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Abstract: A tethered towing system provides an effective method for capturing pieces of space debris
and dragging them out of orbit. This paper focuses on the in-plane stability analysis and libration
control of a two-segment tethered towing system. The first segment is the same as the traditional
single-tether towing system. The second segment is similar to a simplified space tether net. The
dynamic equations are established in the orbit frame. Considering the elasticity of the tethers, the
equilibrium solutions are obtained and the stability of equilibrium solutions is proved. An in-plane
libration controller based on the sliding mode control scheme is designed to ensure the safety of the
towing mission and save fuel. The controller suppressed the librations of the in-plane angles in the
desired state by applying two external torques. Finally, simulation results are provided to validate
the effectiveness of the proposed controller.
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1. Introduction

According to European Space Agency (ESA)’s Space Environment Report 2022, more
than 30,000 pieces of space debris have been spotted so far. Active debris removal tech-
nology becomes particularly necessary to ensure the safety of human assets in orbit [1].
Scholars have proposed dozens of schemes for removing debris. The use of a space net is
an effective technique to remove debris. This method stabilizes the attitude of the captured
debris by limiting its degrees of freedom [2]. Botta evaluated the effect of different me-
chanical models on the simulation of capturing the target using a net from the perspective
of dynamic calculation [3]. Simulations have been performed to study target capturing
using a space net [4,5]. Sharf et al. presented a space net closing mechanism. Experiments
demonstrated the practicality of the net closing system [6]. Yue established the dynamic
model of a rectangular space net and validated its accuracy by comparing it with on-ground
experiments [7]. For active debris removal technology, Lv et al. proposed an integrated
platform scheme [8].

A tethered towing system (TTS) is an active space debris removal technology derived
from the tethered satellite system (TSS). TTS has become another one of the most likely
solutions to the large debris deorbit due to its simple structure, light weight, low cost,
variable system structural parameters, and large capture distance [9]. Stadnyk proposed a
new tether model using s spring-damper element to simulate the target capture process [10].
Many studies have been carried out on the system dynamic analysis [11,12]. Abouelmagd
studied the dynamic problem considering the effect of the zonal harmonic parameter [13].
Pang et al. studied the nonlinear dynamics of a TSS in the orbital plane and obtained the
analytical solutions of internal resonance [14]. Aslanov and Ledkov studied the dynamic
influence of the atmosphere on a TTS [15]. Later, Aslanov and Yudintsev studied the
coupling dynamics between tether vibration and flexible attachment vibration when a TTS
towed space debris with flexible attachments [16]. Then, they took the target with fuel
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residue as the research object and studied the influence of attitude motion of such objects
on the safety of the towing process [17]. Aslanov et al. analyzed the balanced configuration
and stability of the system and proposed guidelines for selecting appropriate thrust, tug
mass, and tether length to avoid chaotic motion [18]. Aslanov and Yudintsev found that if
the tether was connected off-center to the debris, shifting the orbit by changing the thrust
would increase the pitch oscillations of the tether, ultimately leading to the chaotic motion
of the system [19]. Aslanov also studied the stability of pendulum systems with moving
mass blocks near the equilibrium position [20]. By considering the large deformation of
a tether, Lim calculated the dynamic responses of a TTS for the variations of the capture
angles and capture velocities of the debris, and the effects of varying system parameters
were analyzed [21]. Shan performed modal analysis for a TTS and derived an analytical
solution of the system’s natural frequency. The influence of the initial angular velocity of
the target on the chaser satellite was analyzed [22].

Regarding the tether structures, Qi proposed a double-tether TTS, in which the tethers
were connected to the edge of the debris [23]. Hovell proposed a bifurcated TTS and studied
the system stability when capturing a non-cooperative failed spacecraft in the orbital
environment [24–26]. Then the planar experiments were carried out. The results showed
that the proposed system better exploited tether damping and improved despinning
performance as compared to the single-tether configuration [27]. Yang et al. proposed a
sub-tether configuration of a TTS and performed some simulations to demonstrate the
effectiveness of the proposed system [28]. Shan compared the single-tether configuration
and the sub-tether configuration based on three models, namely the modified dumbbell
model, the lumped-mass model, and the ANCF model [22]. The sub-tether configuration
provides a new way for active debris removal technology, which acquires the advantages
of the space net and the TTS. However, it may exhibit more different dynamics behavior
than the traditional single-tether configuration.

In terms of stability analysis, Abouelmagd et al. studied the positions of the equilib-
ria points and their stability for a dumbbell satellite when the central body is an oblate
spheroid [29]. Qi studied the equilibrium solutions and their stability for a TTS and pro-
posed two feedback control schemes to stabilize the debris attitude [23]. Considering the
debris as a flexible beam, Hu found that the mass ratio between the tug and the debris
determines the equilibrium solutions and the reach time [30]. Lian et al. studied the chaotic
motion and control problems using Melnikov’s method and proposed a chaotic control
method based on an inertia damper [31]. Liu found that by increasing tether damping, the
system motion could be stabilized near the equilibrium points and the quasi-periodic mo-
tion could be changed into periodic motion [32]. Sun and Zhao found that the mass of the
main satellite had a significant influence on the stability and libration characteristics [33].

In terms of system control, Jin and Hu converted the optimal control problem into
a linear programming problem by truncating the Chebyshev series and using the quasi-
linearization method [34]. For the variable mass of the satellite, Sun et al. proposed a
thrust control law using double-switching-type constant thrust [35]. Wen et al. proposed a
tension control law based on potential energy shaping and damping injection with only the
feedback of the tether length [36]. Zhang et al. designed an algorithm to stabilize TTS with
a rotating target by controlling the position of the tug and the tether tension [37]. In order to
enhance the robustness of the system, Yang et al. established a three-dimensional dynamic
model. When the failed spacecraft had an initial angular velocity, the system could be
stabilized by the tether connection point bias control method and tether length control [38].
Kang et al. proposed three control strategies to control a rotating uncooperative target with
bounded stability. The effectiveness was validated experimentally using a microgravity
platform with two tethered free-floating air-bearing satellite simulators [39].

Sliding mode control, which can overcome uncertainty and has strong robustness to
interference, is especially suitable for nonlinear systems, and TTS is a typical nonlinear
system. Razzaghi applied an adaptive sliding mode and the state-dependent Riccati
equation control method on a TSS [40]. Chu added a time-varying control tension using a
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hierarchical sliding mode controller to implement the hybrid control of the in-plane angle
and the relative distance [41]. Xu et al. developed a novel fractional-order fuzzy sliding
mode control strategy and derived a fuzzy control law in analytical form, which could
perform a faster and smoother deployment [42,43]. Kang et al. proposed a fractional order
sliding mode control for the deployment, which consisted of two sub-sliding manifolds
that were defined separately for the actuated and unactuated states [44]. Li presented a
novel discrete-time pure-tension sliding mode predictive control scheme, which inherited
the property of explicitly handling constraints from model predictive control and the
remarkable robustness of sliding mode control [45]. Li developed a novel fractional-
order nonsingular terminal sliding mode control scheme to stabilize an underactuated
deployment mission with only tension regulation [46]. Then he investigated a super-
twisting sliding mode controller to accelerate the convergence speed of system states and
an adaptive law to handle the adverse effect of uncertainty and external disturbance [47].
Liu proposed a robust adaptive control strategy to solve the problem of attitude tracking
control for a clean platform, and this control strategy is based on the coupling of the fuzzy
logic system with sliding mode control [48]. Researchers have designed many sliding mode
control schemes to realize the deployment of TSSs. However, works about suppressing a
TTS’s in-plane libration are few.

This paper aims to solve the equilibrium configurations of a two-segment tethered
towing system and design a controller to suppress the librations of in-plane angles by
referring to previous studies. In contrast with the available literature, the contributions of
the paper are as follows:

(1) With the elasticity of the tethers, the equilibrium configurations of a two-segment teth-
ered towing system with constant thrust are obtained and the stabilities of equilibria
are proved.

(2) An in-plane sliding mode controller is designed to suppress the librations of the
in-plane angles of the system.

The rest of the paper is organized as follows: Section 2 describes the system compo-
sition and gives the dynamic formulations. In Section 3, the three-dimensional dynamic
equations are simplified, and the equilibria and stability of the simplified model are studied.
In Section 4, a libration controller is designed with the equilibrium solutions as the desired
state. In Section 5, the system dynamic characteristics and the effectiveness of the designed
controller are simulated. Conclusions are drawn in Section 6.

2. Problem Formulation

The two-segment tether towing system studied in this paper is shown in Figure 1.
The system consists of a tug, a sub-satellite, a piece of space debris, and two segments of
elastic tethers. The sub-satellite is released by the tug, and the second segment tethers are
released by the sub-satellite to capture the space debris. Both the tug and the debris are
regarded as rigid bodies. The sub-satellite, whose size is small compared to the length
of the tether, can be regarded as a particle. The two parts of the tethers are regarded as
massless spring-damper systems and can only be tensioned. The first part is released by
the tug. The second part, which is attached to the ends of the debris, is released by the
sub-satellite. To describe the kinematic relations of the components accurately, three right-
handed frames are introduced. The orbit frame Fo(ooxoyozo) has its origin oo located at the
mass center of the tug. The xo-axis points away from the Earth’s center to oo, the yo-axis is
the flight direction of the tug, and the zo-axis conforms to the right-handed rule. The tug
body frame FB1(ob1xb1yb1zb1) and the debris body frame FB2(ob2xb2yb2zb2) are placed at the
mass centers of the tug and debris, respectively, whose axes are aligned with the principal
moments of inertia axes of the two bodies.
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Figure 1. Geometry of the two-segment tether towing system.

The generalized coordinate vector of the system in the orbit frame is selected as

X= [D1 D2 ϑ1 ϑ2
]

(1)

where D1 is the position vector which points from the mass center of the tug to the sub-
satellite. D2 is the position vector which points from the sub-satellite to the mass center of
the debris. ϑ1 and ϑ2 are the attitude angles.

According to Kane’s method [28], the three-dimensional dynamic equation in the orbit
frame can be derived as follows:

..
D1 + 2ωo ×

.
D1 + ωo ×D1 ×ωo + D1 ×

.
ωo = Fex3/m3 − Fex1/m1 (2)

..
D2 + 2ωo ×

.
D2 + ωo ×D2 ×ωo + D2 ×

.
ωo = Fex2/m2 − Fex3/m3 (3)

J1
.

ω
b
b1 + ωb

b1 × J1ωb
b1 = Mex1 (4)

J2
.

ω
b
b2 + ωb

b2 × J2ωb
b2 = Mex2 (5)

where m1 is the mass of tug. m2 is the mass of debris. m3 is the mass of sub-satellite.
ωb

b1 and ωb
b2 are the rotational angular velocities of the body frames with respect to the

orbit frame. ωo is the orbital angular velocity. J1 and J2 are the inertia matrices of tug
and debris, respectively. Fex1 = Fg1 + Fl1 + Ft. Fex2 = Fg2 + Fl2. Fex3 = Fg3 − Fl1 − Fl2.
Mex1 = Mg1 + Ml1 + Mc1. Mex2 = Mg2 + Ml2 + Mc2. Fl1 is the tension of the first-part
tether. Fl2 is the tension of the second part ones. Fgi and Mgi are the force and moment
caused by the gravity gradient force. Mci is the control moment.

The tethers are considered as spring-damper systems [10]. The tether material is
assumed to have a linear spring constant ki, a damping coefficient ci, and unstretched
length li0. The tether force is given as follows:

Fli =

{
ki(‖Li‖ − li0)li + cidlili
0

, ‖Li‖ > li0
, ‖Li‖ ≤ li0

(6)

where Li is the direction vector of each tether and li is the unit vector along the tether.
The three-dimensional dynamics described by Equations (2)–(5) are too complicated,

which is not suitable for the stability analysis. Hence, the following assumptions are
made to simplify the system in the orbital plane: (1) Ignoring rigid body attitude, the
tug, the sub-satellite, and the debris are all regarded as particles. (2) The system operates
in an ideal Keplerian orbit. (3) The tethers in the second segment are simplified into an
equivalent tether. Its physical coefficient is equal to the sum of all second-part tethers. (4)
The out-of-plane orbit motion of the system is ignored.
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Figure 2 shows the simplified system schematic diagram. d1 is the distance between
the tug and the sub-satellite. d2 is the distance between the sub-satellite and the debris. θ1
is the in-plane angle between the first-part tether and the negative direction of the xo-axis.
θ2 is the in-plane angle between the equivalent tether and the negative direction of the
xo-axis. Ft is the thrust of the tug. γ is the angle between the thrust and the yo-axis.
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Based on Equation (1) and the assumptions, the generalized coordinate of the sim-
plified system is Xs= [d1 d2 θ1 θ2

]
. The dimensionless transformation relation is

introduced as follows:
Fi =

Fi

m1ω2
0d10

(7)

( )′ =
d( )
d f

=
1

ω0

d( )
dt

(8)

where the superscript “( )′” indicates differentiation with respect to the true anomaly f .
Employing the transformations yields the following dimensionless dynamic equations

d′′1 = d1(θ
′
1 + 1)2 − d1(1− 3 cos2 θ1)− µ1d10Fl1 + µ3d10Fl2 cos(θ2 − θ1) + Ftd10 sin(θ1 + γ) (9)

d′′2 = d2(θ
′
2 + 1)2 − d2(1− 3 cos2 θ2)− µ2d10Fl2 + µ3d10Fl1 cos(θ2 − θ1) (10)

θ
′′
1 = −3

2
sin 2θ1 − 2

d′1
d1

(θ′1 + 1) + µ3
d10Fl2

d1
sin(θ2 − θ1) +

d10Ft

d1
cos(θ1 + γ) (11)

θ
′′
2 = −3

2
sin 2θ2 −

µ3d10Fl1
d2

sin(θ2 − θ1)− 2
d′2
d2

(θ′2 + 1) (12)

where µ1, µ2, and µ3 are dimensionless constants defined as follows:

µ1 =
(m1 + m3)m1

m1m3
, µ2 =

(m2 + m3)m1

m2m3
, µ3 =

m1

m3
(13)

3. Equilibria and Stability Analysis
3.1. Equilibrium Configurations of the System

In order to ensure the stability of the towing process, it is necessary to figure out the
equilibrium configurations of the system with constant thrust. To obtain the equilibrium
configurations, the derivative terms of d1, d2, θ1, and θ2 are set to zero in Equations (9)–(12).
One obtains

3d1 cos2 θ1 − µ1d10dl1 + µ3d10Fl2 cos(θ2 − θ1) + Ftd10 sin(θ1 + γ) = 0 (14)

3d2 cos2 θ2 − µ2d10Fl2 + µ3d10Fl1 cos(θ2 − θ1) = 0 (15)

− 3
2

sin 2θ1 + µ3
d10Fl2

d1
sin(θ2 − θ1) +

d10Ft

d1
cos(θ1 + γ) = 0 (16)
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− 3
2

sin 2θ2 −
µ3d10Fl1

d2
sin(θ2 − θ1) = 0 (17)

According to Equations (14) and (15), the relationship between Fli and Ft can be
given by

Fl1 =
µ2(3d1 cos2 θ1 + Ftd10 sin(θ1 + γ)) + 3µ3d2 cos2 θ2 cos(θ2 − θ1)

(µ1µ2 − µ2
3 cos2(θ2 − θ1))d10

(18)

Fl2 =
3d2

µ2d10
cos2 θ2 +

µ3

µ2
Fl1 cos(θ2 − θ1) (19)

When γ = 0, the direction of the thrust is along the yo-axis. The solution to Equations (16)
and (17) is given as

E1 : θ1e = π/2, θ2e = π/2 (20)

In the equilibrium configuration E1, the three masses remain in a straight line along
the yo-axis (local horizontal). Combined with Equation (6), θ1e = π/2 and θ2e = π/2 are
substituted into Equations (14) and (15). The equilibrium solutions for tether length can be
obtained as follows:

d1e =
µ2Ft

(µ1µ2 − µ2
3)k1

+ d10 (21)

d2e =
µ3k1(d1e − d10)

µ2k2
+ d20 (22)

As shown in Equations (21) and (22), d1e is affected by the thrust. The value of d2e is
related to the first-part tether length.

Let γ 6= 0; the solutions to Equations (16) and (17) are

E2 : θ1e =
π
2 , θ2e =

π
2 , E3 : θ1e =

π
2 , θ2e = arcsin( µ2µ3d10Ft cos γ

3(µ1µ2−µ2
3)d2e

)

E4 : θ1e = 0, θ2e = 0/π, E5 : θ1e = 0, θ2e = arccos(−3µ3d1−µ3d10Ft sin γ
3µ1d2e

)

E6 : θ1e = π, θ2e = 0/π, E7 : θ1e = π, θ2e = arccos( µ3d1−µ3d10Ft sin γ
3µ1d2e

)

(23)

In the configuration E2, the three masses remain in the same state as the configuration
E1. In the configurations E4 and E6, the three masses line up on the xo-axis (local vertical).
The equilibrium solution θ2e in the configurations E3, E5, and E7 is determined by γ, d1e,
and d2e and can be solved in the same way as in E1.

Figure 3 gives the schematic diagrams of the solutions shown in Equation (23). The
red ball represents the tug, the light blue ball represents the sub-satellite, and the other
balls correspond to the debris in each configuration.
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3.2. Stability of Equilibrium Configuration

Define x = [x1, x2, x3, x4]
T, where x1 = θ1 − θ1e, x2 = θ′1, x3 = θ2 − θ2e and x4 = θ′2.

The new coordinates x represent the variations of θ1 and θ2 from their equilibrium solutions.
The new equilibrium solutions are xe = [0, 0, 0, 0]T. Then Equations (16) and (17) can be
linearized about x1e and x2e as follows:

.
x1 = x2.
x2 = C1x1 + C2x3.
x3 = x4.
x4 = C3x1 + C4x3

(24)

where Ci are constants defined as follows:

C1 = −3 cos 2θ1e − µ3
d10
d1e

Fl2 cos(θ2e − θ1e)− Ft
d10
d1e

sin(θ1e + γ),

C2 = µ3
d10
d1e

Fl2 cos(θ2e − θ1e),

C3 = µ3
d10
d2e

Fl1 cos(θ2e − θ1e),

C4 = −3 cos 2θ2e − µ3d10
d2e

Fl1 cos(θ2e − θ1e)

(25)

Equation (24) is rewritten in matrix form as follows:

.
x = Cx =


0 1 0 0

C1 0 C2 0
0 0 0 1

C3 0 C4 0




x1
x2
x3
x4

 (26)

The characteristic equation can be obtained as

a0λ4 + a1λ3 + a2λ2 + a3λ + a4 = 0 (27)

where a0 = 1, a1 = 0, a2 = −(C1 + C4), a3 = 0, and a4 = C1C4 − C2C3. It can be
found that a1 and a3 are zeros for equilibrium configuration. This implies that there is no
asymptotic stable equilibrium. There can be marginal stability with imaginary values for
all λi, provided that a0 > 0, a2 > 0, a4 > 0, and a2

2 > 4a0a4.
By solving Equation (22), the eigenvalues can be obtained:

λ1,2 = ±
√

C1
2 + C4

2 −
√

(C1−C4)
2+4C2C3

2

λ3,4 = ±
√

C1
2 + C4

2 +

√
(C1−C4)

2+4C2C3
2

(28)

The system physical parameters are set as follows:

m1 = 500 kg, m2 = 2000 kg, m3 = 8 kg, Ft = 150 N
d10 = 100 m, d20 = 8.5 m, ki = 264 N/m, ci = 8 Ns/m

(29)

The orbit altitude of the system is 700 km. In E1, it can be shown that a0 = 1, a2 > 0,
and a4 > 0. It can also be shown that a2

2 > 4a0a4. One can determine λi as follows:

λ1 = 35.1074i, λ2 = −35.1074i,
λ3 = −2.7534× 10−14 + 5.1636× 102i,
λ4 = −2.7534× 10−14 − 5.1636× 102i

(30)

As can be seen from Equation (30), λi and λi are on the imaginary axis, but they are
not multiple roots. There are no roots of the Jodan form; the equilibrium point is stable
according to Theorem 4.5 [49].

Considering γ = 1, it can be shown that a0 = 1, a2 > 0, a4 > 0, and a2
2 > 4a0a4 in the

line configurations E2 and E4a(θ1e = 0, θ2e = 0). Similar to E1, they are also the stability
conditions. Taking E4a(θ1e = 0, θ2e = 0) as an example, one can determine the λi as follows:
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λ1 = 32.2957i, λ2 = −32.2957i,
λ3 = −2.1316× 10−14 + 4.5799× 102i,
λ4 = −2.1316× 10−14 − 4.5799× 102i

(31)

However, the configurations E4b(θ1e = 0, θ2e = π) and E6 do not satisfy the stability
condition because the corresponding eigenvalues have real roots. Hence, these equilibriums
are unstable.

In configurations E3, E5, and E7, it can be shown that a0 = 1, a2 > 0, and a4 > 0. It can
also be shown that a2

2 > 4a0a4. Hence, the equilibrium is stable. One can determine the λi
as follows:

λ1 = 47.6853i, λ2 = −47.6853i,
λ3 = −1.5632× 10−13 + 1.2312× 103i,
λ4 = −1.5632× 10−13 − 1.2312× 103i

(32)

Taking E1 as an example, it can be obtained that Fl1e = 120.096 N, Fl2e = 119.617 N,
d1e = 100.487 m, and d2e = 8.9869 m when the system is stable by substituting the
parameters in Equation (29) into Equations (18), (19), (21) and (22). The analysis results are
verified by simulation in Section 5.1.

4. Libration Controller Design

In this section, based on the sliding mode control scheme, a controller of in-plane
libration angles is designed. The equilibrium solution solved in Section 3 is taken as the
desired state. In towing mission, the angles will lead to serious tether librations, which will
cause the system configuration to change continuously. To overcome the change, more fuel
is required to complete a predetermined mission than the desired state. So, it is desirable for
the in-plane libration angles to be maintained at the state to save fuel and ensure mission
safety. It is assumed that the tug and the sub-satellite are equipped with air jets that can
be used to adjust their positions. The in-plane libration angles can be suppressed to the
desired state and maintained at equilibrium by applying external torques. Adding the
control inputs into Equations (11) and (12) yields

θ
′′
1 = −3

2
sin 2θ1 − 2

d′1
d1

(θ′1 + 1) +
m1d10Fl2

m3d1
sin(θ2 − θ1) +

d10Ft

d1
cos θ1 + u1 (33)

θ
′′
2 = −3

2
sin 2θ2 −

m1d10Fl1
m3d2

sin(θ2 − θ1)− 2
d′2
d2

(θ′2 + 1) + u2 (34)

Equations (33) and (34) are rewritten in general form as follows:

θ′1 = f1(θ1, θ2) + u1 + ddis1 (35)

θ′2 = f2(θ1, θ2) + u2 + ddis2 (36)

where

f1(θ1, θ2) = −
3
2

sin 2θ1 +
m1Fl2

m3
sin(θ2 − θ1) + Ft cos θ1 (37)

f2(θ1, θ2) = −
3
2

sin 2θ2 −
m1d1Fl1

m3d2
sin(θ2 − θ1) (38)

ddis1 = −2
d′1
d1

(θ′1 + 1) (39)

ddis2 = −2
d′2
d2

(θ′2 + 1) (40)

where ddis1 and ddis2 are time-varying, related to the values of d1, d2, d′1, d′2, θ′1, and θ′2.
Assume |ddis1| ≤ D1 and |ddis2| ≤ D2, in which D1 and D2 are positive constants.

Define εθ1 = θ1 − θ1d and εθ2 = θ2 − θ2d. Design sliding surfaces as follows:

s1 =
.
εθ1 + cs1εθ1 (41)
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s2 =
.
εθ2 + cs2εθ2 (42)

By taking the first derivative of Equations (41) and (42), we obtain
.
s1 =

..
εθ1 + cs1

.
εθ1 = θ

′′
1 + cs1θ′1 (43)

.
s2 =

..
εθ2 + cs2

.
εθ2 = θ

′′
2 + cs2θ′2 (44)

The exponential reaching law is adopted to drive the system to the sliding mode
surface

.
s = −ks− εsgns (45)

where k > 0 and ε > 0. By combining Equation (45) with Equations (43) and (44), the
in-plane libration angle control forces can be designed as

u1 = −ks1s1 − εs1sgns1 − cs1θ′1 − f1 (46)

u2 = −ks2s2 − εs2sgns2 − cs2θ′2 − f2 (47)

with
.
εsi = σi|si| (48)

where σi is a positive constant.
Define s= [s1, s2]

T. Choose the following Lyapunov function candidate

V =
1
2

sTs +
1

2σs1
(εs1 − D1)

2 +
1

2σs2
(εs2 − D2)

2 (49)

whose time derivative is
.
V = sT .

s +
.
εs1

σs1
(εs1 − D1) +

.
εs2

σs2
(εs2 − D2) (50)

Due to
.
εsi = σi|si|, we obtain

.
V = s1

.
s1 + s2

.
s2 + (εs1 − D1)|s1|+ (εs2 − D2)|s2| (51)

Combined with Equations (35), (36), (43) and (44), Equation (51) can be reformulated as
.
V = s1( f1 + u1 + ddis1 + cs1θ′1) + s2( f2 + u2 + ddis2 + cs2θ′2) + (εs1 − D1)|s1|+ (εs2 − D2)|s2|
= s1(−ks1s1 − εs1sgns1) + s2(−ks2s2 − εs2sgns2) + s1ddis1 + s2ddis2 + (εs1 − D1)|s1|+ (εs2 − D2)|s2|
= −ks1s2

1 − ks2s2
2 + s1ddis1 + s2ddis2 − D1|s1| − D2|s2|

(52)

In terms of |ddis1| ≤ D1 and |ddis2| ≤ D2, we obtain

s1ddis1 − D1|s1| ≤ 0
s2ddis2 − D2|s2| ≤ 0

(53)

Thus, .
V ≤ −ks1s2

1 − ks2s2
2 (54)

When s 6= [0, 0]T, it is clear that
.
V is negative. Hence, the system will converge to

the sliding surface and reach the equilibrium asymptotically along the sliding surface.
Therefore, the in-plane libration angles could converge to the desired state with u1 and u2.

5. Simulation Results

To verify the results of theoretical analysis and the effectiveness of the designed con-
troller, simulations are carried out with initial physical parameters shown in Equation (29).
The simulation results of the equilibrium configuration E1 are shown in Section 5.1. Those
of the system with control are shown in Section 5.2.
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5.1. Simulations for Equilibrium Configuration

In the following simulation, it is assumed that the initial state deviates from the equi-
librium state and the tethers are tensioned. The physical parameters shown in Equation (29)
and the initial values [d1, d′1, θ1, θ′1, d2, d′2, θ2, θ′2] = [100.1, 0, 1.5, 0, 8.7, 0, 1.4, 0] are used for
the numerical simulation of Equations (9)–(12). The results are shown as follows:

Figure 4 shows the variations of the generalized coordinate Xs. It can be found that
d1 and d2 show large libration amplitudes, which are driven by ddis1 and ddis2, and their
maximum values are 100.621 and 9.121. Since the initial condition deviates from the
configuration E1 and the tether is tensioned, the tether length will change at the beginning,
so that d′1 and d′2 are non-zero and ddis1 and ddis2 occur. When the system reaches the
equilibrium state at f = 0.8, the tether length and the other coordinates tend to be stable.
The equilibrium positions of d1 and d2 are equal to 100.487 and 8.9869, respectively, while
those of θ1 and θ2 are equal to π/2, which is in good agreement with the analysis results.
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Figure 4. Variations of the generalized coordinates: (a) d1; (b) d2; (c) θ1; (d) θ2.

It can be seen from Figure 5 that when the system moves towards the equilibrium
state, the variations of tensions in the two segments of tethers show similar tendencies to
d1 and d2 at the initial moment. When the equilibrium is reached, the tether tensions are
also close to the value of Fl1e and Fl2e. They vary periodically with respect to f . As a result,
the simulation results for equilibrium configuration support those of theoretical analysis as
exhibited in Section 3.2.
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5.2. Simulations for Libration Controller

As can be seen from the simulation results in Section 5.1, the changes of each gener-
alized coordinate at the initial moment are obvious. The large libration amplitudes may
result in additional fuel consumption and configuration failure. So, it is necessary to control
the variations. To verify the effect of the libration controller, the controller parameters as
selected as follows:

cs1 = 10, εs1 = 0.01, ks1 = 10
cs2 = 10, εs2 = 0.01, ks2 = 10

(55)

Figure 6 shows the variations of generalized coordinates with the action of the de-
signed controller. It can be seen from the figures that the system reaches the desired state
at f = 0.8. The librations of the in-plane angles are effectively suppressed. Compared
with the results in Figure 4, the in-plane angles are well maintained at π/2 to achieve the
purpose of fuel saving. At the same time, the librations along the tether length at the initial
moment are alleviated. It can be seen from Equations (9)–(12) that the in-plane angles
and librations along the tether length are coupled with each other. When the former is
suppressed, it is easy to stabilize the variations of the tether length.

Figure 7 shows the variations of the tethers’ tension under the action of controller
compared with the result of Figure 5. The variation trends are almost the same as those
of d1 and d2. This is due to the fact that when the system is in equilibrium, Fl1 and Fl2 are
approximately the linear function of d1 and d2 whose slope is the stiffness coefficient of
the tether.

The control results corresponding to those in Figures 6 and 7 are listed in Table 1. It
can be seen from the table that the maximum values of the controlled variables after control
are all smaller than those before control. This shows that the librations of the controlled
variables are suppressed and the effectiveness of the libration controller is confirmed. In
addition, it takes almost the same time for all the variables to approach the equilibrium
state before and after control. On the other hand, adjusting the controller parameters can
allow the system to reach the desired state faster.

Figure 8 shows the variations of the sliding mode surfaces. Figure 9 shows the
variations of the control forces u1 and u2. When s1 and s2 approach zero, θ1 and θ2 reach the
desired state and the air jets stop working. It can be seen from Figure 9 that u1 is positive
and changes along the xo-axis of the orbit frame while u2 varies in the negative direction of
the xo-axis. To satisfy this control requirement and guarantee the desired performance, the
tug and the sub-satellite are required to provide two opposing control torques to force the
in-plane libration angles to the desired state.
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Figure 6. Variations of the generalized coordinates with and without control: (a) d1; (b) d2; (c) θ1; (d) θ2.
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Table 1. Performance comparison between the controlled variables before and after control.

Variables Maximum Value
without Control

Maximum Value
with Control

d1 100.621 (m) 100.482 (m)
d2 9.121 (m) 8.980 (m)
θ1 1.6519 (rad) 1.5708 (rad)
θ2 1.6930 (rad) 1.5708 (rad)
Fl1 130.146 (N) 125.297 (N)
Fl2 129.745 (N) 124.850 (N)
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f

s 1

f

s 2

f

u
1

(N
)

f

u
2

(N
)

Figure 9. Variations of the control forces: (a) u1; (b) u2.

Table 2 gives the statistical statements of Monte Carlo results about maximum con-
trol values and settling times. The random initial value range of each variable is set as
d1 ∈ [99.8, 100.2], d2 ∈ [8.2, 8.8], θ1 ∈ [1.4, 1.7], and θ2 ∈ [1.4, 1.7]. All the cases can converge
within f = 1.05.
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Table 2. Statistical statements of Monte Carlo results.

Number Maximum Control
Values (u1)

Maximum Control
Values (u2)

Settling
Time Number Maximum Control

Values (u1)
Maximum Control

Values (u2)
Settling

Time

1 5.3113 2.7763 0.85 26 5.0009 4.3501 0.77

2 4.8808 2.6520 0.87 27 9.1271 3.7823 0.89

3 3.9296 1.6403 0.82 28 1.0997 4.3210 0.79

4 1.1259 2.9257 0.78 29 5.9695 3.4041 0.86

5 17.5118 2.6065 0.97 30 13.4755 3.6302 0.98

6 4.5052 2.6899 0.84 31 0.9988 4.3829 0.72

7 3.9099 2.1041 0.87 32 18.5756 4.1907 1

8 23.4981 2.8793 1.03 33 1.2196 4.2315 0.71

9 9.7099 3.6143 0.93 34 2.1536 4.1356 0.87

10 2.9807 2.9669 0.84 35 2.8406 3.5581 0.74

11 9.0193 1.7830 0.91 36 5.4548 2.1753 0.85

12 22.0454 3.8974 1.03 37 20.7834 2.2356 1

13 10.2877 1.0020 0.91 38 21.7675 3.8868 1.03

14 3.0421 3.9762 0.67 39 6.7766 3.8235 0.83

15 12.9003 3.2324 0.94 40 3.2731 2.4333 0.69

16 18.3562 3.5349 1 41 15.2439 2.4094 0.97

17 4.3885 2.5658 0.84 42 4.5732 3.3041 0.83

18 23.1578 2.1886 1.04 43 3.2812 2.1940 0.78

19 2.0496 2.8360 0.73 44 3.6449 4.2722 0.80

20 12.4655 1.3433 0.93 45 13.9039 3.0007 0.97

21 4.7030 1.6657 0.84 46 5.8025 3.1464 0.81

22 17.4816 2.0840 0.98 47 5.2472 3.6166 0.84

23 12.4809 1.1169 0.94 48 5.3351 3.9363 0.79

24 5.6282 1.9968 0.84 49 17.3646 2.7448 0.99

25 2.4166 2.1073 0.83 50 14.0092 2.4622 0.96

6. Conclusions

This paper develops a two-segment tethered towing system. A dynamic model is
derived in the orbit frame. A set of equilibrium solutions are obtained based on the in-plane
simplified model by considering the flexibility of the tethers. An in-plane libration controller
is proposed by using the sliding mode control approach, where the equilibrium solution is
taken as a desired state. Simulations with control and without control are performed to
evaluate the performance of the controller. The following conclusions are drawn:

(1) Seven sets of equilibrium configurations are given. The configuration in which the tug,
sub-satellite, and debris remain in a straight line along the local horizontal is stable.

(2) An in-plane libration controller is designed. According to the Lyapunov function,
the system will converge to the sliding surface asymptotically. The system will reach
the equilibrium asymptotically with the action of the designed libration controller.
It can be seen from the Monte Carlo results that the control can converge within a
short time.

(3) It can be found from the simulation results that the librations in the direction of
tether length can be effectively suppressed with the suppression of the oscillations
of the in-plane angles. This is attributed to the coupling characteristics between
in-plane angles and the tether length. As a result, the system under the action of the
designed controller can reach the desired state while the librations of in-plane angles
are effectively suppressed.
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