Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Site
2.2. The Sampling and Analysis of Methane Emission from the Two BNR Processes
2.2.1. Selecting Sampling Point
2.2.2. Sample Collection
2.2.3. Analytical Methods
2.3. Specific Methanogenic Activity and Coenzyme F420 Tests
2.4. Fluorescence In Situ Hybridization
2.5. Model Formation
3. Results
3.1. Methane Fluxes from the Two BNR Processes
3.2. The Methane Emission Factors of the Two BNR Processes
3.3. SMA and Coenzyme F420 Tests
3.4. FISH Analysis of the Sludge from the Two WWTPs
3.5. Influencing Factors of Methane Emissions
3.5.1. DO Concentration
3.5.2. Temperature
3.5.3. Nitrite/Nitrate Concentration
3.6. Modeling Methanogen Growth in WWTPs
3.7. Release Mechanism of Methane Emission from WWTP
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.J.; Li, J.; Ni, P.J. The Impact of the Digital Economy on CO2 Emissions: A Theoretical and Empirical Analysis. Sustainability 2021, 13, 7267–7281. [Google Scholar] [CrossRef]
- Hao, C.H.; Fu, X.; Jiang, X.Y.; Li, Y.T.; Sun, J.Y.; Wu, H.T.; Zhu, H.; Li, Q.; Li, Y.H.; Huang, Z.C.; et al. Greenhouse Gas Detection Based on Infrared Nanophotonic Devices. IEEE Open J. Nanotechn. 2023, 4, 10–22. [Google Scholar] [CrossRef]
- Mohanakrishnan, J.; Gutierrez, O.; Meyer, R.L.; Yuan, Z. Nitrite effectively inhibits sulfide and methane production in a laboratory scale sewer reactor. Water Res. 2008, 42, 3961–3971. [Google Scholar] [CrossRef]
- Goliopoulos, N.; Mamais, D.; Noutsopoulos, C.; Dimopoulou, A.; Kounadis, C. Energy Consumption and Carbon Footprint of Greek Wastewater Treatment Plants. Water 2022, 14, 320–331. [Google Scholar] [CrossRef]
- Aghabalaei, V.; Nayeb, H.; Mardani, S.; Tabeshnia, M.; Baghdad, M. Minimizing greenhouse gases emissions and energy consumption from wastewater treatment plants via rational design and engineering strategies: A case study in Mashhad, Iran. Energy Rep. 2023, 9, 2310–2320. [Google Scholar] [CrossRef]
- Gülşen, H.; Yapıcıoğlu, P. Greenhouse gas emission estimation for a UASB reactor in a dairy wastewater treatment plant. Int. J. Global. Warm. 2019, 17, 373–388. [Google Scholar] [CrossRef]
- Du, W.J.; Lu, J.Y.; Hu, Y.R.; Xiao, J.X.; Yang, C.; Wu, J.; Huang, B.C.; Cui, S.; Wang, Y.; Li, W.W. Spatiotemporal pattern of greenhouse gas emissions in China’s wastewater sector and pathways towards carbon neutrality. Nat. Water 2023, 1, 166–175. [Google Scholar] [CrossRef]
- Rashid, S.S.; Liu, Y.Q. Assessing environmental impacts of large centralized wastewater treatment plants with combined or separate sewer systems in dry/wet seasons by using LCA. Environ. Sci. Pollut. Res. 2020, 27, 15674–15690. [Google Scholar] [CrossRef]
- Qmbar, A.S.; Khalidy, M.M. Optimizing dissolved oxygen requirement and energy consumption in wastewater treatment plant aeration tanks using machine learning. J. Water Process Eng. 2022, 50, 103237. [Google Scholar] [CrossRef]
- Wang, J.Q.; Hua, M.; Cai, C.Y.; Hu, J.J.; Wang, J.R.; Yang, H.R.; Ma, F.; Qian, H.F.; Zheng, P.; Hu, B.L. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Appl. Environ. Microb. 2019, 85, e02638-18. [Google Scholar] [CrossRef]
- Hilts, A.S.; Hunjan, M.S.; Hug, L.A. Adapting Macroecology to Microbiology: Using Occupancy Modeling to Assess Functional Profiles across Metagenomes. Msystems 2021, 6, e00790-21. [Google Scholar] [CrossRef]
- Su, G.Y.; Zopfi, J.; Niemann, H.; Lehmann, M.F. Multiple Groups of Methanotrophic Bacteria Mediate Methane Oxidation in Anoxic Lake Sediments. Front. Microbiol. 2022, 13, 864630. [Google Scholar] [CrossRef]
- Arthur, P.M.A.; Konaté, Y.; Sawadogo, B.; Sagoe, G.; Dwumfour-Asare, B.; Ahmed, I.; Williams, M.N.V. Performance evaluation of a full-scale upflow anaerobic sludge blanket reactor coupled with trickling filters for municipal wastewater treatment in a developing country. Heliyon 2022, 8, e10129. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhang, J.; Xie, H.J.; Qi, P.Y.; Ren, Y.G.; Hu, Z. Methane emissions from a full-scale A/A/O wastewater treatment plant. Bioresour. Technol. 2011, 102, 5479–5485. [Google Scholar] [CrossRef]
- Song, C.H.; Zhu, J.J.; Willis, J.L.; Moore, D.P.; Zondlo, M.A.; Ren, Z.Y.J. Methane Emissions from Municipal Wastewater Collection and Treatment Systems. Environ. Sci. Technol. 2023, 57, 2248–2261. [Google Scholar] [CrossRef]
- Aboobakar, A.; Jones, M.; Vale, P.; Carmell, E.; Dotro, G. Methane Emissions from Aerated Zones in a Full-Scale Nitrifying Activated Sludge Treatment Plant. Water Air Soil Pollut. 2013, 225, 1814. [Google Scholar] [CrossRef]
- Xu, Y.; Geng, H.; Chen, R.J.; Liu, R.; Dai, X.H. Enhancing methanogenic fermentation of waste activated sludge via isoelectric-point pretreatment: Insights from interfacial thermodynamics, electron transfer and microbial community. Water Res. 2021, 197, 117072. [Google Scholar] [CrossRef]
- Guisasola, A.; de Haas, D.; Keller, J.; Yuan, Z. Methane formation in sewer systems. Water Res. 2008, 42, 1421–1430. [Google Scholar] [CrossRef]
- Ni, B.J.; Ruscalleda, M.; Pellicer-Nàcher, C.; Smets, B.F. Modeling nitrous oxide production during biological nitrogen removal via nitrification and denitrification: Extensions to the General ASM Models. Environ. Sci. Technol. 2011, 45, 7768–7776. [Google Scholar] [CrossRef]
- Ni, B.J.; Peng, L.; Law, Y.; Guo, J.; Yuan, Z. Modeling of nitrous oxide production by autotrophic ammonia-oxidizing bacteria with multiple production pathways. Environ. Sci. Technol. 2014, 48, 3916–3924. [Google Scholar] [CrossRef]
- Gulhan, H.; Cosenza, A.; Mannina, G. Modelling greenhouse gas emissions from biological wastewater treatment by GPS-X: The full-scale case study of Corleone (Italy). Sci. Total Environ. 2023, 905, 167327. [Google Scholar] [CrossRef] [PubMed]
- Shahabadi, M.B.; Yerushalmi, L.; Haghighat, F. Estimation of greenhouse gas generation in wastewater treatment plants—Model development and application. Chemosphere 2010, 78, 1085–1092. [Google Scholar] [CrossRef] [PubMed]
- GB 18918-2002; Discharge Standard of Pollutants for Municipal Waste-Water Treatment Plant. Ministry of Ecological Environment of the People’s Republic of China: Beijing, China, 2002.
- Chandran, K. Characterization of Nitrogen Greenhouse Gas Emissions from Wastewater Treatment BNR Operations: Field Protocol with Quality Assurance Plan; Water Environment Research Foundation: Alexandria, VA, USA, 2009. [Google Scholar]
- APHA. Standard Methods for the Examination of Water and Wastewater, 21st ed.; Eaton, A.D., Clesceri, L.S., Rice, E.W., Greenberg, A.E., Eds.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Dong, F.; Zhao, Q.B.; Zhao, J.B.; Sheng, G.P.; Tang, Y.; Tong, Z.H.; Yu, H.Q.; Li, Y.Y.; Harada, H. Monitoring the restart-up of an upflow anaerobic sludge blanket (UASB) reactor for the treatment of a soybean processing wastewater. Bioresour. Technol. 2010, 101, 1722–1726. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.M.; Hu, J.C.; Gu, X.S. Coenzyme F420 in anaerobic sludge and its measurement with spectrophotometry. China Environ. Sci. 1986, 6, 65–68. (In Chinese) [Google Scholar]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic identification and in situ detection of individual microbial cell swith out cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef] [PubMed]
- Daims, H.; Brühl, A.; Amann, R.; Schleifer, K.H.; Wagner, M. The domainspecific probe EUB 338 is insufficient for the detection of all bacteria: Development and evaluation of a more comprehensive probe set. Syst. Appl. Microbiol. 1999, 22, 434–444. [Google Scholar] [CrossRef] [PubMed]
- Raskin, L.; Stromley, J.M.; Rittmann, B.E.; Stahl, D.A. Group specific 16S rRNA hybridation probes to describe natural communities of methanogens. App. Environ. Microbiol. 1994, 60, 1232–1240. [Google Scholar] [CrossRef] [PubMed]
- Mobarry, B.K.; Wagner, M.; Urbain, V.; Rittmann, B.E.; Stahl, D.A. Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria. Appl. Environ. Microbiol. 1996, 62, 2156–2162. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Rath, G.; Amann, R.I.; Koops, H.P.; Schleifer, K.H. In situ identification of ammonia-oxidizing bacteria. Syst. Appl. Microbiol. 1995, 18, 251–264. [Google Scholar] [CrossRef]
- Pommerening, R.A.; Rath, G.; Koops, H.P. Phylogenetic diversity within the genus nitrosomonas. Syst. Appl. Microbiol. 1996, 19, 344–351. [Google Scholar] [CrossRef]
- Adamczyk, J.; Hesselsoe, M.; Iversen, N.; Horn, M.; Lehner, A.; Nielsen, P.H.; Schloter, M.; Roslev, P.; Wagner, M. The isotope array, a new tool that employs substrate-mediated labeling of rRNA for determination of microbial community structure and function. Appl. Environ. Microbiol. 2003, 69, 6875–6887. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.; Rath, G.; Koops, H.P.; Flood, J.; Amann, R.I. In situ analysis of nitrifying bacteria in sewage treatment plants. Water Sci. Technol. 1996, 34, 237–244. [Google Scholar] [CrossRef]
- Crocetti, G.R.; Hugenholtz, P.; Bond, P.L.; Schuler, A.; Keller, J.; Jenkins, D.; Blackall, L.L. Identification of poly-phosphate-accumulating organisms and design of 16s rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 2000, 66, 1175–1182. [Google Scholar] [CrossRef] [PubMed]
- Jadeja, N.B.; Ganorkar, R. Mathematical Modelling for Understanding and Improving the Anaerobic Digestion Process Efficiency. In Anaerobic Biodigesters for Human Waste Treatment; Environmental and Microbial Biotechnology; Meghvansi, M.K., Goel, A.K., Eds.; Springer: Singapore, 2022; pp. 39–56. [Google Scholar]
- Henze, M.; Gujer, W.; Mino, T.; van Loosedrecht, M. Activated Sludge Models ASM1, ASM2, ASM2d and ASM3; IWA Publishing: London, UK, 2006. [Google Scholar]
- Zaghloul, M.S.; Achari, G. A review of mechanistic and data-driven models of aerobic granular sludge. J. Environ. Chem. Eng. 2022, 10, 107500. [Google Scholar] [CrossRef]
- Zhang, X.H.; Nan, J.; Liu, T.; Xiao, Q.L.; Liu, B.H.; He, X.; Ngo, H.H. Modeling and simulation of an extended ASM2d model for the treatment of wastewater under different COD: N ratio. J. Water Process Eng. 2021, 40, 101831. [Google Scholar] [CrossRef]
- Daelman, M.R.J.; van Voorthuizen, E.M.; van Dongen, U.G.J.M.; Volcke, E.I.P.; van Loosdrecht, M.C.M. Methane emission during municipal wastewater treatment. Water Res. 2012, 46, 3657–3670. [Google Scholar] [CrossRef] [PubMed]
- Speight, J.G. Lange’s Handbook of Chemistry, 16th ed.; McGraw-Hill, Inc.: New York, NY, USA, 2004. [Google Scholar]
- Bitton, G. Wastewater Microbiology, 3rd ed.; Wiley-Liss: New York, NY, USA, 2005. [Google Scholar]
- Yan, X.; Li, L.; Liu, J.X. Characteristics of greenhouse gas emission in three full-scale wastewater treatment processes. J. Environ. Sci. 2014, 26, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Cheng, X.; Lun, X.X.; Sun, D.Z. CH4 emission and conversion from A2O and SBR processes in full-scale wastewater treatment plants. J. Environ. Sci. 2014, 26, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Sarada, R.; Joseph, R. Studies on factors influencing methane production from tomato-processing waste. Bioresour. Technol. 1994, 47, 55–57. [Google Scholar] [CrossRef]
- Hanson, R.S.; Hanson, T.E. Methanotrophic bacteria. Microbiol. Rev. 1996, 60, 439–471. [Google Scholar] [CrossRef]
- Maya-Altamira, L.; Baun, A.; Angelidaki, I.; Schmidt, J.E. Influence of wastewater characteristics on methane potential in food-processing industry wastewaters. Water Res. 2008, 42, 2195–2203. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.H.; Hashimoto, A.G. Effects of pH and substrate: Inoculum ratio on batch methane fermentation. Bioresour. Technol. 1996, 56, 179–186. [Google Scholar] [CrossRef]
- Liu, Y.W.; Ni, B.J.; Sharma, K.R.; Yuan, Z.G. Methane emission from sewers. Sci. Total Environ. 2015, 524–525, 40–51. [Google Scholar] [CrossRef] [PubMed]
- Banihani, Q.; Sierra-Alvarez, R.; Field, J.A. Nitrate and nitrite inhibition of methanogenesis during denitrification in granular biofilms and digested dometic sludges. Biodegradation 2009, 20, 801–812. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.M.; Gutierrez, O.; Sharma, K.R.; Yuan, Z. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer system. Water Res. 2010, 44, 4241–4251. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.G.; Watanabe, T.; Murase, J.; Asakawa, S.; Kimura, M. Growth of methanogens in an oxic soil microcosm: Elucidation by a DNA-SIP experiment using 13C-labeled dried rice callus. Appl. Soil Ecol. 2012, 58, 37–44. [Google Scholar] [CrossRef]
Characteristics and Parameters | Wastewater Treatment Plants (WWTPs) | |||
---|---|---|---|---|
WWTP 1 | WWTP 2 | |||
Process | Orbal oxidation ditch | Anaerobic/Anoxic/Oxic (A/A/O) | ||
Treatment capacity (m3/d) | 1.0 × 105 | 2.5 × 105 | ||
Aeration method | Surface aeration | Fine-bubble aeration | ||
Size (L × B × H) (m) | Anaerobic zone Oxidation ditch | 27 × 9.8 × 4.95 108.2 × 50 × 4.95 | Anoxic zone | 20.3 × 50 × 6 |
Anaerobic zone | 19.3 × 50 × 6 | |||
Oxic zone | 78.7 × 50 × 6 | |||
Influent parameters | ||||
pH | 7.0 ± 0.8 | 7.0 ± 0.8 | ||
COD (mg/L) | 390 | 380 | ||
BOD5 (mg/L) | 200 | 190 | ||
NH4+-N (mg/L) | 20 | 34 | ||
TP (mg/L) | 4 | 4.2 | ||
Effluent parameters * | ||||
pH | 7.0 ± 0.8 | 7.0 ± 0.8 | ||
COD (mg/L) | ≤50 | ≤50 | ||
BOD5 (mg/L) | ≤10 | ≤10 | ||
NH4+-N (mg/L) | ≤5 | ≤5 | ||
TP (mg/L) | ≤0.5 | ≤0.5 |
Probe Name | Target | Sequence (5′-3′) | Formamide % | Reference |
---|---|---|---|---|
EUB 338 | Eubacteria | GCT GCC TCC CGT AGG AGT | 35 | [29] |
EUB 338II | To be used in combination with probe EUB338 | GCA GCC ACC CGT AGG TGT | 35 | |
EUB 338III | To be used in combination with probe EUB338 | GCT GCC ACC CGT AGG TGT | 35 | |
ARC 915 | Archaebacteria | GTG CTC CCC CGC CAA TTC CT | 35 | [30] |
Nso1225 | Betaproteobacterial ammonia-oxidizing bacteria | CGCCATTGTATTACGTGTGA | 35 | [31] |
NEU | Most halophilic and halotolerant | CCCCTCTGCTGCACTCTA | 40 * | [32] |
NmV | Nitrosococcus mobilis | TCCTCAGAGACTACGCGG | 35 | [33] |
Cluster6a 192 | Nitrosomonas oligotropha lineage | CTTTCGATCCCCTACTTTCC | 35 | [34] |
Ntspa662 | Genus Nitrospira | GGAATTCCGCGCTCCTCT | 35 | [34] |
Nit3 | Genus Nitrobacter | CCTGTGCTCCATGCTCCG | 40 | [35] |
Nsm156 | Nitrosomonas | TATTAGCACATCTTTCGAT | 5 | [31] |
Nsv443 | Nitroso-spira, -lobus, -vibrio | CCGTGACCGTTTCGTTCCG | 30 | [31] |
PAO462 | Most Accumulibacter | CCGTCATCTACWCAGGGTATTAAC | 35 | [36] |
PAO651 | Most Accumulibacter | CCCTCTGCCAAACTCCAG | 35 | |
PAO846 | Most Accumulibacter | GTTAGCTACGGCACTAAAAGG | 35 |
Component | i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | Process Rate ρj (ML−3 T−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Process j ↓ | SI | SS | XI | XS | XBH | XBA | XP | SO | SNO | SNH | SND | XND | SALK | SPO4 | XPHA | XPP | XPAO | XPD | Xme | ||
1 Aerobic growth of heterotrophs | 1 | −iXB | −iPBM | ||||||||||||||||||
2 Anoxic growth of heterotrophs | 1 | −iXB | −iPBM | ||||||||||||||||||
3 Aerobic growth of autotrophs | 1 | −iPBM | |||||||||||||||||||
4 Decay of heterotrophs | 1 − fP | −1 | fP | iXB-fP·iXP | iPBM-fP·vp | ||||||||||||||||
5 Decay of autotrophs | 1 − fP | −1 | fP | iXB-fP·iXP | iPBM-fP·vp | ||||||||||||||||
6 Ammonification of soluble organic nitrogen | 1 | −1 | Ka·SND·XBH | ||||||||||||||||||
7 Hydrolysis of entrapped organics | 1 | −1 | |||||||||||||||||||
8 Hydrolysis of entrapped organic nitrogen | 1 | −1 | |||||||||||||||||||
9 Storage of XPHA | −1 | YPO4 | 1 | -YPO4 | |||||||||||||||||
10 Aerobic storage of XPP | -YPHA | −1 | -YPHA | 1 | |||||||||||||||||
11 Anoxic storage of XPP | −1 | -YPHA | 1 | ||||||||||||||||||
12 Aerobic growth of XPAO | −iXB | −iPBM | 1 | ||||||||||||||||||
13 Anoxic growth of XPAO | −iXB | −iPBM | 1 | ||||||||||||||||||
14 Lysis of XPHA | 1 | −1 | |||||||||||||||||||
15 Lysis of XPP | 1 | −1 | |||||||||||||||||||
16 Lysis of XPAO | 1 − fP | fP | iXB-fP·iXP | −1 | iPBM-fP·vp | ||||||||||||||||
17 Hydrolysis of entrapped organic phosphorus | 1 | −1 | |||||||||||||||||||
18 Growth of methanogens | −iPBM | 1 | |||||||||||||||||||
19 Decay of methanogens | 1 − fP | fP | iXB-fP·iXP | iPBM-fP·vp | −1 | ||||||||||||||||
Observed conversion rates (mL−3 T−1) |
WWTP | Processing Unit | Methane Flux (g CH4/(m2·d)) | |
---|---|---|---|
Range | Average | ||
Orbal oxidation ditch | Anaerobic tank | 10.82~24.92 | 18.13 |
Oxidation ditch | 2.79~7.45 | 4.61 | |
A/A/O | Anaerobic tank | 4.55~11.34 | 7.57 |
Anoxic tank | 0.39~0.89 | 0.65 | |
Oxic tank | 0.77~2.19 | 1.35 |
WWTP | Methane Emission Factors | Reference | |
---|---|---|---|
g CH4 /(m3 INF) | g CH4/(Person · Year) | ||
Orbal oxidation ditch | 0.72–1.82 (1.18) | 39.81–99.79 (64.67) | This study |
A/A/O | 0.13–0.33 (0.21) | 7.05–18.32 (11.44) | |
Orbal oxidation ditch | 0.90–1.40 (1.2) | - | [44] |
A/A/O | 0.30–0.50 (0.7) | - | |
Reversed A/A/O | 0.30–1.00 (0.7) | - | |
A/A/O | 0.066–0.425 | 8.95–63.00 | [45] |
Sequencing batch reactor (SBR) | 0.088–0.015 | 8.33–66.07 |
Bacteria | Simulative Result | Actual/Field/In Situ Results | Relative Error | |
---|---|---|---|---|
Orbal oxidation ditch | Methanogens | 3.45% | 3.35% | 2.39% |
Ammonia-Oxidizing Bacteria (AOB) and Nitrite-Oxidizing Bacteria (NOB) | 3.59% | 3.60% | 0.28% | |
Polyphosphate-Accumulating Organisms (PAOs) | 6.48% | 6.32% | 2.53% | |
A/A/O | Methanogens | 1.92% | 1.95% | 1.54% |
Ammonia-Oxidizing Bacteria (AOB) and Nitrite-Oxidizing Bacteria (NOB) | 4.64% | 4.90% | 5.31% | |
Polyphosphate-Accumulating Organisms (PAOs) | 9.29% | 9.33% | 0.43% |
Simulative Results | Actual/Field/In Situ Results | Relative Error | |
---|---|---|---|
Orbal oxidation ditch | 2.97% | 3.39% | 12.39% |
A/A/O | 0.29% | 0.32% | 9.38% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, D.; Li, H.; Li, X.; Ao, D.; Wang, N. Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an. Water 2024, 16, 2101. https://doi.org/10.3390/w16152101
Zhang D, Li H, Li X, Ao D, Wang N. Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an. Water. 2024; 16(15):2101. https://doi.org/10.3390/w16152101
Chicago/Turabian StyleZhang, Dianao, Huijuan Li, Xia Li, Dong Ao, and Na Wang. 2024. "Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an" Water 16, no. 15: 2101. https://doi.org/10.3390/w16152101
APA StyleZhang, D., Li, H., Li, X., Ao, D., & Wang, N. (2024). Source of Methanogens and Characteristics of Methane Emission in Two Wastewater Treatment Plants in Xi’an. Water, 16(15), 2101. https://doi.org/10.3390/w16152101