Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = in situ aeration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1722 KB  
Article
Design and Construction of an Aerated Accumulation Bioreactor for Solid Waste Treatment
by Margarita Ramírez-Carmona, Leidy Rendón-Castrillón, Carlos Ocampo-López and Valentina Álvarez-Flórez
Processes 2025, 13(7), 2312; https://doi.org/10.3390/pr13072312 - 21 Jul 2025
Cited by 2 | Viewed by 1448
Abstract
Aerated accumulation bioreactors represent a promising alternative for the aerobic bioremediation of solid contaminated substrates. However, achieving homogeneous mixing and effective air distribution remains a key design challenge in solid-phase systems. This study presents the design and construction of a novel pilot-scale aerated [...] Read more.
Aerated accumulation bioreactors represent a promising alternative for the aerobic bioremediation of solid contaminated substrates. However, achieving homogeneous mixing and effective air distribution remains a key design challenge in solid-phase systems. This study presents the design and construction of a novel pilot-scale aerated bioreactor equipped with an angled-paddle agitation system, specifically developed to improve solid mixing and aeration. To evaluate the geometric configuration, a series of simulations were performed using the Discrete Element Method (DEM), with particle dynamics analyzed through the Lacey Mixing Index (LMI). Four paddle angles (0°, 15°, 45°, and 55°) were compared, with the 45° configuration achieving optimal performance, reaching LMI values above 0.95 in less than 15 s and maintaining high homogeneity at a filling volume of 70%. These results confirm that the paddle angle significantly influences mixing efficiency in granular media. While this work focuses on engineering design and DEM-based validation, future studies will include experimental trials to evaluate biodegradation kinetics. The proposed design offers a scalable and adaptable solution for ex situ bioremediation applications. This work reinforces the value of integrating DEM simulations early in the bioreactor development process and opens pathways for further optimization and implementation in real-world environmental remediation scenarios. Full article
(This article belongs to the Special Issue Bioreactor Design and Optimization Process)
Show Figures

Figure 1

23 pages, 16092 KB  
Article
Structural Performance and Failure Mechanisms in Bend Loading of Steel-Aerated Concrete Fire Wall Composite Panels
by Matthias Weiss, Xinyu Hu, Michael Pereira and Peng Zhang
Buildings 2025, 15(8), 1338; https://doi.org/10.3390/buildings15081338 - 17 Apr 2025
Cited by 1 | Viewed by 1070
Abstract
Modularised wall panels are increasingly used in building and construction. A new double-skin composite (DSC) wall system technology uses clinch seams to combine two roll-formed open section profiles into a hollow steel shell that is then filled with a light-weight concrete foam and [...] Read more.
Modularised wall panels are increasingly used in building and construction. A new double-skin composite (DSC) wall system technology uses clinch seams to combine two roll-formed open section profiles into a hollow steel shell that is then filled with a light-weight concrete foam and can provide a fire-rated DSC solution for use in commercial and high-rise buildings. One important material parameter for the application is the panel performance in wind loading. This study presents a first fundamental analysis of the structural behaviour of the new DSC wall panel relevant to wind loading. For this, 3-point and 4-point bending tests combined with in situ camera analysis are performed and complimented with the analysis of seam strength and the concrete material parameters. The experimental results provide the first experimental evidence that the aerated concrete core material of the DSC panel only has a minor effect on the wall performance in bending. Most of the bending loads are absorbed by the tensile and compressive deformation of the steel outer shell and the shear deformation near the clinch seam. In this way, failure at maximum load is not initiated by concrete cracking but by steel sheet buckling or a mixed failure mode that combines steel buckling and seam opening. Full article
(This article belongs to the Special Issue Advances in Structural Techniques for Prefabricated Modular Buildings)
Show Figures

Figure 1

20 pages, 11233 KB  
Article
Capturing Free Surface Dynamics of Flows over a Stepped Spillway Using a Depth Camera
by Megh Raj K C, Brian M. Crookston and Daniel B. Bung
Sensors 2025, 25(8), 2525; https://doi.org/10.3390/s25082525 - 17 Apr 2025
Cited by 1 | Viewed by 1245
Abstract
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in [...] Read more.
Spatio-temporal measurements of turbulent free surface flows remain challenging with in situ point methods. This study explores the application of an inexpensive depth-sensing RGB-D camera, the Intel® RealSense™ D455, to capture detailed water surface measurements of a highly turbulent, self-aerated flow in the case of a stepped spillway. Ambient lighting conditions and various sensor settings, including configurations and parameters affecting data capture and quality, were assessed. A free surface profile was extracted from the 3D measurements and compared against phase detection conductivity probe (PDCP) and ultrasonic sensor (USS) measurements. Measurements in the non-aerated region were influenced by water transparency and a lack of detectable surface features, with flow depths consistently smaller than USS measurements (up to 32.5% less). Measurements in the clear water region also resulted in a “no data” region with holes in the depth map due to shiny reflections. In the aerated flow region, the camera effectively detected the dynamic water surface, with mean surface profiles close to characteristic depths measured with PDCP and within one standard deviation of the mean USS flow depths. The flow depths were within 10% of the USS depths and corresponded to depths with 80–90% air concentration levels obtained with the PDCP. Additionally, the depth camera successfully captured temporal fluctuations, allowing for the calculation of time-averaged entrapped air concentration profiles and dimensionless interface frequency distributions. This facilitated a direct comparison with PDCP and USS sensors, demonstrating that this camera sensor is a practical and cost-effective option for detecting free surfaces of high velocity, aerated, and dynamic flows in a stepped chute. Full article
(This article belongs to the Special Issue 3D Reconstruction with RGB-D Cameras and Multi-sensors)
Show Figures

Figure 1

15 pages, 1819 KB  
Article
Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain
by Steven R. Schultze, Jade Martin, Katie West, Laken Swinea and Benjamin J. Linzmeier
Atmosphere 2025, 16(4), 416; https://doi.org/10.3390/atmos16040416 - 3 Apr 2025
Viewed by 2215
Abstract
With more than half of the world already living in urban spaces—a number set to increase in the coming decades—the need is clear to understand urban microclimates and extremes. This study placed twenty MX2302a HOBOmobile weather microsensors placed in aerated housings across the [...] Read more.
With more than half of the world already living in urban spaces—a number set to increase in the coming decades—the need is clear to understand urban microclimates and extremes. This study placed twenty MX2302a HOBOmobile weather microsensors placed in aerated housings across the ~4 km2 of the campus of the University of South Alabama from September to November 2022 and recorded temperature, relative humidity, and dewpoint every minute during the study period. These sensors were placed in situ, which allowed for the diversity in land cover, canopy cover, and aspect—large microclimatic drivers—to be captured. Sensors were compared to a campus mesonet station, part of the South Alabama Mesonet, a member of the National Mesonet Program. During the study period, temperatures were found to vary as much as 13 °C at the same minute across campus, with substantial changes in humidities and dewpoints also found. For example, the campus mesonet may have read 32 °C, yet the sensors could read as low as 29 °C and as high as 42 °C at the same moment. This study shows that the world is far more complex than what is seen at the mesoscale under idealized conditions, and the implications for society are considered. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

15 pages, 6274 KB  
Article
New Refined Experimental Analysis of Fungal Growth in Degraded Bio-Based Materials
by Dmytro Kosiachevskyi, Kamilia Abahri, Isabelle Trinsoutrot-Gattin, Lisa Castel, Anne Daubresse, Mohend Chaouche and Rachid Bennacer
Processes 2024, 12(10), 2188; https://doi.org/10.3390/pr12102188 - 9 Oct 2024
Viewed by 1444
Abstract
When exposed to different building environmental conditions, bio-composite materials, such as hemp mortars, represent a risk of mold proliferation. This later plays a critical role in the biodeterioration of the materials when their physical properties are locally modified by the natural aging process. [...] Read more.
When exposed to different building environmental conditions, bio-composite materials, such as hemp mortars, represent a risk of mold proliferation. This later plays a critical role in the biodeterioration of the materials when their physical properties are locally modified by the natural aging process. The primary objectives of the present work are first to assess the evolution of the surface of contaminated mortar; second, to investigate an accurate DNA extraction method that could be used for both bio-composite mortars and their fiber sources collected in situ; then, to understand the process of the proliferation of mold strains on both hemp shives and hemp mortar; and finally, to compare mold strains present in these phases to show their relationship to mold contamination and their impact on human health. In situ hemp mortar contamination behavior was investigated in the region of Pau (France) two months after hemp mortar application in extreme conditions (high humidity, low temperature, no aeration), which did not match the standard conditions under which hemp mortar must be used. The SEM observations and FTIR and pH analyses highlighted the decrease in pH level and the presence of organic matter on the mortar surface. DNA sequencing results showed that hemp shives were the main source of fungal contamination of hemp mortar. A mold population analysis showed that the most dominant phylum was Ophistokonta, which represented 83.6% in hemp shives and 99.97% in hemp mortar. The Acrostalagmus genus representatives were the most abundant, with 42% in hemp shives and 96% in hemp mortar. The interconnection between the mold strain characteristics (particularly the ability to grow in extreme environments) and the presence of hemp mortar was emphasized. Full article
(This article belongs to the Topic Advances in Sustainable Materials and Products)
Show Figures

Figure 1

25 pages, 10411 KB  
Article
Low Strength Wastewater Treatment Using a Combined Biological Aerated Filter/Anammox Process
by Wanying Xie, Ji Li, Tao Song, Yong Li, Zhenlin Wang and Xiaolei Zhang
Water 2024, 16(19), 2821; https://doi.org/10.3390/w16192821 - 4 Oct 2024
Viewed by 2241
Abstract
To achieve the in situ capacity expansion of the post-denitrification biological aerated filter (BAF-DN), the integration of BAF with the anammox process (BAF/AX) was proposed. With the objective of maximizing retaining ammonia nitrogen, the operational optimization of BAF was achieved by two distinct [...] Read more.
To achieve the in situ capacity expansion of the post-denitrification biological aerated filter (BAF-DN), the integration of BAF with the anammox process (BAF/AX) was proposed. With the objective of maximizing retaining ammonia nitrogen, the operational optimization of BAF was achieved by two distinct strategies. The treatment performance of BAF demonstrated that the removal efficiencies of chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) was 66.3~67.3% and 4~12%, respectively, under conditions of low aeration intensity (0.4 m3·m−2·h−1) or a shortened empty bed residence time (EBRT) of 30 min. Residual NH4+-N in the BAF effluent served as the ammonia substrate for the subsequent anammox process, which was successfully launched by using ceramic particles and sponges as carriers. Notably, the sponge carrier facilitated a shorter start-up period of 41 to 44 days. Furthermore, the sponge-based anammox reactor exhibited a superior NH4+-N removal capacity (≥85.7%), under operations of a shorter EBRT of 40 min, low influent NH4+-N concentrations (≤30 mg/L), and COD levels of ≤67 mg/L. In addition, a comprehensive evaluation of the BAF/AX process was conducted, which considered performance, cost-effectiveness, and engineering feasibility. The performance results illustrated that the effluent quality met the standard well (with a COD level of ≤ 50 mg/L, and a TN of ≤3.1~10.5 mg/L). Following a comparison against the low aeration intensity operation, it was recommended to operate BAF at a low EBRT within the BAF/AX process. Consequently, the treated volume was double the volume of the standalone BAF-DN, synchronously achieving low costs (0.413 yuan/m3). Full article
(This article belongs to the Special Issue Advances in Biological Technologies for Wastewater Treatment)
Show Figures

Figure 1

64 pages, 5373 KB  
Review
Harmful Algal Blooms in Eutrophic Marine Environments: Causes, Monitoring, and Treatment
by Jiaxin Lan, Pengfei Liu, Xi Hu and Shanshan Zhu
Water 2024, 16(17), 2525; https://doi.org/10.3390/w16172525 - 5 Sep 2024
Cited by 92 | Viewed by 30583
Abstract
Marine eutrophication, primarily driven by nutrient over input from agricultural runoff, wastewater discharge, and atmospheric deposition, leads to harmful algal blooms (HABs) that pose a severe threat to marine ecosystems. This review explores the causes, monitoring methods, and control strategies for eutrophication in [...] Read more.
Marine eutrophication, primarily driven by nutrient over input from agricultural runoff, wastewater discharge, and atmospheric deposition, leads to harmful algal blooms (HABs) that pose a severe threat to marine ecosystems. This review explores the causes, monitoring methods, and control strategies for eutrophication in marine environments. Monitoring techniques include remote sensing, automated in situ sensors, modeling, forecasting, and metagenomics. Remote sensing provides large-scale temporal and spatial data, while automated sensors offer real-time, high-resolution monitoring. Modeling and forecasting use historical data and environmental variables to predict blooms, and metagenomics provides insights into microbial community dynamics. Control treatments encompass physical, chemical, and biological treatments, as well as advanced technologies like nanotechnology, electrocoagulation, and ultrasonic treatment. Physical treatments, such as aeration and mixing, are effective but costly and energy-intensive. Chemical treatments, including phosphorus precipitation, quickly reduce nutrient levels but may have ecological side effects. Biological treatments, like biomanipulation and bioaugmentation, are sustainable but require careful management of ecological interactions. Advanced technologies offer innovative solutions with varying costs and sustainability profiles. Comparing these methods highlights the trade-offs between efficacy, cost, and environmental impact, emphasizing the need for integrated approaches tailored to specific conditions. This review underscores the importance of combining monitoring and control strategies to mitigate the adverse effects of eutrophication on marine ecosystems. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

16 pages, 5857 KB  
Article
Effect of In Situ Aeration on Ultrafiltration Membrane Fouling Control in Treating Seasonal High-Turbidity Surface Water
by Jiaoying Luo, Yating Hu, Xishou Guo, Ao Wang, Chenghai Lin, Yaru Zhang, Haochun Wang, Yanrui Wang and Xiaobin Tang
Water 2024, 16(15), 2195; https://doi.org/10.3390/w16152195 - 2 Aug 2024
Cited by 4 | Viewed by 2883
Abstract
Direct ultrafiltration (UF) is anticipated to be a promising technology for rural water supply due to its stable permeate quality and ease of automatic operation & maintenance. However, seasonal high turbidity in the surface water resources caused severe membrane fouling, resulting in the [...] Read more.
Direct ultrafiltration (UF) is anticipated to be a promising technology for rural water supply due to its stable permeate quality and ease of automatic operation & maintenance. However, seasonal high turbidity in the surface water resources caused severe membrane fouling, resulting in the requirement of frequent cleaning of the UF process, and limiting the broad application of the direct UF in treating rural surface water. To address this issue, this study investigated the feasibility and mechanism of in situ aeration in alleviating the UF membrane fouling in treating surface water with high turbidity (200, 500, and 800 NTU). The results indicated that with the weak aeration (0.4 m3/(m2·min)), the concentration of polysaccharides accumulated on the membrane surface was high, and serious membrane fouling was observed. With medium aeration (0.8 and 1.2 m3/(m2·min)), bubble shear force could effectively reduce the foulants accumulated on the membrane surface to alleviate the membrane fouling. During the whole experiment, the optimal group (1.2 m3/(m2·min)) showed a 45% lower TMP compared to the control. However, strong aeration (1.6 m3/(m2·min)) caused floc breakage and was less conducive to the membrane fouling control compared to the medium aeration. Furthermore, under in situ aeration, the contents of polysaccharide accumulated on the membrane surface and deposited in the membrane pores were reduced by 8.85%~49.29%, and the structures of the cake layer turned out to be porous and permeable, implying that in situ aeration could significantly modify the structure and composition of the cake layer, contributing to the UF membrane fouling control in treating the seasonal high-turbidity surface water. These findings will provide novel approaches for the application of UF technology in rural water supply. Full article
(This article belongs to the Special Issue Application of Membrane-Based Technology in Water Treatment)
Show Figures

Figure 1

19 pages, 3863 KB  
Article
Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an
by Dianao Zhang, Huijuan Li, Xia Li, Dong Ao and Na Wang
Water 2024, 16(15), 2101; https://doi.org/10.3390/w16152101 - 25 Jul 2024
Cited by 4 | Viewed by 2166
Abstract
Methane (CH4) is one of the potent greenhouse gases emitted from municipal wastewater treatment plants. The characteristics of methane emission from municipal wastewater treatment plants (WWTPs) have attracted lots of concern from related researchers. The present work investigated the source of [...] Read more.
Methane (CH4) is one of the potent greenhouse gases emitted from municipal wastewater treatment plants. The characteristics of methane emission from municipal wastewater treatment plants (WWTPs) have attracted lots of concern from related researchers. The present work investigated the source of methanogens and methane emission properties from two WWTPs in Xi’an, and one is employed in an Orbal oxidation ditch, and the other is anaerobic/anoxic/oxic (A/A/O). The measurement of specific methanogenic activity (SMA) and coenzyme F420 concentration, together with Fluorescence in situ hybridization (FISH), was used to determine the amount and activity of methanogens in two WWTPs. Additionally, a combined activated sludge model was built and predicted the growth of methanogens and other key microorganisms in the sludge. The results showed that the average CH4 emission flux from the Orbal oxidation ditch (22.74 g CH4 /(m2·d)) was much higher than that from A/A/O (9.57 g CH4/(m2·d)). The methane emission factors in the Orbal oxidation ditch and A/A/O processes were 1.18 and 0.21 g CH4 /(m3 INF), respectively. These distinct methane emission characteristics between two WWTPs are mainly attributed to the higher activity and content of methanogens, as well as the discontinuous aeration in the Orbal oxidation ditch. Additionally, dissolved oxygen concentration, water temperature, and the presence of nitrate/nitrite were also important factors that influenced methane emission. The FISH analysis showed that Methanococcus was the dominant methanogen in both WWTPs. In addition, the combined model successfully simulated the growth of methanogens in WWTPs. Methanogens in WWTPs were mainly derived from the sewer system, and the cumulative effect led to an increase in the abundance of methanogens in activated sludge. The outcomes of this study provide new insights in the prediction and management of GHG emission from WWTPs. Full article
(This article belongs to the Special Issue Innovative Membrane Processes in Low-Carbon Wastewater Treatment)
Show Figures

Figure 1

14 pages, 2331 KB  
Article
Microcystis aeruginosa Removal and Simultaneous Control of Algal Organic Matter (AOM) Release Using an Electro-Flocculation–Electro-Fenton (EC-EF) System without Chemical Addition
by Wendi Shen, Lili An, Xin Xu, Feng Yan and Ruihua Dai
Water 2024, 16(1), 162; https://doi.org/10.3390/w16010162 - 31 Dec 2023
Cited by 3 | Viewed by 2849
Abstract
Harmful cyanobacterial blooms pose a serious environmental threat to global water ecology and drinking water safety. Microcystis aeruginosa, a dominant cyanobacterial species in cyanobacterial blooms, was removed using the electro-flocculation–electro-Fenton (EC-EF) technology. In the EC-EF system, the iron anode was used as [...] Read more.
Harmful cyanobacterial blooms pose a serious environmental threat to global water ecology and drinking water safety. Microcystis aeruginosa, a dominant cyanobacterial species in cyanobacterial blooms, was removed using the electro-flocculation–electro-Fenton (EC-EF) technology. In the EC-EF system, the iron anode was used as a sacrificial anode to produce iron ions in situ. Combining the aeration device with the graphite felt cathode as one unit realizes a direct and effective air supply to the cathode, and improves the electrical Fenton efficiency for generating oxidizing groups such as hydroxyl radicals. The cyanobacteria removal efficiency was up to 94.6% under optimal process conditions with a current density of 1.08 mA/cm2, an electrolysis time of 5 min, and an aeration flow rate of 0.06 L·min−1. At the same time, the microcystins (MCs) and total organic carbon (TOC) content in the water were controlled. The mechanism of cyanobacterial cell removal using this EC-EF system was investigated via characterization of cyanobacterial cells and flocs and cell membrane permeability analysis. The moderate oxidation and iron hydroxide encapsulation of this system are both beneficial to maintaining the integrity of cyanobacterial cells. The results demonstrated that EC-EF is a chemical-free and eco-friendly cyanobacteria removal technology. Full article
Show Figures

Figure 1

14 pages, 2668 KB  
Article
Application of Landfill Gas-Water Joint Regulation Technology in Tianjin Landfill
by Jun Liu, Tianqi Pan, Huihui Zhao, Yan Guo, Guanyi Chen and Li’an Hou
Processes 2023, 11(8), 2382; https://doi.org/10.3390/pr11082382 - 8 Aug 2023
Cited by 3 | Viewed by 2237
Abstract
Landfills have long been widely used to dispose of Municipal Solid Waste (MSW). However, many landfills have faced early closure issues in recent years due to overload operations. Although in-situ aeration technology can quickly stabilize MSW, low oxygen utilization rates present a general [...] Read more.
Landfills have long been widely used to dispose of Municipal Solid Waste (MSW). However, many landfills have faced early closure issues in recent years due to overload operations. Although in-situ aeration technology can quickly stabilize MSW, low oxygen utilization rates present a general problem that results in high energy-consuming and operating costs. This research aims to improve oxygen utilization efficiency by observing the dynamic respiratory index and the removal of contaminants. Three continuous reactors were constructed and designed with targeted aeration and re-circulation schemes for different landfill ages. The results show that a well-designed aerobic, semi-aerobic, and anaerobic reactor can fully degrade the organic components of MSW with different landfill ages, and the quantity of waste has been reduced by more than 60%. Additionally, it was disclosed that gas-water joint technology has a promotional effect on activating microorganisms. Full article
(This article belongs to the Special Issue Remediation Strategies for Soil and Water)
Show Figures

Figure 1

12 pages, 2409 KB  
Article
Stream Water Quality Control and Odor Reduction through a Multistage Vortex Aerator: A Novel In Situ Remediation Technology
by Arnab Ghosh, Mijeong Choi, Dain Yoon, Sunghoon Kim, Jaebum Kim, Jurng-Jae Yee and Sunghyuk Park
Water 2023, 15(11), 1982; https://doi.org/10.3390/w15111982 - 23 May 2023
Cited by 6 | Viewed by 3451
Abstract
In this work, we report the restoration of a polluted urban stream by employing the multistage vortex aerator (MVA), an in-line mixer device that improves the dissolved oxygen concentration of polluted streams and accelerates the water purification rate. It was observed during the [...] Read more.
In this work, we report the restoration of a polluted urban stream by employing the multistage vortex aerator (MVA), an in-line mixer device that improves the dissolved oxygen concentration of polluted streams and accelerates the water purification rate. It was observed during the field experiment that the dissolved oxygen was enhanced up to 7.05 mg/L and the water quality was improved to a good grade. As a result, the complex odor was successfully eliminated and reduced by up to 71.9%, while the water quality grade was also improved by more than two grades on average. Stream water quality indicators monitored for twelve months revealed high removal rates of total phosphorous (56.4%) and suspended solids (61%). The study demonstrated MVA as a promising eco-friendly technology for significant improvement in urban stream water quality. Moreover, the MVA process creates no secondary pollution and is believed to be a sustainable treatment option for odorous water bodies. Overall, the MVA process is technically feasible for implementation, and this study provides a specific reference as a basis for the treatment of polluted water bodies in urban settings. Full article
Show Figures

Figure 1

13 pages, 4043 KB  
Article
Static Aerated Composting of African Swine Fever Virus-Infected Swine Carcasses with Rice Hulls and Sawdust
by Mark Hutchinson, Hoang Minh Duc, Gary A. Flory, Pham Hong Ngan, Hoang Minh Son, Tran Thi Khanh Hoa, Nguyen Thi Lan, Dale W. Rozeboom, Marta D. Remmenga, Matthew Vuolo, Robert Miknis, Lori P. Miller, Amira Burns and Renée Flory
Pathogens 2023, 12(5), 721; https://doi.org/10.3390/pathogens12050721 - 16 May 2023
Cited by 2 | Viewed by 3138
Abstract
Identifying and ensuring the inactivation of the African Swine Fever virus in deadstock is a gap in the swine industry’s knowledge and response capabilities. The results of our study demonstrate that ASFv in deadstock was inactivated using static aerated composting as the carcass [...] Read more.
Identifying and ensuring the inactivation of the African Swine Fever virus in deadstock is a gap in the swine industry’s knowledge and response capabilities. The results of our study demonstrate that ASFv in deadstock was inactivated using static aerated composting as the carcass disposal method. Replicated compost piles with whole market hogs and two different carbon sources were constructed. In-situ bags containing ASFv-infected spleen tissue were placed alongside each of the carcasses and throughout the pile. The bags were extracted at days 0, 1, 3, 7, 14, 28, 56, and 144 for ASFv detection and isolation. Real-time PCR results showed that DNA of ASFv was detected in all samples tested on day 28. The virus concentration identified through virus isolation was found to be below the detection limit by day 3 in rice hulls and by day 7 in sawdust. Given the slope of the decay, near-zero concentration with 99.9% confidence occurred at 5.0 days in rice hulls and at 6.4 days in sawdust. Additionally, the result of virus isolation also showed that the virus in bone marrow samples collected at 28 days was inactivated. Full article
(This article belongs to the Special Issue An Update on African Swine Fever)
Show Figures

Figure 1

13 pages, 12129 KB  
Article
Influence of Biological Manganese Oxides on the Removal of Organic Matter and Ammonia in Micro-Polluted Source Water
by Lichao Nengzi, Ying Jiang, Zhirong Fang, Qiyuan Hu, Guanglei Qiu and Haitao Li
Water 2023, 15(8), 1624; https://doi.org/10.3390/w15081624 - 21 Apr 2023
Cited by 6 | Viewed by 2572
Abstract
In order to improve the removal efficiency of refractory organic matters in micro-polluted source water, biological manganese oxides (BMOs) were generated in situ in the biological aerated filter (BAF) (BAF 2#), which could oxidize the refractory organic matters into biodegradable organic [...] Read more.
In order to improve the removal efficiency of refractory organic matters in micro-polluted source water, biological manganese oxides (BMOs) were generated in situ in the biological aerated filter (BAF) (BAF 2#), which could oxidize the refractory organic matters into biodegradable organic matters. CODMn and NH4+-N in the effluent of BAF 2# both stabilized on the 39th day, while CODMn and NH4+-N in the effluent of the control BAF (BAF 1#) stabilized on the 38th and 42nd days, respectively. In the steady phase, the removal rates of CODMn and NH4+-N in BAF 1# were 41.51% and 94.79%, respectively, while in BAF 2#, they were 54.52% and 95.55%, respectively. BMOs generated in BAF 2# evidently improved the efficiency of CODMn removal. With the increase in the influent Mn2+ in BAF 2#, the rate of CODMn removal was gradually improved to 63.60%, while the efficiency of NH4+-N removal was slightly improved, CODMn was evidently removed in each section of the filter layer, and ammonia was mainly removed in the 0~0.8 m layer of the filter. CODMn was evidently removed in each section of the filter layer, and NH4+-N was mainly removed in the 0~0.8 m layers of the filter. Biological CODMn, Mn2+, and NH4+-N removal all followed the first-order kinetic reaction. As the influent Mn2+ gradually increased from 0 to about 0.5, 1, and 2 mg/L, the efficiency of CODMn removal along the filter layer was significantly improved, but the efficiency of NH4+-N removal was slightly improved. The kinetic constant k of biological CODMn removal significantly increased, while the kinetic constant k of biological Mn2+ and NH4+-N removal gradually increased. Full article
Show Figures

Figure 1

18 pages, 4480 KB  
Article
Analysis of Water-Lifting Aerator Performance Based on the Volume of Fluid Method
by Zhiying Chang and Tinglin Huang
Water 2023, 15(5), 991; https://doi.org/10.3390/w15050991 - 5 Mar 2023
Cited by 2 | Viewed by 3079
Abstract
Water quality deterioration is a major problem faced by reservoirs globally, owing to the inflow of pollution from industrial and municipal activities. Water-lifting aeration is an in situ water quality improvement technology that mixes and oxygenates deep water bodies in reservoirs to improve [...] Read more.
Water quality deterioration is a major problem faced by reservoirs globally, owing to the inflow of pollution from industrial and municipal activities. Water-lifting aeration is an in situ water quality improvement technology that mixes and oxygenates deep water bodies in reservoirs to improve pollution control efficiency and water quality. While previous studies have mainly focused on the mixing process in the reservoir outside the water-lifting aerator (WLA), knowledge of the internal flow remains limited. In this study, a two-phase flow within a WLA system was numerically studied using the volume of fluid (VOF) method to comprehensively analyze the internal two-phase flow characteristics and the influence on the water-lifting and oxygenation performance of the system. The statistical analysis results showed that increasing the aeration chamber volume enhanced the bottom oxygenation performance by 27% because of the prolonged time of the deflector plate outlet outflow. Additionally, increasing the air release rate enhanced the water-lifting performance by 47%, which was induced by the shortened air piston release period. This study demonstrates the internal flow mechanism of the WLA and provides technical support for parameter optimization design, which has significant scientific research and engineering application value. Full article
Show Figures

Figure 1

Back to TopTop