.202
40.00 43.070 0.16308 0.13742 0.18127 1.608 2005.539
42.50 43.818 0.16782 0.14120 0.18128 1.668 2092.215
43.02 43.965 0.16879 0.14197 0.18128 1.680 2112.884

From Figure 12, it can be seen that increasing the circular membrane radius a can
increase the input capacitance range but can increase the output pressure range only a little
bit, so it can decrease the nonlinear strength of the C—g relationships.
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Figure 12. The effect of changing the circular membrane radius a on C—q relationships when
g=20mm, h =1 mm, t =0.1 mm, E =7.84 MPa, v = 0.47 and a takes 100 mm, 90 mm and 80 mm,
respectively.

4.8. The Effect of Changing Number of Parallel Capacitors n on C—q Relationships

The parallel use of many small sensors is a relatively common technical scheme, so here
we consider the case of 10, 20 and 30 small capacitors in parallel, where each small capacitor
is composed of a circular membrane with radius a2 = 10 mm and thickness # = 0.1 mm, and
the initially parallel gap ¢ = 2 mm. The other design parameters remain unchanged, that is,
the insulator layer thickness is still t = 0.1 mm, Young’s modulus of elasticity is E = 7.84 MPa,
Poisson’s ratio is v = 0.47, the vacuum permittivity is gy = 8.854 x 10~2 pF/mm, the relative
permittivity of the insulator layer (polystyrene) is €1 = 2.7 and the air relative permittivity
is & = 1.00053. The calculation results of the total capacitances C under different pressures
q are listed in Table 15. The effect of changing the number of parallel capacitors # on the
C—q relationships is shown in Figure 13.

Table 15. The calculation results for g =2 mm, 1 = 0.1 mm, t = 0.1 mm, E = 7.84 MPa, v = 0.47 and
a =10 mm.

C/pF
q/KPa b/mm bo co dy om/MPa
n=10 n=20 n=30
2.72 0.082 0.04591 0.04591 0.15227 0.338 120.276 240.553 360.829
2.80 0.503 0.04658 0.04122 0.14939 0.344 129.318 258.635 387.953
3.00 0.972 0.04820 0.04237 0.14748 0.360 144.877 289.755 434.632
4.00 2.158 0.05517 0.04810 0.14555 0.426 220.875 441.749 662.624
5.00 2.845 0.06093 0.05306 0.14529 0.484 280.673 561.346 842.019
6.00 3.334 0.06596 0.05742 0.14528 0.535 328.477 656.955 985.432
7.00 3.709 0.07049 0.06136 0.14533 0.582 367.438 734.877 1102.315
8.00 4.012 0.07465 0.06496 0.14539 0.626 399.742 799.484 1199.226
10.00 4.475 0.08215 0.07142 0.14552 0.707 450.097 900.194 1350.292
12.50 4.893 0.09047 0.07852 0.14564 0.799 495.312 990.624 1485.936
15.00 5.206 0.09796 0.08486 0.14574 0.884 528.158 1056.316 1584.474
20.00 5.653 0.11131 0.09600 0.14586 1.040 572.318 1144.636 1716.954
25.00 5.965 0.12317 0.10579 0.14594 1.182 600.135 1200.271 1800.406
30.00 6.200 0.13403 0.11466 0.14598 1.315 618.720 1237.440 1856.160
35.00 6.386 0.14416 0.12287 0.14601 1.441 631.493 1262.985 1894.478
40.00 6.537 0.15372 0.13056 0.14602 1.562 640.340 1280.680 1921.020
45.00 6.664 0.16283 0.13787 0.14603 1.679 646.431 1292.861 1939.292
45.06 6.666 0.16294 0.13795 0.14603 1.680 646.495 1292.991 1939.486
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Figure 13. The effect of changing the number of parallel capacitors n on C—q relationships when
a=10mm, g =2mm, # = 0.1 mm, t = 0.1 mm, E =7.84 MPa, v = 0.47 and n takes 10, 20 and 30,
respectively.

From Figure 13, it can be seen that increasing the number of parallel capacitors # can
increase the input capacitance range and does not change the output pressure range, so it
can decrease the nonlinear strength of the C—q relationships.

5. Concluding Remarks

In this paper, the plate/membrane axisymmetric contact problem in circular touch
mode capacitive pressure sensors is reformulated using a more accurate in-plane equilib-
rium equation, and a new and more accurate analytical solution is presented. On this basis,
the design and numerical calibration theory for circular touch mode capacitive pressure
sensors has been greatly improved and perfected. Specifically, the difference between the
pressure—capacitance analytical relationships calculated by the new and previous analytical
solutions increases gradually with the increase in the applied pressure, showing that in
comparison with the previous analytical solution, the new analytical solution is indeed
significantly improved, making the design and numerical calibration theory more accurate.
In addition, for the first time, this paper illustrates in detail how to use analytical solutions
and analytical relationships to design and numerically calibrate a circular touch mode
capacitive pressure sensor with a specified pressure detecting range. The effect of changing
design parameters on capacitance—pressure analytical relationships is also comprehen-
sively investigated for the first time, which makes clear the direction of changing design
parameters to meet the required or desired range of pressure or capacitance. The changing
direction of design parameters can be summarized as follows.

The decrease in the initially parallel gap g or Young’s modulus of elasticity E can
increase both the output pressure range and the input capacitance range, but it can also
increases the nonlinear strength of the C—q relationships.

The decrease in Poisson’s ratio v can increase both the output pressure range and
the input capacitance range, and it has little effect on the nonlinear strength of the C-
g relationships.

The decrease in the insulator layer thickness t or the increase in the number of parallel
capacitors n can increase the input capacitance range, and does not change the output
pressure range, so it can decrease the nonlinear strength of the C—q relationships.

The decrease in the circular membrane thickness /1 can decrease the output pressure
range and does not change the input capacitance range, so it can decrease the nonlinear
strength of the C—q relationships.
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The increase in the circular membrane radius a4 can increase the input capacitance
range but can only increase the output pressure range a little bit, so it can decrease the
nonlinear strength of the C—g relationships.

This study makes a very positive contribution to both membrane mechanics and its
technical applications: a new and more accurate analytical solution of the plate/membrane
contact problem is presented for the first time, and on this basis, the design and numerical
calibration theory for circular touch mode capacitive pressure sensors has been greatly
improved and perfected. The work presented here can provide a better support for the
design and numerical calibration of circular touch mode capacitive pressure sensors.
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+64ﬁ2b02d13C3d4 + 4:8ﬁ2b02d13C4d3 + 96ﬁ2b02d12C4d22 + 32ﬁ2b02d13c — 312ﬁ3b02b2d1d6
—52083bg2bydods — 62483by*badsdy — 3208%by?bad ds — 512B3by?badadysdy — 28083by*bydydy
—48083bg2b1dads — 60083d33by?b1d3ds)
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b8 = - Sﬁngiyzdlz78ﬁ2b021d12+Q277274/321702) (_432Q27]2C0d1d32d4 - 576Q2772C0d22d3d4

—240Q21’] C1d1d22d5 - 192Q2112C2d1d22d4 + 1536‘32b02(30d1d2d42 + 1728ﬁ2b02C0d1d32d4
+2304ﬁ2b02(10d22d3d4 + 960,32502C1d1d22d5 + 768,321702C2d1d22d4 - 40Q2ﬁ1’]2b1d1d8
*7OQ2ﬁﬂ2b1d2d7 - 90Q2‘Bﬂ2b1d3d6 - 100Q2‘Bi72b1d4d5 - 30Q2ﬁ172b2d3d5

+6Q2ﬁ1’]2b3d1d6 + 12Q2,31’]2b3d3d4 + 20Q2/31’]2b4d1d5 — 384/33b0b1b4d2d3

+25682bgQ?nd1dg — 19283bgbybsd1ds — 128B3boby bed1dy — 25683bgbabsdydy
—3843bgbybadads — 19283bobobadyds — 128B3bobabsdidy — 12883bobsbyd1ds

—640B%bgb1 byd1ds — 1024 %bgb1badady — 5128%bob1bad1dy — 7688%bob1badads

—3842bgb1 byd1ds — 2568%boby bsdydy — 384 B2bobabsdids — 25682bgbybyd dy
—216Q%n%cod 2dads — 28Q% 1% c1d>dy — 24Q%n%cad;3dg — 120Q% 1% cody2dods
—54Q%1%c3d12ds? + 44882by Q% yydady + 5762bo Q1 dsds + 64082bg Q% ydyds

+20QBy*bedy* — 40Q*n*bodydg — 70Q% bodady — 14Q%2bydydy — 24Q% by dade
—30Q2?]2b1d3d5 + 12Q27]2b2d3d4 + 20Q2ﬂ2b3d1d5 + 32Q2772b3d2d4 + 28Q2772b4d1d4
—72Q%1%codadg + 288B2bo*codads — 160Q%1%cods>ds + 6408%by>coda>ds + 224830y Q%d1d;
+38483bQ?dodg + 48083boQ?dads — 22483bob12d1d7 — 38483boby2drds — 48083boby2d3ds
—288B3bgb1 bads? — 12883bob1 bsdy? — 3283boby bydy? — 16083boby>d1ds — 3848bo2byd1dg
—640Bby?b1dads — 768Bby*b1dsdy — 3208by?byd1ds — 512Bbo>badady — 2568by?bad1dy
—384ﬁb02b3d2d3 — 192/3b02b4d1d3 — 128ﬁbozb5d1d2 + 112‘32b02d13C1d7 + 96,521702{11362!16
+8082by2d13cads + 64B2byd13cady — 368B3b02bsd1dy — 552B3by2bsdads — 312B3bg2bed 1 d3
—23283bg%byd1dy — 25683boby%drdy — 128B3bobabydo? — 3283bobybed1® — 9683bobs?d1ds
—328%bybsbsd, % — 840B%by2bydydy — 144082by2bydads — 160Bboby2dds — 256Bbgb1%dady
—128Bbobyb3da? — 32Bbgby bsd12 — 96Bboby?d1ds — 32Bbobybydy® + 384B2b>d1%c1dy?
+2168%by2d12cads? + 968%by2d1 >csdy? + 1922byQ%d1dg + 32082by Q%dads + 3848%byQ%d3d,
+1288bgQ%1d,? — 384B%boby2ddg — 640B2boby>dads — 76882boby2d3dy — 57682bgb1byds>
—25682bgb1 bydy? — 64B%bobibed1? — 2568%boby2d1dy — 384B%boba2dads — 256B2bgbabsds?
—64B%bobybsd1? — 128B%bobsd dy — 648%bobsbydy? + 40BbgQ%d1ds + 648byQ?dod,
—96Q%n%cadr3ds — 8Qn%cedr3dy + 8648%by%d1%codsds + 960B%by2d1%codyds
+576‘32b02d1261d2d6 + 720‘32b02d1261d3d5 + 480‘52b02d12£‘2d2d5 + 576ﬁ2b02d12C2d3d4
+384/52b02132d23d3 + 288ﬁ2b02d12C4d2d3 + 3OQ2772b5d1d3 — 56Q21’]2C0d2d7 — 80Q27]2C0d4d5
*20Q2ﬂ2C3d1d5 - 32Q2112C3d2d4 - 16Q2172C4d]d4 + 320‘32b02C0d4d5 + 80/32b02C3d1d5
+12852b0263d2d4 + 64/32170264(11d4672ﬁ2b02d12£‘0d2d7 + 384/32b02d12£‘3d2d4 - 38453b0b1b2d1d6
—64083boby bydyds — 76833bgb1 badady — 32083bob1bsdids — 51283bbibadady — 25683bobibyd1dy
+112ﬁb0Q21’]d1d7 + 192‘Bb0Q27]d2d6 + 240‘Bb0Q217d3d5 — 256ﬁb0b1b2d1d4 — 384ﬂb0b1b2d2d3
—192Bbobyb3dyds — 128Bbgb1byd1dy — 128Bbobabzdydy — 168Q% 1% cody2dady — 240Q%ycod,2dyds
—384Q21’]260d1d2d42 — 144Q21]261d12d2d6 — 180Q27]261d12d3d5 — 144Q2772C2d12d3d4
—216Q%n%cod dads? — 96Q% 1% c3d2dady — 72Q%n?cyd1>drds + 8648%bg%coddrds?
—14Q?Bn%byd1dy — 24Q%B1?badyds + 10Q2 B2 badads + 42Q2 Bry2bsdads + 30Q2B1y2bedds
+26Q2Bn2bydyds — 288Q%n2cod1dr?ds — 144Q% )2 cad1d?d3 + 1152B2bycod1do2ds
+576ﬁ2b02[33d1d22d3 + SZQZﬁﬂ2b4d2d4 + 28Q2ﬁ172b5d1 d4 - 448‘B3b02b2d42 - 360‘53b02b4d32
—20883bg2bedy> — 880B%bo>dyds — 9608%bg2b1dy> — 64882b>bads? — 33682by2bsdo>
—9682by?b7d1? + 36BbyQ>d3? — 4808bo3dsds — 288Bbybyds? — 1288bg2bydy? — 32Bbo>bed:?
—144Bboby12ds? — 64Bbyby%dy? — 16Bbobs2d12 — 16Q%n%c3dyr® — Q*nPczdi* + 64B%bg2cado*
+4B%by%d % c; + 2568%by Q%d4% — 25683boby2ds> — 144B3boba2ds? — 648°bbs2dy? — 168%boby>d,>
—16Q27]2b1d42 + 18Q21’]2b3d32 + 20Q27]2b5d22 - 32Q21’]261d42 — 18Q217263d32 — 8Q2772€5d22
—3528%bg3d1dg — 6168%by>dady — 79282bo>d3ds + 1288%bg%c1dy? + 728%bg% cads?
+32ﬁ2b02C5d22 + 8ﬁ2b02d12C7 - 224ﬁb03d1d7 — 384’Bb03d2d6 - 12Q21]2C5d13d3
—24Q%1%cs5dq2do? + 4882bo*d13csds — 16Q2 By2bydy® — 352B3b2bid1ds — 6168%bg2b1dady
—792[33b02b1d3d6 - 880ﬁ3b02b1d4d5 — 392‘B3b02b2d1d7 + 26Q2172b6d1d2 + 8Q2172b7d12
—32Q2772C0d1d3 — 12Q2?]2C5d1d3 — 8Q27]2C6d1d2 — 2Q27]2C7d12 — 936,32b02b4d2d3
—504‘32b02b5d1d3 — 360ﬁ2b02b6d]d2 + 128‘[32b0200d1d8 + 224‘321702C0d2d7 + 48ﬁ2b02C5d1d3
+32/321702C6d1d2 — 720Q2772€0d1d2d3d5 — 16Q2772C4d13d4 + 128ﬁ2b02d13C0d8 + 32,521702{1136'6!12
—672B3b02bydrds — 840B3by2bydzds — 40883bg2bad de — 6808°by2bsdads — 81683by>bsdsd,
—400ﬁ3b02b4d1d5 — 640,33502b4d2d4 — 4OQ27]2C2d2d5 — 1800ﬁ2b02b1d3d5 — 792,82b02b2d1d6
—13208%by?bydods — 158482by2badzdy — 7208%bg?bad1ds — 1152B2by>badady — 624%b>byddy
+160ﬁ2b02C2d2d5 — 32Q27]2C0d13dg — 216Q21’]2C0d2d33 — 108Q27]2C1d1d33 — 128Q21’]2C1d23d4
+8648%bycodads® 4 43282b%cdds® + 5128%by%c1dr3dy + 18Q%Br2bads? — 90Q%n2bodsds
—100Q21’]2b0d4d5 — 28Q217261d1d7 — 48Q21’]2C1d2d6 — 6OQ2772C1d3d5 — 24Q21’]262d1d6
—48Q%1%cadady + 112B%by%c1drd7 + 192B%by%c1dads + 2408%byc1dads + 9682by>cady dg
+192ﬁ2b02C2d3d4 - 96Q2?]261d12d42 - 576Q21’]261d1d2d3d4 - 216Q2}72€1d22d32 - 20Q2772C3d13d5
—32Q%1%cyddo> + 288082bo>cod 1 dadads + 2304B%by>c1d1dadady + 86482bo>cdo2ds?
+128‘32b02C4d1d23 + 6Q21’]2b2d1d6 + 10Q21’]2b2d2d5 + 42Q21’]2b4d2d3 - 24Q2172C4d2d3
+96B2by2c4dads — 2568by>ds® + 8Q%42b; — Q%*y%cy — 3282bo%by + 4B%bo%c7)
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c Bvby +vby —cop— 1+ \/VZC()2 — 2ubgcg — 2vcg + bo? — dq? +2bg + 1
1 pu—
B

0y = Zﬁ(ﬁvbl—ﬁcll—i-vbo—co—l) (2B%v2b1by — 2B%vbycy + 2Bv2boby + 2812y 2
—4Bvbycy — 2Bvbycy + 2v2boby — v2cocy — 2Buby + 2Bc1? — vbocy — vbico — 2vby + vey
—bgoby + 2cgc1 + 2d1dy — by + 2¢1)

03 = GE v [Bcll T (68%12b1b3 + 48%12by? — 8B%vbycy — 6B%vbzcy
+6,31/2b0b3 + 14‘31/2171172 + 4,32622 — 14Bvbicy — 14PBvbycy — 6Bvbscy + 6V2b0b2
+4v2h12 — 212¢cocp — 120y — 6Bvbs + 14Bcicy — 4vbgcy — 6vbyc1 — 4vbycg — 6Vby
+2vcy — 2byby — b12 + 6cpcy + 4C12 + 6d1ds + 4d22 —2by + 60¢3)

Cqy = 4/5(/3vb17/3611+1/h076071) (4,321/2b1b4 + 6[321/2172173 - 6,321/52C3 - 6,321/19362

—4B2vbycy + 4BvPboby + 10BU2b1bs + 6Bv2bo? + 6B%cac3 — 10Bvb 3 — 12Bvbacy
—10Bvbsc1 — 4Pvbscy + 412bobs + 6v2b1by — v2coe3 — v3cico — 4pvby +10Bcqc3

+6IBC22 - 31/b0(33 — 51/b1C2 — 51/b2C1 — 31/b3C0 — 41/b3 +vez — bobg — blbz + 4cgc3 + 60102
+4d1dy + 6dads — by + 4c3)

5 = 10ﬁ(ﬂvh17ﬂci+vbo—cof1) (10ﬂ2V2b1b5 + 16,321/2172b4 + 9ﬁ2V2b32 — 16‘321/192(24
*18132Ub3C3 — 16ﬁ21/b4C2 — 10521/175C1 + 10‘31/2b0b5 + 26ﬁ1/2b1b4 + 34‘31/2b2b3 + 16ﬁ262C4
+9B%c3% — 26Bvbicy — 34Bvbyrcs — 34Bvbscy — 26Bvbycy — 10Bubscy + 10v2byby
+1612b1b3 + 9v2br2% — 2v%cycs — 202103 — V2% — 10Bvbs + 26Bc1cq + 34Bcacs — 8ubpcy
—141/171C3 — 16Ub2C2 — 141/b3C1 — 8Vb4C0 - 101/b4 + 21/64 — 2b0b4 — 2b1b3 — b22 + 10COC4
+16¢1c3 + 9c2? + 10d1ds + 16ddy + 9d3? — 2by + 10c4)

Ce = 6/3(ﬁvb17,3cll+vb07c071) (6,32U2b1b6 + 10‘321/2b2b5 + 12ﬁ21/2b3b4 — 10‘321/172C5
—12B%vbscy — 12B%vbyc3 — 1082vbscy — 6B2vbgey + 6Bv2bobeg + 16812b1bs + 22Bv>byby

+12Bv2b3% 4 10B%cacs + 12B%c3c4 — 16Brbics — 22Bvbacy — 24Bvbscs — 22Bvbycy

—16Bvbscy — 6Bvbgc + 612bobs + 10v2byby + 12v%bybs — v2cocs — v2eicy — vicacs — 6Bvbg
+16Bc1c5 + 22Bcrcy + 12[3C32 — 5vbgcs — 9vbicy — 11vbyes — 11vbzey — Yvbycy — Svbscg

—6vbs + vcs — bgbs — byby — bobs + 6¢gcs + 10c1c4 + 12¢5c3 + 6d1dg + 10dods + 12d3dy — bs + 6C5)

7 = TapE ﬁ;wbofqﬁl) (14B%v2b1b7 + 248212 bybg + 30B%v2bsbs + 168212 by>
*241821/172C6 — 30‘321/b3C5 — 32,321/174C4 — 30ﬁ2Ub503 — 24,521/b6C2 — 14B2Vb7C1 + 14‘31/2b0b7
+38Bv2b1bg + 54B12bybs + 62Bv2bsby + 24B%cace + 30B%cacs + 16B2c4> — 38Bvbycs
—54Bvbycs — 62Bvbzcy — 62Bubscy — 54Bvbsco — 38Bvbscy — 14Bvbycol4v?bobg + 2412b1bs
+3012byby + 1612032 — 202coce — 2V%c105 — 2v% 0oy — V232 — 14Bvb; + 38Bc1ce + 54Bcacs
+62ﬁC3C4 — 12Vb0C6 - 22Ub1C5 — 281/b2(34 — 30Vb3C3 - 28Vb4C2 — 221/b5C1 — 12Vb6C0 — 141/b6
+2vcg — 2bobg — 2b1bs — 2byby — b32 + 14cocg + 24c1c5 + 30crc4 + 16C32 + 14d1dy + 24d,d,
+30d3ds + 16d42 — 2bg + 1466)

C8 = spipvn e, Tun a1y 8BV b1bs + 1487 baby + 18B7v7b3be + 208707bybs

—14Bvbyc; — 188%vbsce — 20B2vbycs — 20B2vbscy — 18B%vbgcs — 14B%vbycy — 8B%vbgcy
+8Bv2bgbg + 22Bv2b1 by + 32Bv?brbg + 38Bv2b3bs + 20Bv2by> + 14B%cocy + 18B%c3ce

+20pB%cyc5 — 22Bvbicy — 32Bvbacs — 38Bvbscs — 40Bvbycy — 38Bubscs — 32Bvbscy

—22Bvbycy — SIBUbgCO + 8V2b0b7 + 14V2b1b6 + 181/2b2b5 + 201/253174 — 1/26067 — 1/26166

—v2cyc5 — v2c3ey — 8Bvbg + 22Bc1cy + 32Bcace + 38Bcacs + ZOﬁC42 — 7vbocy — 13vbqcq

—171/b2C5 — 19Vb3C4 - 19Ub4C3 - 171/b5C2 - 131/b6c1 — 71/b7C0 - 81/b7 +vecy — b0b7 — b1b6

—bybs — b3by + 8cocy + 14cqcg + 18cycs5 + 20c3c4 + 8d1dg + 14drd7 + 18d3dg + 20d4ds — by + 8C7)
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d = 1Q
/_Q2112 _|_4‘32b02
dz = — 4 erlzdlz78/52b02‘3d12+Q277274/32b02) (72b0C0d16 + Qzﬂd14 - 2b02d14 — 4b0C0d14

+2Q217d1 + 2b0d14 — ZbQClez + Qzﬂ)

d3 = — 34 (Q2q2d1278ﬁ2b012d12+Q277274/32b02) (_16,8b0C0d15d2 - 2:Bbocldl6 + 2Q2,82d14
+8Q2,377d13d2 + 2Q2772d12d22 — 16,82190211126122 — 12,32170171(113112 — 2ﬁ2b12d14 + Qzﬂd14
—12,8b02d13d2 — 4ﬁb0b1d14 — 16ﬁb0C0d13d2 — 4ﬁb0C1d14 + 4Q2,32d12 + 8Q2ﬁﬂd1d2 + 2Q2172d22
—8p%by2dy? — 16B%bgbyd1dy — 282b1%d1% — 2bg%dr* + 2Qndq? — 16Bby>d1dy — 4Bbobydy?
—2Bbgcydi? +2Q2B% — 2b%d1? + Q%)

ds = — e orpar AT apy) 24Bbocodi®ds — 48Blocod: Hdy?

—16pBboc1d1°dy — 2Bbgcady® + 12Q2B%d13dy + 18Q%Byd,3ds 4 12Q%Byd,%dy?
+9Q%n2d2drds — 72B%bo%d12dyds — 36B2bobyd13ds — 248%bob1d12dy* — 128%bobyd 1 3d;
—12B%b1%d13dy — 6B%b1bydr* + 3Q%Bd1* + 6Q%nd,3dy — 36Bby>d13d3 — 24Bbg>d;%dy>
—36ﬁb0b1d13d2 - 6ﬁb0b2d14 - 24ﬁb0€0d13d3 - 16ﬁb0€0d12d22 - 16ﬁb0C1d13d2 - 4,3170C2d14
—6Bb12d1* + 12Q%B%d1dy + 18Q%Bryd1d312Q% Brdy? + 9Q%y%dads — 36B%by%dads
—36B%bobyd1ds — 24B%bobidy? — 24B%bobydydy — 128%b1%d1dy — 6B%b1byd? — 12bg%d13d,
—6bgb1d1* + 6Q%Bd1? + 6Q%ndydy — 36Bby>dds — 24Bby>dy? — 48Bbgbyd1dy — 6Bbobyd,?
—2Bbocad1? — 6Bb12d > — 12by%ddy — 6bgbyd1% + 3Q%B)

ds = — 10d1(quzdlz—852h32d12+Q2;72—4,62b02) (_32,3170C0d15d4 - 144,3170C0d14d2d3
—64,3[70C0d13d23 — 24IBbQC1d15d3 — 48,3b0C1d14d22 — 16‘[‘3b062d15d2 — 2ﬁb0C3d16 + 24Q2ﬁ2d13d3
+16Q?B%d12dy? + 32Q%Brdq3dy + 48Q%Brydy2dads + 16Q%n%d12drdy + 9Q%n>dy%d5?
—128B2bg%d1%dody — 72B%bg?d1%d3> — 72B%bobid13dy — 1088%bobyd1>dads — 36B%bobyd:3ds
—24B2bgbydq>dr? — 12B%bobsd13dy — 2482b1%2d13ds — 168%b1%d1%dy? — 32B%b1byd13d;
—8ﬁ2b1b3d14 - 4/3217221114 + 16Q2ﬁd13d2 + 12Q217d13d3 + 8Q277d12d22 - 72[3b02d13d4
—108Bbg>d1%dyds — 84Bbobid13ds — 56Bbobid12dr? — 44Bbobrd13dy — 8Bbobady*
—32ﬁb0€0d13d4 - 48ﬁb0C0d12d2d3 - 24/3b0C1d13d3 - 16‘Bb061d12d22 - 16[317062(113112
—4Bboczdi* — 32Bb1? — 16Bb1bad1* + 24Q%B%d1ds + 16Q%B*dr? + 32Q%Brdydy
+48Q2Bndads + 16Q%n%dydy + 9Q%%ds? + Q%d1* — 64B%by>drdy — 368%byd;?
—64p%bobiddy — 968%bobidads — 488%bobad ds — 3282bobady? — 32B%bobsd d,
—2482b1%dd3 — 16B%b1%dy* — 32B2b1byd1dy — 88%b1bsd1? — 4B%br2dq > — 24by>d3d;
—16by?d1%dy? — 32bgb1d3dy — 8bgbydi* — 4by%d1* + dad1316Q%Bd dy + 12Q%nd 1 d3
+8Q%ndo? — 64Bby%d1dy — 96Bby>dads — 96Bbobid1ds — 64Bbobidy* — 64Bbobydydy
—8Bbobsd1? — 2Bboczdi? — 32Bb1%d1dy — 16Bbybad % + 2Q%d > — 24by?d1d3 — 16by%dy?
—32bgb1d1dy — 8b0b2d12 — 4b12d12 + Qz)
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de = — 15d1(Q2q2d12—8ﬁ2h012d12+Q2;72—4/321702) (_40,3b000d15d5 - 192,Bb000d14d2d4
—108/3b0€0d14d32 — 288ﬁb0€0d13d22d3 — 32/3b0€0d12d24 — 3Zﬁbocld15d4 — 144,3b0€1d14d2d3
—64,3[70611113{123 — 24‘Bb0C2d15d3 — 48ﬁb0€2d14d22 — 16,3170(13(115{12 — 2ﬁb0€4d16

+40Q2B%d:dy + 60Q? B>dy *dyds + 50Q%Biydy>ds + 80Q2rydy>dady + 45Q%rydy *ds?
+25Q2772d12d2d5 + 30Q2772d12d3d4 — 200/3217021112{12(15 — 240‘32b02d12d3d4 — 120[3250171(113!15
—1928%bgb1d12drdy — 108B2bobyd2ds? — 728%bobad:dy — 1088%bobady2dads — 368%bobsd;ds
—248%bobad%dy* — 12B%bobyd13dy — 408%b12d13dy — 6082b1%d12dyds — 6082b1 byd13d3
—4082b1byd1%dy? — 40B%b1b3d13dy — 108%b1bydr* — 2082b,%d13dy — 1082bybad,*
+30Q2Bd13d5 + 20Q%Bd1%dy* + 20Q%nd13dy + 30Q%yd %dyds — 1208byd13ds
—192Bby>d1?dody — 108Bbo%d12d3? — 152Bbobyd13dy — 228Bbobid1%dads — 96Bbobady3ds
—64Bbobady2dr? — 52Bbgbzd,3dy — 10Bbgbady* — 40Bbgcod 3ds — 64Bbgcod>dady
—36,317060[112{132 — 32‘Bb0C1d13d4 — 48ﬁb0€1d12d2d3 — 24ﬁb0€2d13d3 — 16,Bb062d12d22
—16‘Bb063d13d2 - 4ﬁb064d14 - 60'3[712{113613 - 40,3171211126122 - 80[3b1b2d13d2 - 20[3b1b3d14
—108by%d1* + 40Q?B%d1dy + 60Q?B2dads + 50Q? Brd1ds + 80Q2 Brydady + 45Q% Byds?
+25Q21%dyds + 30Q%n2dsdy + 5Q%d13ds — 1008%bo2dads — 12082b>d3dy — 1008%bobyd1ds
—16082bobydady — 90B2bobyds? — 80B2bobadidy — 1208%bobydads — 608%bgbad ds — 408%bybad,?
—408%bobyd1dy — 4082b1%d1dy — 6082by2drds — 608%b bydyds — 408%b1bydo? — 40821 bad1do
—108%b1byd1? — 20B%by2d dy — 10B%bybady® — 40by?dy3dy — 60bydy>dods — 60bobyd;°ds
—40bgbyd,2dy? — 40bgbod13dy — 10bgbad,* — 20b,2d13dy — 10b1bady* + 30Q2Bd 1 d3 + 20Q%Bd,?
+20Q277d1d4 + 30Q277d2d3 - 100ﬁb02d1d5 - 160[3[702112614 - 9O’Bb02d32 - 16O’Bb0b1d1d4
—240Bbobydads — 120Bbobadyds — 80Bbobady> — 80Bbobsdidy — 10B8bobydy? — 2Bbocsds?
—608b12d1ds — 40pb12dy? — 80Bb1byd1dy — 20Bb1b3d1? — 108by%d % + 5Q%d dy — 40by?dydy
—60by2dyds — 60bobydqds — 40bgbydp? — 40bgbydydy — 10bgbsdi? — 20b12d dy — 10b1byd;?)

d7 = 721d1(Q2q2d12—8ﬁ2b012d12+Q2;72—4,321702) (*48,3170470‘115[16 - 40/5170C1dlSd5

—108’Bb0C1d14d32 - 32‘5b0C1d12d24 - 96ﬁb1b2d12d22 - 96‘Bb1b3d13d2 + 54Q2ﬁ2d32
+24Q%n%d 4% — 96B%bo>d,> — 545%b 2ds? — 48B%b1byd1dy — 128%b1bsd1? — 368%b,2d 1 d3
—2482by%dy? — 48B%bybsdidy — 12B%bybyd1? — 144bobyd1%dads + 27Q%ds? — 192Bbobod1dy
—12Bbobsdy? — 96Bb2d1dy — 144Bb1byd1ds + 6Q%dy? — 54by*ds> — 48b1badydy
—32,3b062d15d4 — 64‘3170(12(113(123 — 24ﬂb0C3d15d3 — 48,3506311141122 — 16‘Bb0C4d15d2
+96Q?B2d12dody + 72Q%Byd13ds + 36Q%y%d  2dyds + 45Q% 1% d1 2 d3ds — 2888%by2d,2dod,
—3608%bg?d,2dsds — 180B%bobyd13dg — 120B82bobyd13ds — 10882bobyd,2ds® — 48Bbocod1ds
—40Bbgc1d13ds — 36Bbgcid1%ds? — 32Bbocad3dy — 24Bbocad,3ds — 16Bbcad,>dy>
—168bgcad13dy — 72B%bobsd13dy — 36B%bobyd13ds — 248%bobyd?dr? — 1282bobsd,3dy
—9682b1%d1%dpdy — 9682b1byd13dy — 72B%b1bad 3ds — 48B%b1bad%dy? — 488%b1byd,3d,
—48‘52b2b3d13d2 + 72Q2’Bd12d2d3 + 48Q21’]d12d2d4 - 300[3b02d12d2d5 - 360‘Bb02d12d3d4
—240Bbobyd13ds — 216Bbgb1d12d3% — 168Bbobad:3dy — 108Bbobad 3ds — 72Bbgbzd,2dy>
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—192B2by%d2d4% — 6082b1%d13ds — 54B%b12d12d3% — 1282b1bsd * — 368%b,%d13d;
—2482by%d1%dy* — 12B%bobydy* + 48Q%Bd:3dy + 30Q%nd 3ds — 144Bb,byd,3ds + 60Q2B2d 1 ds
+96Q%B%dydy — 728%bobsdids — 962b1bad dy — 6B%b32d1% + 48Q2Bd1dy + 72Q%Bdrd;
+30Q277d1d5 + 48Q217d2d4 — 216’Bb0b1d32 - 24b12d22 — 6b22d12 - 6‘32b32d14 + 27Q21’]d12d32
—1808by>d13dg — 12Bbobsd1* — 96Bb12d13dy — 24Bb1bydi* — 48Bby2d3dy — 24Bbybsdy*
+9Q%d,3d3 + 6Q%d1%dy? — 12082bobyd1ds — 1928%bobadody — 48B%bobsdidy — 60bo>d;3ds
—54bg%d,2d3% — 12bgbyd1* — 36b12d13ds — 24b1%d1%dr? — 12bbady* — 240Bbobyd1ds
—96Bbobydydy — 968b1bady? — 968b1bad dy — 24Bb1byd1? — 48Bby%d dy — 144bybydods
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+36Q2772d2d6 + 45Q21’]2d3d5 - 144‘32b02d2d6 — 180ﬁ2b02d3d5 - 108[32b0b2d32 - 144‘52b1b2d2d3
—96by2dq2dydy — 96bobydi3dy — 72bgbydq3ds — 48bobad12dy? — 48bgbsd3dy — 48b1byd13dy
—144pby>d1de — 240Bbo>dads — 288Bbo>dady — 144Bbobsdids — 2Bbocsd > — 72bgbyd1ds
—240Bbocody*dads — 288Bbgcody dady — 384Bbocod,3dy>dy — 432Bbgcod,3dads?
—192Bbocodq2d23ds — 192Bbgcrdy4dady — 288Bbgcydi3dads — 144Bbgcady *dods
—360p8%bobyd2dady — 192B%bobad1?dody — 1088%bgbsdy2dads — 144B%b1bad; % dods
7384[5b0b1d12d2d4 — 252ﬁb0b2d12d2d3 — 80ﬂbgC0d12d2d5 — 96ﬂbQC0d12d3d4 — 64[5b0€1d12d2d4
—48‘Bb0C2d12d2d372Q2‘B1’]d1d6 + 120Q2‘317d2d5 + 144Q2‘Bﬂd3d4 - 96'32b0b3d1d4
—1448%bobsdods — 488%bobydos? — 6082b1%d1ds — 9682b12drdy — 7282bybad ds — 488%b bado?
—6by%d1* — 384Bbobydady — 288Bbobadyds — 144pb12dads — 24Bbybad1® — 96bobydidy
—48bgbsdidy — 12b1b3d % — 14482bobid1dg — 2408%bobidads — 288B%bgb1dsdy — 96Bbobsda?
+9Q%dd3 — 60by>d1ds — 96bg>drdy — 48bgbady? — 12bgbydy? — 36b1%d1d3)
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dg = — 28d1(quzdlz78/32b;2d12+Q2;7274ﬁ2b02) (—192,3b0d12C1d23d3 - 1925b0d1402d2d4
+168Q2‘317d12d2d6 + 210Q2‘37]d12d3d5 — 432‘sz0b1d12d2d6 — 540ﬁ2b0b1d12d3d5
—30082bgbyd;%dyds — 360B%bobydy*dsdy — 192B%bobsd1>dady — 10882bobyd1%drds
—224B2bbyd1%dpdy — 168B%b1b3d*dods — 580Bbobydy>dyds — 696Bbobid,>ddy
—416Bbobyd12dyrdy — 276Bbobsd1?dads — 96Bbod1%crdsdy — 3368b1bad1%drds
—288ﬁb0d14C0d2d6 - 360ﬁb0d14C0d3d5 - 480‘Bb0d1360d22d5 — 1152ﬁb0d13C0d2d3d4
—240Bbod1*c1dods — 288Bbody*c1dsdy — 384Bbod13cidy?dy — 432Bbod,3c1drds?
—288ﬁb0d13C2d22d3 — 144ﬁb0d14C3d2d3 — 120ﬁb0d12C0d3d5 — 80ﬁb0d12C1d2d5

—126B%b1byd3? — 56B2b1bydy* — 148%b1bed1? — 568%by%d1dy — 84%brdd;

—5682byb3do? — 148%bybsd % — 28B%b32d1dy — 148%b3byd? + 70Q%Bd1ds

+112Q2‘Bd2d4 + 42Q217d1d6 + 70Q217d2d5 + 84Q217d3d4 - 196ﬁb02d1d7 — 336,3b02d2d6
—420Bbg>d3ds — 252Bbobyds? — 112Bbobydy? — 14Bbobed> — 1408b1%d1ds — 224Bb1%dody
—112Bb1b3dy? — 28Bb1bsd1? — 84Bby%d1ds — 28Bbybyd1? — 140bgbydids — 224bgbydyd,
—112bgbyd1dy — 168bobadads — 84bgbsd1ds — 56bgbydidy — 84b1bydids — 256Bbod1%cody>dy
—432,3bod12C0d22d32 — 96‘Bbod12C0d2d6 — 64‘[‘3b0d12C2d2d4 — 48,3b0d12€3d2d3 — 14ﬁb32d14
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—336Bb1badyds — 1688b1b3d ds — 112Bbybsd1ds — 112Bbybad dy — 56b1b3dqdy
—40Bbod;°cods — 16Bbod1%cydy® + 84Q%B2d dg + 140Q2 B2dyds + 168Q B2d3dy
+112Q?Bndy? + 49Q%n%dordy + 63Q% % d3de + 70Q%n%dyds + 14Q%d13dy — 19682by>dody
—252B2bg%dsdg — 2808%bo>dyds — 2248%bobids® — 126B2bobsds> — 562bybsdy>
—84p%b1%d1dg — 140B%b1%drds — 168B2b12dady — 84by>d13dg — 14bgbsdi* — 56b12d13dy
—14b1b4d14 — 28b22d13d2 — 14b2b3d14 — 56ﬁb0d15C0d7 — 192ﬁb0d14C0d42 — 216‘Bb0d13C0d33
*4813b0d15(31d6 — 40‘3b0d15C2d5 — 108‘Bb0d14C2d32 — 32ﬁb0d12C2d24 — 32ﬁb0d15C3d4
—64‘3b0d13C3d23 — 24ﬁb0d1564d3 — 48‘Bbodl4C4d22 — 16ﬁb0d1565d2 + 14OQ2ﬁ2d12d2d5
+168Q2‘32d12d3d4 + 98Q2‘B11d13d7 - 56ﬁb0d13C0d7 — 64ﬁbod12C0d42 — 48ﬁb0d13c1d6
—36Bbod1>cads?® — 32Bbod13c3dy — 24Bbody3cyds — 16Bbod13csdr112Q2 Bryd,2dy?
+49Q%1%d1>dydy + 63Q%n%d*dsde + 70Q%12d 1 *dyds — 3928%by>d12drdy — 504B82by2d1>d3ds
—5608%by>d12dyds — 252B%bobyd13d; — 288B%bobid1%ds® — 1808%bobad13de — 1208%bobsd;>ds
—108B2bgbsd;%d3? — 72B%bobydy3dy — 368%bobsd13ds — 24B%bobsd?dy? — 12B%bobed,d,
—14082b1%d1%dpds — 1688%b1%d12dsdy — 140B82b1bad13ds — 12682b1bad12d3? — 1128%b1bad,3d,
—84B2b1byd13ds — 56B%b1byd1%dy? — 5682b1bsdy3dy — 84B%by2d1%dyds — 84B%babsd3d;
—56ﬁ2b2b3d12d22 — 56ﬁ2b2b4d13d2 + 112Q2ﬁd12d2d4 + 7OQ217d12d2d5 + 84Q217d12d3d4
—432Bbg%d1*dyds — 540Bbo>d12dads — 348Bbobid13ds — 260Bbobyd:3ds — 234 Bbobad;%d3?
—184Bbobsd13dy — 120Bbobyd,3ds — 80Bbobyd1%dr? — 68Bbobsdi3dy — 2248b1%d1%dydy
—2Bbod6ce + 84Q?B?d13dg — 4PBbody*cs — 224Bb1bad13dy — 168Bb1b3d,3ds — 112Bb1bzd;%dy?
—112Bbybyd13dy — 112Bbabsdq3dy + 21Q%d12dpds — 140by>d12drds — 168by>dy%d3d,
—140bgb1d13ds — 224bgbid12dydy — 126bobid12d32 — 112bgbyd3dy — 168bybadq2drds
—84bybzd3d; — 56bgbadq2dr? — 56bgbsd,3dy — 84b1%d1%drds — 84b1byd,3ds — 56b1byd1%dy?
—56b1b3d13dy — 2Bbod1%cs — 84B%b12d3dg — 148%b1bedr* — 56B%by%d13dy — 148%babsd
—28B%b32d13dy — 14B?b3badr* + 70QBd13d5 + 63QBd1%ds? + 42Q%nd13de — 252Bby>d13d;
—288Bby>d1%dy® — 14Bbobsd1* — 140Bb1%d13ds — 126Bby2d1>d3?> — 288b1bsd,* — 84Bby%d13d;
—568by%d,2dy? — 28Bbobydr* + 98Q%Brdidy + 168Q?Brdads + 210Q%Bydads — 1968%bobydqdy
—336p8%bobydads — 420B%bobid3ds — 168B2bobyd de — 28082bobadads — 3365%bobadsdy
—140B2bgbsd1ds — 2248%bobsdardy — 112B%2bgbyd1dy — 16882bobsdads — 848%bobsd ds
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—8482bbydds — 56B2b1bsddy — 84B%bybad1ds — 56B%bybyd dy — 224Bbg%d4? — 14Bb3%d;?
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