Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Time
2.2. Equipment and Installation
2.3. Analysis
3. Results
3.1. Land Cover Differences
3.2. Aspect Differences
3.3. “Hot Sunny” Example
3.4. “Early Fall Chill” Example
4. Discussion
4.1. Implications for Atmospheric Sciences
4.2. Implications for Society (Heat Index Example)
4.3. Implications for Urban Microclimates
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blum, A. The Weather Machine: A Journey Inside the Forecast; Ecco: Manhattan, NY, USA, 2019; 224p. [Google Scholar]
- Muñoz-Esparza, D.; Kosović, B.; Mirocha, J.; van Beeck, J. Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Bound.-Layer Meteorol. 2014, 153, 409–440. [Google Scholar] [CrossRef]
- Schultze, S.R.; Sabbatini, P. Implications of a climate-changed atmosphere on cool-climate viticulture. J. Appl. Meteorol. Climatol. 2019, 58, 1141–1153. [Google Scholar]
- Wiersema, D.J.; Lundquist, K.A.; Chow, F.K. Mesoscale to microscale simulations over complex terrain with the immersed boundary method in the Weather Research and Forecasting Model. Mon. Weather Rev. 2020, 148, 577–595. [Google Scholar]
- Haupt, S.E.; Kosovic, B.; Shaw, W.; Berg, L.K.; Churchfield, M.; Cline, J.; Draxl, C.; Ennis, B.; Koo, E.; Kotamarthi, R.; et al. On bridging a modeling scale gap: Mesoscale to microscale coupling for wind energy. Bull. Am. Meteorol. Soc. 2019, 100, 2533–2550. [Google Scholar]
- Schultze, S.R.; Campbell, M.N.; Walley, S.; Pfeiffer, K.; Wilkins, B. Exploration of sub-field microclimates and winter temperatures: Implications for precision agriculture. Int. J. Biometeorol. 2021, 65, 1043–1052. [Google Scholar] [PubMed]
- Portela, J.R.D.; Galvez, G.H.; Hernandez-Escobedo, Q.; Flores, R.S.; Martínez, O.S.; Danguillecourt, O.L.; de Paz, P.L.; Perea-Moreno, A.-J. Microscale Wind Assessment, Comparing Mesoscale Information and Observed Wind Data. Sustainability 2022, 14, 11991. [Google Scholar] [CrossRef]
- World Bank. Urban Development Overview. 2023. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 20 July 2023).
- Chow, F.K.; Schär, C.; Ban, N.; Lundquist, K.A.; Schlemmer, L.; Shi, X. Crossing multiple gray zones in the transition from mesoscale to microscale simulation over complex terrain. Atmosphere 2019, 10, 274. [Google Scholar] [CrossRef]
- Piroozfar, P.; Farr, E. Urban Heat Mitigation: Current and Future Trends. In The Routledge Companion to Ecological Design Thinking; Routledge: Abingdon, UK, 2022; pp. 150–160. [Google Scholar]
- Javanroodi, K.; Nik, V.M.; Giometto, M.G.; Scartezzini, J.L. Combining computational fluid dynamics and neural networks to characterize microclimate extremes: Learning the complex interactions between meso-climate and urban morphology. Sci. Total Environ. 2022, 829, 154223. [Google Scholar] [CrossRef]
- Burian, S.J.; Shepherd, J.M. Effect of urbanization on the diurnal rainfall pattern in Houston. Hydrol. Process. Int. J. 2005, 19, 1089–1103. [Google Scholar]
- Zhou, Y.; Shepherd, J.M. Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards 2010, 52, 639–668. [Google Scholar]
- Chatterjee, U.; Majumdar, S. Impact of land use change and rapid urbanization on urban heat island in Kolkata city: A remote sensing based perspective. J. Urban Manag. 2022, 11, 59–71. [Google Scholar] [CrossRef]
- Oke, T.R. City Size and Urban Heat Island. Atmos. Environ. 1973, 7, 769–779. [Google Scholar] [CrossRef]
- Ashcroft, M.B.; Gollan, J.R. Fine-resolution (25 m) topoclimatic grids of near-surface (5 cm) extreme temperatures and humidities across various habitats in a large (200 × 300 km) and diverse region. Int. J. Climatol. 2012, 32, 2134–2148. [Google Scholar]
- Barry, R.G.; Blanken, P.D. Microclimate and Local Climate; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Fiebrich, C.A.; Crawford, K.C. Automation: A Step toward Improving the Quality of Daily Temperature Data Produced by Climate Observing Networks. J. Atmos. Ocean. Technol. 2009, 26, 1246–1260. [Google Scholar] [CrossRef]
- Cassano, J.J. Weather Bike: A Bicycle-Based Weather Station for Observing Local Temperature Variations. Bull Am. Meteor. Soc. 2014, 95, 205–209. [Google Scholar]
- Oke, T.R. Boundary Layer Climates; Routledge: Abingdon, UK, 2002; 435p. [Google Scholar]
- Oke, T.R. The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 1982, 108, 1–24. [Google Scholar] [CrossRef]
- Mills, G. Luke Howard and the climate of London. Weather 2008, 63, 153–157. [Google Scholar] [CrossRef]
- Howard, L. The Climate of London: Deduced from Meteorological Observations; Cambridge University Press: Cambridge, UK, 2012; Volume 1. [Google Scholar]
- Stewart, I.D. Why should urban heat island researchers study history? Urban Clim. 2019, 30, 100484. [Google Scholar]
- Hsu, S.I. Variation of an urban heat island in Phoenix. Prof. Geogr. 1984, 36, 196–200. [Google Scholar] [CrossRef]
- Brazel, A.; Gober, P.; Lee, S.J.; Grossman-Clarke, S.; Zehnder, J.; Hedquist, B.; Comparri, E. Determinants of changes in the regional urban heat island in metropolitan Phoenix (Arizona, USA) between 1990 and 2004. Clim. Res. 2007, 33, 171–182. [Google Scholar] [CrossRef]
- Parlow, E.; Vogt, R.; Feigenwinter, C. The urban heat island of Basel—Seen from different perspectives. DIE ERDE 2014, 145, 96–110. [Google Scholar]
- Oke, T.R.; Mills, G.; Christen, A.; Voogt, J.A. Urban Climates; Cambridge University Press: Cambridge, UK, 2017. [Google Scholar]
- Almeida, C.R.D.; Teodoro, A.C.; Gonçalves, A. Study of the urban heat island (UHI) using remote sensing data/techniques: A systematic review. Environments 2021, 8, 105. [Google Scholar] [CrossRef]
- Balchin, W.G.V.; Pye, N. A micro-climatological investigation of bath and the surrounding district. Q. J. R. Meteorol. Soc. 1947, 73, 297–323. [Google Scholar]
- Balchin, W.G.V.; Pye, N. Local rainfall variations in Bath and the surrounding district. Q. J. R. Meteorol. Soc. 1948, 74, 361–378. [Google Scholar]
- Balchin, W.G.V.; Pye, N. Observations on local temperature variations and plant response. J. Ecol. 1950, 38, 345–353. [Google Scholar]
- Jha, M.; Marpu, P.R.; Chau, C.K.; Armstrong, P. Design of sensor network for urban micro-climate monitoring. In Proceedings of the 2015 IEEE First International Smart Cities Conference (ISC2), Guadalajara, Mexico, 25–28 October 2015; pp. 1–4. [Google Scholar]
- Chapman, L.; Bell, C.; Bell, S. Can the crowdsourcing data paradigm take atmospheric science to a new level? A case study of the urban heat island of London quantified using Netatmo weather stations. Int. J. Climatol. 2017, 37, 3597–3605. [Google Scholar] [CrossRef]
- Ramakreshnan, L.; Aghamohammadi, N.; Fong, C.S.; Ghaffarianhoseini, A.; Wong, L.P.; Sulaiman, N.M. Empirical study on temporal variations of canopy-level Urban Heat Island effect in the tropical city of Greater Kuala Lumpur. Sustain. Cities Soc. 2019, 44, 748–762. [Google Scholar]
- Kalogeropoulos, G.; Dimoudi, A.; Toumboulidis, P.; Zoras, S. Urban Heat Island and Thermal Comfort Assessment in a Medium-Sized Mediterranean City. Atmosphere 2022, 13, 1102. [Google Scholar] [CrossRef]
- WMO. Guidance on Measuring, Modelling and Monitoring the Canopy Layer Urban Heat Island (CL-UHI); WMO-No. 1292; WMO: Geneva, Switzerland, 2023. [Google Scholar]
- Schultze, S.R.; Martin, J.; West, K.; Swinea, L.; Linzmeier, B.J. Urban microclimates in action! High resolution temperature and humidity differences across diverse urban terrain. In Proceedings of the Poster for 2022 American Geophysical Union Annual Meeting, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Goolsby, I.; Martin, J.; West, K.; Swinea, L.; Linzmeier, B.J.; Schultze, S.R. Urban microclimates in action! High resolution temperature and humidity differences across diverse urban terrain. In Proceedings of the Poster for 2024 American Association of Geographers Annual Meeting, Honolulu, HI, USA, 16–20 April 2024. [Google Scholar]
- Köppen, W. Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr. Z. 1900, 6, 593–611. [Google Scholar]
- Geiger, R.; Aron, R.H.; Todhunter, P. The Climate Near the Ground; Rowman & Littlefield: Lanham, MD, USA, 2009. [Google Scholar]
- Svoboda, M.; LeComte, D.; Hayes, M.; Heim, R.; Gleason, K.; Angel, J.; Rippey, B.; Tinker, R.; Palecki, M.; Stooksbury, D.; et al. The drought monitor. Bull. Am. Meteorol. Soc. 2002, 83, 1181–1190. [Google Scholar]
- US Drought Monitor. Mobile (MOB) NWS WFO Drought Time Series Graph. 2023. Available online: https://droughtmonitor.unl.edu/dmData/Timeseries.aspx (accessed on 20 July 2023).
- Dewitz, J. National Land Cover Database (NLCD) 2019 Products [Data Set]; U.S. Geological Survey; Earth Resources Observation and Science (EROS) Center: Sioux Falls, SD, USA, 2021.
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Kimball, S.; Montalvo, C.; Mulekar, M. Evaluating temperature measurements of the iMET-XQ, in the field, under varying atmospheric conditions. Atmosphere 2020, 11, 335. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Elmarakby, E.; Khalifa, M.; Elshater, A.; Afifi, S. Tailored methods for mapping urban heat islands in Greater Cairo Region. Ain Shams Eng. J. 2022, 13, 101545. [Google Scholar] [CrossRef]
- Cureau, R.J.; Pigliautile, I.; Pisello, A.L. Seasonal and diurnal variability of a water body’s effects on the urban microclimate in a coastal city in Italy. Urban Clim. 2023, 49, 101437. [Google Scholar] [CrossRef]
- Fortuniak, K.; Kłysik, K.; Wibig, J. Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol. 2006, 84, 91–101. [Google Scholar] [CrossRef]
- Fenner, D.; Meier, F.; Scherer, D.; Polze, A. Spatial and temporal air temperature variability in Berlin, Germany, during the years 2001–2010. Urban Clim. 2014, 10, 308–331. [Google Scholar] [CrossRef]
- Fenner, D.; Christen, A.; Grimmond, S.; Meier, F.; Morrison, W.; Zeeman, M.; Barlow, J.; Birkmann, J.; Blunn, L.; Chrysoulakis, N.; et al. urbisphere-Berlin Campaign: Investigating Multiscale Urban Impacts on the Atmospheric Boundary Layer. Bull. Am. Meteor. Soc. 2024, 105, E1929–E1961. [Google Scholar] [CrossRef]
- Clark, W.A.V. Definitive theories or alternative perspectives: Comments on urban geography and social theory. Urban Geogr. 1988, 9, 252–254. [Google Scholar] [CrossRef]
- Qi, L.; Chantler, M.J.; Siebert, J.P.; Dong, J. The joint effect of mesoscale and microscale roughness on perceived gloss. Vis. Res. 2015, 115, 209–217. [Google Scholar] [CrossRef]
- Wong, D.W. The modifiable areal unit problem (MAUP). In WorldMinds: Geographical Perspectives on 100 Problems: Commemorating the 100th Anniversary of the Association of American Geographers 1904–2004; Springer: Dordrecht, The Netherlands, 2004; pp. 571–575. [Google Scholar]
- Dark, S.J.; Bram, D. The modifiable areal unit problem (MAUP) in physical geography. Prog. Phys. Geogr. 2007, 31, 471–479. [Google Scholar] [CrossRef]
- ESPN. Alabama—Auburn Football Game, 2013, Box Score. 2013. Available online: https://www.espn.com/college-football/boxscore/_/gameId/333340002 (accessed on 24 July 2023).
- AHSAA. Heat Index Exercise Restrictions. 2023. Available online: https://www.ahsaa.com/Portals/0/PDF%27s/AHSAA/Safety/2024%20HEAT%20INDEX%20EXERCISE%20RESTRICTIONS.pdf?ver=9iIB3gxVgff67Dkl8gpdSg%3D%3D×tamp=1716899684958 (accessed on 21 July 2023).
- Francis, K.; Feinstein, R.; Brasher, J. Heat illness in football players in Alabama. Ala. Med. J. Med. Assoc. State Ala. 1991, 60, 10–14. [Google Scholar]
- WSFA. High School Football Player Dies After Collapsing from Heatstroke, Family Says. 2021. Available online: https://www.wsfa.com/2021/08/12/high-school-football-player-dies-after-collapsing-heatstroke-family-says/ (accessed on 23 July 2023).
- van der Linden, L.; Hogan, P.; Maronga, B.; Hagemann, R.; Bechtel, B. Crowdsourcing air temperature data for the evaluation of the urban microscale model PALM—A case study in central Europe. PLoS Clim. 2023, 2, e0000197. [Google Scholar]
- Rothfusz, L.P. The Heat Index Equation (or, More Than You Ever Wanted to Know About Heat Index); National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology: Fort Worth, TX, USA, 1990.
- Allen-Dumas, M.R.; Rose, A.N.; New, J.R.; Omitaomu, O.A.; Yuan, J.; Branstetter, M.L.; Sylvester, L.M.; Seals, M.B.; Carvalhaes, T.M.; Adams, M.B.; et al. Impacts of the morphology of new neighborhoods on microclimate and building energy. Renew. Sustain. Energy Rev. 2020, 133, 110030. [Google Scholar]
- Montelpare, S.; D’Alessandro, V.; Lops, C.; Costanzo, E.; Ricci, R. A Mesoscale-Microscale approach for the energy analysis of buildings. J. Phys. Conf. Ser. 2019, 1224, 012022. [Google Scholar]
- Hsu, A.; Sheriff, G.; Chakraborty, T.; Manya, D. Disproportionate exposure to urban heat island intensity across major US cities. Nat. Commun. 2021, 12, 2721. [Google Scholar] [CrossRef]
- Golden, J.S. The built environment induced urban heat island effect in rapidly urbanizing arid regions–a sustainable urban engineering complexity. Environ. Sci. 2004, 1, 321–349. [Google Scholar]
- Marks, D.; Connell, J. Unequal and unjust: The political ecology of Bangkok’s increasing urban heat island. Urban Stud. 2023, 61, 2887–2907. [Google Scholar]
- Meehl, G.A.; Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 2004, 305, 994–997. [Google Scholar]
- Stillman, J.H. Heat waves, the new normal: Summertime temperature extremes will impact animals, ecosystems, and human communities. Physiology 2019, 34, 86–100. [Google Scholar]
- Pascal, M.; Lagarrigue, R.; Laaidi, K.; Boulanger, G.; Denys, S. Have health inequities, the COVID-19 pandemic and climate change led to the deadliest heatwave in France since 2003? Public Health 2021, 194, 143–145. [Google Scholar] [CrossRef] [PubMed]
- Piroozmand, P.; Mussetti, G.; Allegrini, J.; Mohammadi, M.H.; Akrami, E.; Carmeliet, J. Coupled CFD framework with mesoscale urban climate model: Application to microscale urban flows with weak synoptic forcing. J. Wind Eng. Ind. Aerodyn. 2020, 197, 104059. [Google Scholar] [CrossRef]
- Errebai, F.B.; Strebel, D.; Carmeliet, J.; Derome, D. Impact of urban heat island on cooling energy demand for residential building in Montreal using meteorological simulations and weather station observations. Energy Build. 2022, 273, 112410. [Google Scholar] [CrossRef]
- Manzanedo, R.D.; Manning, P. COVID-19: Lessons for the climate change emergency. Sci. Total Environ. 2020, 742, 140563. [Google Scholar] [CrossRef] [PubMed]
Urban | Landscaped | Natural | Mesonet | |
---|---|---|---|---|
Tavg | 21.59 °C | 20.63 °C | 19.94 °C | 20.35 °C |
Meso Diff | 1.24° | 0.28° | −0.41 °C | |
RH avg% | 55.72% | 58.82% | 64.01% | 57.08% |
Meso Diff | −1.35% | 1.75% | 6.94% | |
DPTavg | 11.09 °C | 11.35 °C | 12.04 °C | 11.77 °C |
Meso Diff | −0.67° | −0.42° | 0.27° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schultze, S.R.; Martin, J.; West, K.; Swinea, L.; Linzmeier, B.J. Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain. Atmosphere 2025, 16, 416. https://doi.org/10.3390/atmos16040416
Schultze SR, Martin J, West K, Swinea L, Linzmeier BJ. Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain. Atmosphere. 2025; 16(4):416. https://doi.org/10.3390/atmos16040416
Chicago/Turabian StyleSchultze, Steven R., Jade Martin, Katie West, Laken Swinea, and Benjamin J. Linzmeier. 2025. "Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain" Atmosphere 16, no. 4: 416. https://doi.org/10.3390/atmos16040416
APA StyleSchultze, S. R., Martin, J., West, K., Swinea, L., & Linzmeier, B. J. (2025). Urban Microclimates in Action! High-Resolution Temperature and Humidity Differences Across Diverse Urban Terrain. Atmosphere, 16(4), 416. https://doi.org/10.3390/atmos16040416